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Abstract. For generally damped linear systems with repeated eigenvalues and defective eigenvectors,
this study provides a decomposition method based on residue matrix, which is suitable for engineering
applications. Based on this method, a hybrid approach is presented, incorporating the merits of the modal
superposition method and the residue matrix decomposition method, which does not need to consider the
defective characteristics of the eigenvectors corresponding to repeated eigenvalues. The method derived in
this study has clear physical concepts and is easily to be understood and mastered by engineering
designers. Furthermore, this study analyzes the applicability of step-by-step methods, including the
Newmark beta and Runge-Kutta methods for dynamic response calculation of defective systems. Finally,
the implementation procedure of the proposed hybrid approach is illustrated by analyzing numerical
examples, and the correctness and the effectiveness of the formula are judged by comparing the results
obtained from the different methods.

Keywords: damped system; repeated eigenvalues; transfer function; residue matrix; modal superposition
method; defective system

1. Introduction

The modal superposition method is widely used in the dynamic response analysis of linear

systems. This method can simplify the dynamic response analyses through decoupling the vibration

equation based on the orthogonality of eigenvectors. The resulting complex multi-degree-of-freedom

(MDOF) system can be turned into the linear superposition of the independent dynamic responses

of a series of single degree of freedom (SDOF) systems subjected to identical ground motion. Also

the modal analysis of structure can be used to carry out other research (Baek et al. 2011, Tan et al.

2011). In current seismic designs, based on proportional or classical damping assumptions, the

square root of the sum of the squares (SRSS) and the complete quadratic combination (CQC)

methods are proposed to calculate the dynamic response (Caughey 1960). However, there are many

structures whose damping is non-uniform, for instance, soil-structure interacting systems and

structures equipped with supplemental linear viscous dampers, such as oil dampers. Takewaki

(2004) demonstrated that the structural energy transfer function and displacement transfer function
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will be underestimated if the over-damped modes are neglected. Over the years, a number of

researchers have conducted extensive studies on developing complex modal superposition methods

for systems that do not satisfy classical damping condition. Villaverde and Newmark (1980)

developed a deterministic formulation for non-classically damped system by using complex

frequencies and mode shapes. Igusa et al. (1984) studied the stationary response of multi-degrees-

of-freedom (MDOF) non-classically damped linear systems subjected to stationary input excitations.

Veletsos and Ventura (1986) presented a critical review of the modal superposition method of

evaluating the dynamic response of non-classically damped structure. Singh et al. (1986) studied the

modal time history analysis approach for the non-classically damped structures subjected to seismic

forces. Yang et al. (1988) used a real-valued canonical transformation approach to decouple a non-

classically damped system from a set of second order differential equations to a set of first order

ones, and then performed a time history analysis as well as a response spectrum analysis. Zhou et

al. (2004), Song et al. (2007a, b) derived the complex complete quadratic combination (CCQC or

GCQC) method completely in real form for generally non-classically damped linear systems, and

the complex square root of the sum of the squares (CSRSS) method for systems with well separated

natural frequencies, in which the responses among different modes can be regarded as uncorrelated.

However, for either classically damped systems or non-classically damped systems, the problems of

repeated eigenvalues have not yet attracted sufficient attention from the earthquake engineering

community. In the current seismic design code for structures, it is usual to design structures without

equal or very close natural frequencies, mainly in terms of the following two considerations. First, if

the amplitudes of the two responses are equal, the structural responses corresponding to the two

equal natural frequencies will be the sum of the individual response, and the dynamic response will

then be doubled. On the other hand, if the natural frequencies corresponding to the two responses

are unequal, the dynamic response will only increase by 1.4 times. When a structure has repeated

natural frequencies, the traditional method is to change the stiffness distribution of the structure

slightly and make the natural frequencies differ from each other (Friswell et al. 2005). Second,

when the structure has two or more sets of repeated eigenvalues and the corresponding eigenvectors

are defective, there still have no appropriate response spectrum modal superposition method to

calculate the earthquake response. Due to the first consideration, engineers in the earthquake

engineering field usually do not need to deal with the problem of the dynamic response of the

repeated eigenvalues. However, these issues change gradually along with the growth in structural

size and configuration, and the variety and complexity of the systems. Very close and repeated

frequencies are no longer unusual and sometimes even become inevitable. Moreover, it is worth

considering whether the earthquake responses corresponding to the two equal frequencies can be

offset each other or not. In fact, it is based on this consideration the tuned mass damper (TMD) was

developed (Fujino and Abe 1993, Tsai 1993). In addition, problems of repeated eigenvalues have

become common issues of many electrical and control systems. Inevitably, the methods of dealing

with the dynamic responses of the system with repeated eigenvalues evolved, and a generalized

modal analysis method has been proposed (Zhen 2002, Katsuhiko 2006, Chen 2007), which

becomes the basis and reference for our study in this paper.

There are two purposes for doing this research. Firstly, we attempt to extend the method of the

modal superposition method, which is widely used in earthquake engineering and structural

dynamics, in systems with repeated eigenvalues. Secondly, we attempt to check if the widely used

analysis methods for structural dynamic response, such as the Newmark beta and Runge-Kutta

methods, can be applied directly to the cases when there are repeated eigenvalues, especially when
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there are defective eigenvectors in the structural system. Hence, this paper provides a hybrid method

based on orthogonality between different modes and on residue matrix calculations. This method

fully uses the merits of the modal superposition method and the residue matrix decomposition

method (Zhen 2002, Katsuhiko 2006), and does not consider the algebraic and geometric

multiplicity of corresponding repeated eigenvalues, which makes it be easy for engineers to

understand and master. It should be pointed out that the hybrid method is the basis for further

research on modal response superposition methods based on the design response spectrum, that is,

the CCQC and CQC methods. In fact, the residue matrix decomposition method can be treated as

complementary to the modal superposition method, which gives the same result as the generalized

modal superposition method. For a generally damped linear MDOF system, a formula for the

dynamic response in time fields is obtained in this study, and the applicability of the step-by-step

methods, including the Newmark beta and Runge-Kutta methods, for the dynamic response

calculation of defective systems is discussed and verified. Finally, the steps to calculate structural

response adopting the hybrid method derived in this study are given by analyzing numerical

examples, and the validity and effectiveness of the formula are judged by comparing the results

obtained from different methods of calculation. It is worth noting that the method presented in this

paper is also based on general modal analysis, therefore, it is suitable for linear structures, electrical

systems, proportional damping systems and non-proportional damping systems and can be regarded

as an alternative generalized complex mode analysis method (Li 1985).

2. Decomposition technology of generally damped linear systems

It is well known that for a discrete system, with N degrees of freedom, the equations of motion in

terms of nodal displacements are expressed as

(1)

Here M, C and K are the  mass, damping and stiffness matrices, which are symmetric

matrices; y is a  nodal displacement vector which describes the dynamic response of the

structure, and N is an arbitrarily large integer; e is unit vector with dimension , and  is

the arbitrary time history of ground acceleration. If we introduce the equation ,

Eq. (1) can be rewritten as a group of first-order linear differential equations, that is

(2)

in which 

, , (3)

and I is identity matrix with dimension .

2.1 Repeated eigenvalues and generalized eigenvectors

The eigenvalues corresponding to the system expressed by Eq. (2) can be divided into two types,
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i.e., distinct eigenvalues and repeated eigenvalues. According to linear system theory (Zhen 2002,

Katsuhiko 2006), the multiplicity of an eigenvalue λi is called as algebraic multiplicity ki, and the

number of independent eigenvectors corresponding to the eigenvalue λi is termed as the geometric

multiplicity gi. Then  for the distinct eigenvalue λi, and  for the repeated

eigenvalue. In fact, if the geometric multiplicity gi is equal to algebraic multiplicity ki, all the

eigenvectors corresponding to the repeated eigenvalue are linearly independent and mutually

orthogonal, and in this case, although the repeated eigenvalue exists, the modal superposition

method based on the orthogonality of eigenvectors is still effective. For example, for a translation-

torsion system with repeated eigenvalues, the eigenvector corresponding to the translation will be

independent of the vector related to the torsion.

However, when geometric multiplicity gi is smaller than algebraic multiplicity ki, the number of

linearly independent eigenvectors corresponding to a repeated eigenvalue λi is less than the

multiplicity ki of the eigenvalue, and the system becomes defective. In this case, the number of

linearly independent eigenvectors, that is, the geometric multiplicity gi, can be calculated by the

rank of the characteristic matrix, i.e.

(4)

in which, 2N is the dimension of the matrix A, I is the identity matrix whose dimension is the same

as that of the matrix A, rank(•) represents the rank of the matrix. In practice, it is not easy to

determine the geometric multiplicity by calculating the rank of the characteristic matrix for large

systems (Zhang et al. 2006, Chi et al. 2004). Because a defective system seldom occurs in

structural engineering, researchers in the field of structural dynamics and earthquake engineering

pay less attention to the problems related to defective systems. However, the importance of studying

the structural dynamic problems of defective systems has been recognized because of larger and

more complex structures being constructed, and because of the wide usage of structural vibration

control technology.

2.2 Partial fraction expansion method based on the residue matrix 

To avoid calculating the rank of the characteristic matrix and geometric multiplicity of the

repeated eigenvalues, for a system with repeated eigenvalues, the dynamic responses relevant to the

repeated eigenvalues can be solved by decoupling the transfer function based on calculating the

residue matrices. Using the Laplace transformation, Eq. (1) can be turned into an algebraic equation

in the complex field (the shortened ‘λ’ field) about the parameter , i.e.

(5)

That is 

(6)

in which,  is the impedance matrix in the λ-field of the system, which is a nonsingular and

symmetric matrix for the restraint system and has an inverse matrix, hence we can get
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(7)

in which

(8)

namely the transfer functions of systems with multiple inputs and outputs. When external excitation

and initial condition of a system are definitive, the dynamic responses of the system at arbitrary

coordinates will depend on the transfer function matrix . In Eq. (8),  is the

determinant of the matrix , which can be denoted as a 2N-order real coefficient polynomial of

parameter λ, that is

 (9)

Since  is the companion matrix of matrix Z(λ), which is a N × N symmetric

matrix and the element  in the p-th row and q-th column of matrix  can be written as a

-order polynomial of parameter λ, that is 

(10)

Meanwhile the element  of the transfer function matrix G(λ) can be denoted as 

(11)

namely all the elements  of the transfer function G(λ) of the system are rational functions in

the λ-field. Physically  represents the response transfer coefficient of the system at p caused

by a unit input  at q. The equality  is called the characteristics equation of the system

combined from the matrices M, C and K, and we can get 2N roots, that is, eigenvalues or poles, in

the complex field. Because the matrices M, C and K of Eq. (1) are all real symmetric matrices, the

eigenvalues obtained by calculating the characteristic equation of the corresponding Eq. (1) normally

occur in complex conjugate pairs, and the distinct root can be regarded as a special case of repeated

root of order 1. Moreover, the real root can also be regarded as a complex conjugate pair for which

the imaginary part is zero.

Because  is a rational function of the parameter λ, Eq. (11) can be expanded as a partial

fraction according to the roots of equality . For a better expression in the latter part of

this section, for a system with the repeated eigenvalues, it is assumed that there are z-pairs 

of complex-conjugate eigenvalues, , whose multiplicity are ,

respectively, in which , and then Eq. (11) can be expressed as

, (12)

in which,  is determinant of the matrix M; km represents the multiplicity of the pole
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;  and  are a pair of the desired conjugate constants and can be determined by the

following formula 

(13)

Here the superscript p and q of  represents the p-th row and q-th column of the residue

matrix, respectivly; the superscript l represents the order of the derivative in determining the residue

corresponding to the term , and the values of l are in decreasing order i.e.,

; here we use the subscript  to number the different eigenvalues

; i is the power index of the corresponding term , the values can be

, i.e., in increasing order which is the opposite to l. Specifically, Eq. (12) can be

expressed as

(14)

From above discussion, we can see that if there is only one independent eigenvector

corresponding to every eigenvalue, i.e., , then obviously the eigenvalue is distinct and the

number of the eigenvalue is equal to that of the eigenvector, and the system is non-defective.

Whereas, if the multiplicity of the eigenvalue λm is more than one ( ), but only one

independent eigenvector corresponds to this eigenvalue λm, then there exist defective vectors

corresponding to the eigenvalue, and the number of defective vectors will be . In this case, the

maximum value of the power index i of the corresponding term  in Eq. (12) can reach km,

and all the defective vectors must be derived from the independent vector, which are related to the

independent vector and can be called derived-vectors. However, sometimes the repeated eigenvalue

may have several independent vectors, which is different from the discussion above. For this case,

the repeated eigenvalue will correspond to smaller groups, and the maximum value of the power

index i corresponding to term  in Eq. (12) will be less than the multiplicity km, that is

. In general, the system is not defective if the number of the independent eigenvectors is the

same as the multiplicity of the repeated eigenvalue, and there is no need to calculate the derived-

vectors, but if the defective eigenvector exists we need to determine the derived-vectors if the

number of independent eigenvectors is less than the multiplicity. It can be concluded that the non-

defective or independent eigenvectors corresponding to a repeated eigenvalue λm are orthogonal, and

these eigenvectors are orthogonal to the eigenvectors of the other eigenvalues. That is, the

orthogonal condition can be satisfied among the independent eigenvectors and there is no need to

consider the multiplicity of eigenvalues.

The above analysis is considered from the aspect of generalized modal decomposition. In fact,

because the transfer function of every group can be expressed by the Eq. (12) or Eq. (14), the

contribution of every group in Eq. (12) can be combined according to the order of term .

The combined results will automatically include the contributions of the independent vectors and

derived-vectors, therefore it is not necessary to distinguish the algebraic and geometric multiplicity

and to calculate the eigenvectors and consider the defective characteristic of eigenvectors, the

λm Rm i,

pq l,
Rm i,

pq l,

Rm i,

pq l, 1

DM l 1–( )!
------------------------

d
l 1–

λ
l 1–

d
------------

Jpq

*
λ( ) λ λm–( )

k
m

λ λm–( )
k
m

λ λm–( )
k
m

m 1=

z

∏

-------------------------------------------------------
λ λ

m
→
lim=

Rm i,

pq l,

λ λm–( )i

l km km 1– … 1, , ,= m 1 2 … z, , ,=

λ1 λ2 … λz, , , λ λm–( )i

i 1 2 … km, , ,=

Gpq λ( )
Rm 1,

pq k
m

,

λ λm–( )
-------------------

Rm 1,

pq k
m

,

λ λm–( )
------------------- …

Rm k
m

1–,

pq 2,

λ λm–( )
k
m

1–
----------------------------

Rm k
m

1–,
pq 2,

λ λm–( )
k
m

1–
----------------------------

Rm k
m

,

pq 1,

λ λm–( )
k
m

----------------------
Rm k

m
,

pq 1,

λ λm–( )
k
m

----------------------+ + + + + +
⎝ ⎠
⎜ ⎟
⎛ ⎞

m 1=

z

∑=

km 1=

km 1>

km 1–

λ λm–( )i

λ λm–( )i

i km<

λ λm–( )i



Dynamic response analysis of generally damped linear system with repeated eigenvalues 455

advantages of which are obtained by the transfer function method based on the residue matrix. It

can be concluded that all elements  in the transfer function matrix  can be obtained

through calculating the residues, therefore, the transfer function matrix  can definitely be

determined, and the corresponding calculation method can be called the residue matrix

decomposition method.

Suppose the multiplicity of the total complex-conjugate pair of eigenvalues is km = 1, Eq. (12) can

then be rewritten as 

(15)

Because km = 1, the superscript l in a pair of conjugate residue matrices  and  in

Eq. (12) can be omitted, and the power index i is equal to 1. The corresponding equation to Eq. (13)

can be expressed as

. (16)

It can be deduced from Eq. (12) that the system can be divided into several small systems

according to the different eigenvalues by using the residue matrix decomposition method based on

partial-fraction expansion, and the system responses in the λ-domain can be expressed as a linear

combination of contributions from all the different eigenvalues in terms of Eq. (12). The residue

according to each eigenvalue or pole can be calculated by Eq. (13), or can be calculated through

commercial software, such as MATLAB, MATHMATIC, etc. The method is especially suitable for

analyzing small systems. However, for large systems with thousands of degrees of freedom, the

computation of poles and residues can be a time-consuming task, and impractical even when using

commercial software. For the convenience of numerical computation, we propose a hybrid

approach, which is described in the following subsection.

2.3 The hybrid method combining partial fraction expansion and modal analysis

The proportion of repeated roots in the total eigenvalues and the multiplicity of each repeated

eigenvalue are usually limited, even in large systems with thousands of degrees of freedom. Hence,

the total structural responses can be divided into two groups according to distinct and repeated

eigenvalues, and the response contributions from each group can be calculated through different

methods. Suppose the distinct conjugate eigenvalues of the system are  ( )

with multiplicity km ( ). Now separate the z1-pairs of distinct eigenvalues  with 
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(17)

In Eq. (17), the first part  represents the linear combination of the displacement responses of

the z1 SDOF oscillators. We recommend the employment of the modal superposition method

mentioned by Zhou et al. (2004) to calculate the first part in Eq. (17) in order to reduce the

computation amounts. It can be proven that for the dynamic response corresponding to the case

with the distinct eigenvalues, the structural responses calculated by using the modal superposition

method are the same as those obtained from the residue matrix decomposition method. The second

part  represents the linear combination of the displacement responses of the  coupled

systems, in which  is the response of the m-th coupled system. As mentioned above, if the

system is decoupled based on the generalized modal decomposition method, it is necessary to

calculate the geometric multiplicity of the eigenvalue  and to determine the corresponding

independent vectors and derived-vectors of each repeated eigenvalue, which is a time consuming

task for a large system. Therefore, in this study, the residue matrix decomposition method

mentioned in the preceding discussion is selected to calculate the response , in which the

coupled system corresponding to a repeated eigenvalue will be handled as a coupled-system, and no

longer decomposed into smaller systems. Then, the second part  in Eq. (17) can be expressed as

(18)

in which,  is the i-th order response corresponding to repeated eigenvalue  with

multiplicity km, which corresponds to the term  in the transfer function expressed by

Eq. (12). The computation procedure for the response  will be discussed in Section 3.

The preceding analysis reveals that the second part response  is composed of 

equations of km-order. Because km << N in most cases, the solution of these km-order equations will

be much more convenient than the direct solution of Eq. (1). Through the above analysis we know

that, for each repeated eigenvalue, if the residue matrix decomposition method is adopted to

calculate the structural dynamic responses, the system corresponding to a repeated eigenvalue can

be treated as a subsystem when carrying out the solution of the structural response. In this case, it is

not necessary to consider the geometric multiplicity of the eigenvalue and calculate the independent

eigenvalues and derived-vectors, which is undoubtedly convenient in practical applications. In this

study, the method of partial-fraction expansion of the transfer function based on calculating the

residue matrix is called as the residue matrix decomposition method, and the method expressed by

Eq. (17) is called as the hybrid method, which makes full use of the merits of the modal

superposition method and residue matrix decomposition method, and can be treated as an alternative

expression form of the generalized complex mode analysis method.

3. Dynamic responses in the time domain for generally damped linear system

3.1 Structural response contributions from distinct eigenvalues

Firstly, we discuss the calculation method for the displacement response  corresponding to z1
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SDOF systems in Eq. (17). In this study, the modal superposition method reported by Zhou et al.

(2004) is proposed for calculating the displacement response contributions  instead of the

partial fraction expansion method, i.e.

(19)

in which:  and  are the generalized participation factors corresponding to the m-th distinct

eigenvalue λm. The coefficients  and  can, in fact, be calculated based on the

orthogonality of the eigenvectors provided by the characteristic equation.  and  can

be calculated by solving the following equation

(20)

i.e., they are the displacement response and velocity response of the m-th SDOF oscillator, which

represent the contribution of the m-th mode at an arbitrary time t, in which  and  are the free

vibration frequency and the corresponding critical damping ratio. It is noted that the subscripts

 in the generalized participation factors represent the order number of the eigenvalue and the

multiplicity, respectively. In the case of distinct eigenvalues, the multiplicity is equal to 1 as

previously mentioned.

It can be proved that the results obtained using the residue matrix decomposition method are
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Carrying out the inverse Laplace transformation on both sides of Eq. (24), gives the corresponding

time domain responses as

(25)

Suppose the poles of the system are pairs of complex-conjugate values and have negative real

parts, we then have

and (26)

in which  and  are the damping coefficient and the damped frequency

of the m-th mode, and  and  are the free vibration frequency and the corresponding critical

damping ratio.

Separating the real and imaginary parts of the poles and residue matrices in Eq. (25), and

combining the contributions of the pairs of conjugate values, the structure response expressed by

Eq. (25) can then be written as

(27)

in which 

 (27a)

(27b)

Eq. (27) consists of two Duhamel integrations with respect to the sine and cosine terms and the

Duhamel integration in terms of the sine is obviously the solution of Eq. (20), i.e.

(28)

Here  is the corresponding impulse response function, that is

(28a)

By taking the derivative of the preceding Eq. (28), the Duhamel integration for  in

Eq. (27) can be expressed as

(29)

and thus Eq. (27) can be written as 

(30)
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in which

(30a)

(30b)

The generalized participation factors given by Eqs. (30a) and (30b) are, in fact, consistent with the

results obtained from Eq. (19), that is  and , which can be briefly

explained as follows.

Suppose the residue matrix  corresponding to the distinct eigenvalue  can be expressed as

(31)

Multiplying both sides of the Eq. (8) by , gives

(32a)

(32b)

If we let , we obtain

(33a)

(33b)

Because  is the zero value point, substituting  into , we have 

(34)

Comparing Eq. (34) and Eq. (33a), we see that any column of the adjoining matrix  is

linearly dependent on eigenvector Φm, that is, only a constant factor exists between any column of

 and Φm. In addition, it can be seen from Eq. (31) that there is a constant factor between

every column of the residue matrix  and eigenvector Φm. Similarly, we can prove that every

row of the adjoining matrix is linearly dependent on the left eigenvector . Due to the

symmetrical characteristic of the associated mass, damping and stiffness matrices, we have

, that is, only a constant factor exists between the row of residue matrix  and the

transpose eigenvector  of vector Φm. Based on the preceding discussion, the relationship

between the adjoining matrix  and vector Φm can be expressed as

 (35)

in which  is a constant that needs to be determined and the following relationship between the

residues matrix  and  can be obtained via simple derivation.

Taking the first-order derivative of λ on both sides of Eq. (32b), and letting , gives
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(36)

Multiplying both sides of Eq. (36) by the eigenvector , we obtain

(37)

Substituting Eq. (35) into Eq. (37), and noting that , we get

(38)

in which

 (38a)

because the eigenvalue λm is a distinct eigenvalue, . Moreover, because the eigenvector

, we obtain the following equation from the Eq. (38) as

(39)

Substituting Eq. (39) into Eq. (35), we obtain

(40)

and substituting Eq. (40) into Eq. (31), the relationship between the residue matrix  and vector

 can be expressed as

(41)

where

 (42)

If we substitute Eq. (41) into  and  of Eq. (27), via

necessary simplifications, it is easy to show that Eq. (27) is exactly identical to that of the modal

superposition method proposed by Zhou et al. (2004). 

3.2 Structural response corresponding to repeated eigenvalues

Next, we discuss the calculation of the displacement response contribution  corresponding to

 groups of repeated eigenvalues or poles, which can be obtained using the residue matrix

decomposition method based on the partial-fraction expansion of the transfer function. If the

multiplicity of the m-th pole of the structure is km, then for this coupled subsystem, the dynamic

response of the structure can be written as

(43)
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in which λm and  are pairs of conjugate poles or eigenvalues;  and  are

the conjugate residue matrices of the corresponding terms  and  respectively. For

the pole with multiplicity km, each of the elements in the residue matrices can be determined by

using Eq. (13). It is not difficult to calculate the corresponding residue through Eq. (13), provided

all the poles of the system are determined;  on the right side of Eq. (43) is the transfer

function corresponding to the term .

It can be seen from Eq. (43) that when there is a pole with multiplicity km in the structural system,

the term with high order  ( ) will be included in the partial fraction of the transfer

function£¨which is different from that of distinct poles. If the inverse Laplace transformation is

carried out on Eq. (43), the structural response corresponding to the m-th coupled system in the time

domain can be expressed as

(44)

It is noted that the displacement vectors expressed by Eq. (44) are the result of the integration of

the product of the residue matrix and load vector to time t. When i > 1, the equation contains the

dimensional scalar function , which means the residue matrix  in Eq. (44) has different

dimensions at i = 1 and i > 1. For convenience of comparison, we assume the dimensionless factor

, and Eq. (44) can then be rewritten as

(45)

Similarly, we separate the real and imaginary parts of the poles and residue matrices in Eq. (45),

and combine the contribution of pairs of conjugate values. Then the structure response given by

Eq. (45) can be written as

(46)

in which,  is the i-th order response of corresponding repeated eigenvalue  with

multiplicity km and can be expressed as

(47)

in which 
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corresponding impulse response function can be written as

(49)

Note that the impulse transfer function of Eq. (49) has an additional dimensionless term 

compared to the case with distinct roots.

For the convenience of calculating in the time domain, the i-order displacement response of the

m-th repeated eigenvalue, which is the Duhamel integration for the sine term, can be written as

(50)

To eliminate the Duhamel integration for  in Eq. (47), we take the derivative of the

preceding Eq. (50), and then obtain

(51)

Here 

Obviously, Eq. (47) can be rewritten as

(52)

in which

  (52a)

(52b)

(52c)

Because vectors  are the functions of the modal displacement in physical

coordinates, they can also be used to express the other responses, such as the internal force and

stress through linear transformation, where  are time-varying functions.

Hence, the structural response of the  composite systems in the time domain can be expressed

by the double summation of Eq. (52) as

(53)

To sum up, the equation of the displacement response for the structure corresponding to Eq. (1)

can now be written as
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Ẽm i, 2 i 1–( )βm umi{ }=
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in which the parameters are defined as previously mentioned. Eq. (54) shows that when , the

generalized participation factor expressed by Eq. (52a) will be . Eq. (53) can then be

written as the single-summation formula as is shown in Eq. (19), and the dynamic response can be

calculated by the method based on the orthogonality of the distinct eigenvalues (Zhou et al. 2004).

Because the structural responses of the distinct eigenvalues can be treated as the case when the

multiplicity of the eigenvalue is , the Eq. (54) can be generalized as the equation of the

double-summation expression, i.e.

 (55)

in which 

         

         

It is noted that although Eq. (55) incorporates the structural responses corresponding to the distinct

and repeated eigenvalues, it does not hinder or prevent us from calculating the structural responses

separately using different methods, such as the modal superposition method and residue matrix

decomposition method. In fact, while using the proposed hybrid approach to conduct the dynamic

analysis of large complex structures, we can first use any software to calculate all the eigenvalues

and then distinguish the distinct and repeated ones. The next step is to calculate their corresponding

eigenvectors and then to calculate dynamic responses by the modal superposition method i.e.

Eq. (27) for all the distinct eigenvalues. The final step is to calculate the remaining dynamic

responses using Eq. (53) corresponding to the repeated eigenvalues based on the residue matrix

method. It is worth noting that in the case of using the residue matrix and partial fraction expansion

method we do not need to distinguish the algebraic and geometric multiplicity. To calculate the

independent eigenvector and derived-vectors for each repeated eigenvalue is not only time

consuming, but can also be very difficult. This disadvantage can be avoided in the proposed hybrid

approach.

4. Discussion on the applicability of numerical integration computation to the

response of a defective system

For a linear MDOF system, the popular calculation methods can be divided into two categories,

that is, the direct numerical integration computation methods (Newmark beta method, Runge-Kutta

method, etc) and the modal superposition method based on generalized coordinates. For a system

without defective characteristics, the direct numerical integration computation methods are suitable

for the calculation of response under the earthquake input. In this section, we will give an example

to demonstrate the applicability of these methods to defective systems by comparing the calculation

results obtained by direct numerical integration computation methods and theoretical analysis.

The physical parameters of the system with the repeated eigenvalues are expressed as
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, ,

Transforming the motion equation into first-order differential equations as is shown in Eq. (2), the 

eigenvalues of a system can be obtained from the system state matrix A as, , which

is a pair of conjugate repeated eigenvalues. Because the system has two-degrees of freedom, it is

clearly a defective system when multiple eigenvalues appear (Chen 1988).

Based on Eq. (13), the residue matrices  and  corresponding to the terms  and

 can be obtained as

,

In Table 1, column 2 shows the theoretical solution of the displacements for two masses when the

acceleration amplitude of a rectangular wave input is 1.0 (gal) over the time range (0-t), in which

the total time length is t = 5 s and the time interval is . To verify Eq. (53) derived in

this paper, we carried out a numerical analysis under the same input, and the results of the generalized

participation factors are: , , ,

,  and .

For the decoupled SDOF system, the piecewise exact method (Clough and Penzien 1993) is

selected to calculate the displacement and velocity responses. The results show that the

displacements of the mass calculated by Eq. (53) are completely consistent with the theoretical

solution.

For the defective system, we also use the common step-by-step integration methods, the Runge-

kutta (RK) and Newmark beta methods, to analyze the dynamic responses directly in order to

discuss their applicability to a defective system. Only the maximum values of displacements are

listed in columns 4 and 5 of Table 1. The results show that the two methods are also suitable for the

analysis the dynamic responses of the MDOF system with defective characteristic. It should be

noted that the calculation results derived from the Runge-kutta method get closer to the theoretical

solution, because of its fourth-order accuracy of calculation.

5. Numerical analysis and examination

Example 1:

To illustrate the calculation procedure of the hybrid method derived in this study, we first

M 1  

1
= C 4  2 2

2 2  6

= K 36  

81
=

λ1 2,
5

2
---

191

2
-------------i±–=

R1 1, R1 2, λ λ1–( )
λ λ1–( )2

R1 1,
0.0909i  – 0.0054i–

0.0054i  – 0.0606i–
= R1 2,

0.1283 0.0362i–   – 0.0370– 0.1023i+

0.037 0.1023i+– 0.0812 0.0362i+
=

t∆ 0.01 s=

Ẽ1 1, 0= Ẽ1 2, 0.3306– 0.0883,[ ]′= Ã1 1, 1.3306– 0.9117–,[ ]′=

Ã1 2, 0.2519 0.2451,[ ]′= B̃1 1, 0≈ B̃1 2, 0.0478 0.0128–,[ ]′=

Table 1 Maximum displacements calculated by the different methods (units: cm)

Mass Exact value Eq. (53) RK method Newmark-β method

m1 0.035656 0.035656 0.035656 0.035660

m2 0.143440 0.143440 0.143440 0.143450
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introduce a three-degrees of freedom system and analyze its dynamic response. The physical

parameters of the three-degrees of freedom system are 

, ,

The calculation obtained a pair of conjugate distinct eigenvalues at λ1 = −0.5833 ± 2.1586i and

repeated eigenvalues of order 2 at  of the system. The corresponding structural

circular frequencies are: ω1 = 2.2361 (rad/s) and ω2 = 1.4142 (rad/s), and the damping ratios are: ζ1

= 0.2609 and ζ2 = 0.7071. Moreover, it is known, by calculating the algebraic and geometric

multiplicity of the eigenvalue λ2, that the system is defective (Chen 1988).

For this system, the displacement response corresponding to the distinct eigenvalue can be

calculated by using Eq. (19), and the corresponding generalized participation factors are listed in

column 2 of Table 2. The displacement response corresponding to the repeated eigenvalue is

calculated using Eq. (53), in which the residue matrices corresponding to the terms of  and

 are

The generalized participation factors derived from Eqs. (52a), (52b) and (52c) corresponding to

i = 1 and i = 2 are listed in the columns 3 and 4 of Table 2.

To test the relationship of the modal superposition method and residue matrix decomposition

method, the residue matrix of the distinct eigenvalue λ1 = −0.5833 + 2.1586i is calculated as

The generalized participation factors corresponding to λ1 derived from Eqs. (52a), (52b) and (52c)

are the same as the results obtained using Eq. (19), as are shown in column 2 of Table 2.

 

M
1  0  0

0  1  0

0  0  1

= C

2  1–   3/2

1–   2  1/2 3–

3/2  1/2 3–   7/6

= K
4  0  0

0  6  0

0  0  5/6

=

λ2 1 ± 1i–=

λ λ2–( )
λ λ2–( )2

R2 1,

0.0854 0.3360i–   0.0299 0.2160i+   0.0223– 0.1958i–

0.0299 0.2160i+   0.0668– 0.1069i–   0.0435– 0.1142i+

0.0223– 0.1958i–   0.0435– 0.1142i+   0.0106– 0.9810i–

=

R2 2,

0.0402 0.2153i+   0.0591– 0.0781i–   0.2704 0.2048i+–

0.0591– 0.0781i–   0.0393 0.0194i+   0.0672 0.1360i–

0.2704– 0.2048+ i  0.0672 0.1360i–   0.4711– 0.2329i–

=

R1 1,

0.0854– 0.0738i–   0.0299– 0.1332i–   0.0223 0.0303i–

0.0299– 0.1332i  – 0.0668 0.1510i–   0.0435 0.0134i–

0.0223 0.0303i–   0.0435 0.0134i  – 0.0106 0.0067i+

=

Table 2 Generalized modal participation factors

E [0  0  0]' [0  0  0]' [−0.5788  0.0947  −1.3487]'

A [−0.91623  −1.3787  −024888]' [−0.81744  0.60748  −1.9723]' [1.2627  −0.48406  1.0205]'

B [0.1859 −0.1609  −0.1530]' [−0.1859  0.1609  0.1530]' [0.5788  −0.0947  1.3487]'
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Table 3 shows the maximum displacements of three masses calculated by the three methods when

subjected to sine wave inputs, in which the input amplitude is  (gal), and the time intervals

are  and , respectively. The piecewise exact method (Clough and Penzien

1993) is selected to calculate the dynamic response for the SDOF systems. It is clear that the

maximum values of displacements are in accord with each other for all three methods, the

differences between the calculation results can be identified in previous analysis. It is noted that the

smaller the time interval ∆t, the closer the results obtained from all the methods. Fig. 1 gives the

displacement time histories of the three masses calculated by Eq. (55), in which only one of the

three calculation results is shown because the three results are similar to each other, as is discussed

previously. 

Example 2:

A single-sphere network shell is considered in this example, whose diameter is 10 m and whose

height is 5 m. The lattice layout of the network shell is of the ‘sunflower’ form. The material is

seamless steel pipe with sectional dimensions given as: Φ35 × 2 (dimensions of the bars of the inner

ring of the network shell) and Φ15 × 2 (the diagonal brace dimensions). Young’s modulus is

2.1×1011 N/m2 for the materials and the uniformly distributed load is 200 kg/m2. In addition, the

bearing of the network is a fixed hinge bearing, and the plain and three-dimensional views are

shown in Fig. 2 and Fig. 3. The serial numbers of the structural nodes are shown in Fig. 2. Six

degrees of freedom were considered for every node. Therefore, there are 36 degrees of freedom in

total. We defined the damping matrix as: , in which M and K are the structural

mass and stiffness matrices. We let  (1/s) and  (s), and the first two

damping ratios are then equal to 0.02.

sin2πt

t∆ 0.005 s= t∆ 0.010 s=

C δ1M δ2K+=

δ1 0.1757= δ2 0.00173=

 
Table 3 Maximum displacements calculated by the different methods (units: cm)

Time interval Mass Newmark-β method RK method Eq. (55)

m1 0.075509 0.075512 0.075511

m2 0.085980 0.085983 0.085984

m3 0.10205 0.10205 0.10205

m1 0.075482 0.075494 0.075483

m2 0.085943 0.085958 0.085960

m3 0.10202 0.10200 0.10200

t∆ 0.005 s=

t∆ 0.010 s=

Fig. 1 Time histories of the displacements for three masses
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We then transform the network to a non-proportionally damped system by equipping it with

supplemental dampers in the vertical direction of the nodes (2, 3, 4, 5, 6), which results in abrupt

changes both in the stiffness and damping. The corresponding changes to the K and C matrices are

such that:  and .

The NS component of the El-Centro earthquake acceleration was recorded in the May 18, 1940

earthquake in California, which contained energy over a broad range of frequencies, was used as a

ground motion input. The dynamic response analysis is carried out in a Matlab platform by using

the calculation method given by this study. The modal properties of the structure are given in Table 4,

from which we can conclude that for this monolayer net-shell construction, there are 14 pairs of

repeated frequencies, which include the first two modes. According to the hybrid method derived in

this study, it is not necessary to consider defective characteristics for 14 pairs of repeated

eigenvalues, and the system is divided into several small systems based on the different eigenvalues.

We calculated the dynamic responses according to the distinct eigenvalues and the repeated

eigenvalues separately through the methods given in the study. Table 5 shows the maximum

displacements in the X, Y and Z directions of the structure, among which columns 2 to 4 show the

K i i,( ) 1.05K i i,( )← C i i,( ) 2C i i,( )←

Fig. 2 Plan view and node layout Fig. 3 Three-dimensional structural view 

Table 4 Modal properties of the structure

Mode
number

Frequency
Damping
 ratio (%)

Mode
number 

Frequency
Damping 
ratio (%)

Mode
number 

Frequency
Damping
 ratio (%)

1 25.399 2.017 13 33.361 2.096 25 552.60 39.29

2 25.399 2.017 14 37.303 2.174 26 552.60 39.29

3 26.391 2.018 15 37.303 2.174 27 824.67 33.02

4 26.391 2.018 16 58.004 2.758 28 974.11 39.03

5 26.705 2.019 17 64.642 3.003 29 974.11 39.03

6 28.305 2.030 18 64.642 3.003 30 976.34 42.82

7 28.305 2.030 19 265.46 11.28 31 976.34 42.82

8 30.012 2.047 20 311.53 22.62 32 1157.5 48.90

9 30.012 2.047 21 311.53 22.62 33 1172.6 47.54

10 31.336 2.064 22 410.65 40.20 34 1172.6 47.54

11 32.281 2.078 23 410.65 40.20 35 1651.0 66.84

12 32.281 2.078 24 450.41 39.80 36 1651.0 66.84
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maximum displacements of nodes that are calculated using Eq. (55). To justify the correctness of the

method, the authors also calculated the dynamic response using the Runge-Kutta method, and the

maximum displacements of the nodes are listed in columns 5 to 7 in Table 5. After comparing the

results obtained from the two methods, it can be seen that the results from the generalized modal

superposition method outlined in this paper are the same as those from the numerical integration

computation method.

6. Conclusions

According to theoretical analysis and numerical investigations in this study, some important

results and conclusions are obtained as follows:

1) For the generally damped linear MDOF system with repeated eigenvalues, a hybrid method

combining the modal superposition method and the residue matrix decomposition method is

proposed. The combination Eq. (55), completely in real form, is deduced, incorporating the effect

and contribution of the repeated eigenvalues on the structural responses. The new algorithm

decomposes the system according to the different eigenvalues, calculates the response

corresponding to the distinct roots through the modal superposition method and calculates the

responses related to the repeated roots through the residue matrix decomposition method based on

partial-fraction expansion of the transfer function. Consequently, the process for identifying the

algebraic and geometric multiplicity and calculating the independent and derived vectors of the

multiple eigenvalues are omitted. This hybrid method is not only concise, but also easily to be

understood by engineers.

2) The applicability of the step-by-step integration computation method, including the Newmark

beta and Runge-Kutta methods, is analyzed for the dynamic response calculation of defective

systems. The calculation steps of the hybrid method proposed in the paper are illustrated via

analyzing numerical examples, and the correctness and effectiveness of the formula are formally

verified by comparing the results obtained from the different calculation methods.

3) The hybrid method proposed in this paper is a universal method. It is suitable for linear

structures, electrical systems, proportional and non-proportional damping systems. Consequently, it

can be treated as an alternative expression form for the generalized complex mode analysis

method.

Table 5 Maximum displacements in the X, Y and Z directions (*10-3) (units: cm)

Node
Eq. (55) Runge_Kutta method

X direction Y direction Z direction X direction Y direction Z direction

1 4.5613 4.5613 7.0677 4.5613 4.5613 7.0677

2 4.9232 4.0443 4.8026 4.9232 4.0443 4.8026

3 1.2085 3.2500 2.9500 1.2085 3.2500 2.9500

4 5.2074 1.7091 1.4069 5.2074 1.7091 1.4069

5 3.0407 5.8071 1.9463 3.0407 5.8071 1.9463

6 1.9587 1.5278 1.9172 1.9587 1.5278 1.9172
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