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Abstract. Present study deals with the development of finite element based solution methodology to
investigate active control of dynamic response of delaminated composite shells with piezoelectric sensors
and actuators. The formulation is based on first order shear deformation theory and an eight-noded
isoparametric element is used. A coupled piezoelectric-mechanical formulation is used in the development
of the constitutive equations. For modeling the delamination, multipoint constraint algorithm is
incorporated in the finite element code. A simple negative feedback control algorithm coupling the direct
and converse piezoelectric effects is used to actively control the dynamic response of delaminated
composite shells in a closed loop employing Newmark’s time integration scheme. The validity of the
numerical model is demonstrated by comparing the present results with those available in the literature. A
number of parametric studies such as the locations of sensor/actuator patches, delamination size and its
location, radius of curvature to width ratio, shell types and loading conditions are carried out to
understand their effect on the transient response of piezoceramic delaminated composite shells.
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1. Introduction

Active sensing and control of dynamic systems using piezoelectric materials have been the subject

of significant amount of research in recent years. These materials induce an electric potential/charge

when they are subjected to a mechanical load, which is called the direct piezoelectric effect.

Conversely, mechanical deformation or strain is produced due to the externally applied electric

potential, which is called the converse piezoelectric effect. Use of piezoelectric materials as

distributed sensors and actuators in the active control of dynamic systems is attributed to these two

phenomena. Vibration control of laminated plates with piezoelectric sensors/actuators have been

extensively studied using FE models (Tzou and Tseng 1990, Chandrashekhara and Agarwal 1993,

Hwang and Park 1993, Samanta et al. 1996, Lam et al. 1997, Wang et al. 2001, Moita et al. 2004).

Vibration control of composites containing piezoelectric polymers has been studied by Lammering

(1991) using finite shell element. Balamurugan and Narayanan (2001) presented shell finite element

for active vibration control of smart piezoelectric composite plate/shell structures. They used a C0
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continuous, shear flexible, nine noded quadrilateral shell element based on field consistency

principle. Ray and Reddy (2005) dealt with the analysis of active constrained layer damping of

laminated thin composite shells using piezoelectric fiber reinforced composite materials. Vel and

Baillargeon (2005) presented an analytical solution for the static deformation and steady-state

vibration of composite cylindrical shells with embedded piezoelectric sensors and actuators. The

static and dynamic responses of laminated composite shells containing integrated piezoelectric

sensors and actuators subjected to electrical, mechanical and thermal loadings were modeled by

Kumar et al. (2008) using FE formulation. The formulation was based on the first order shear

deformation theory and Hamilton's principle. 

While designing with smart composites, it is important to take into consideration imperfections,

such as delaminations, that are often pre-existing or are post-generated during service life.

Delamination, which is a debonding or separation between individual plies, will have significant

impact on performance of piezoelectric actuator and vibration characteristics of the aerospace,

mechanical, civil and offshore structures due to degradation of overall stiffness and strength. A

significant amount of research has been carried out on the vibration analysis of delaminated

composite beams and plates (Shen and Grady 1992, Ju et al. 1995, Kim et al. 2003, Zhu et al.

2005, Oh et al. 2005, Aymerich et al. 2009, Park et al. 2009). However, a limited research has been

conducted on investigating the effects of delamination on the dynamic response of composite shells.

The free vibration and transient responses of multiple delaminated cylindrical and spherical panels

subjected to hygrothermal environments were analyzed by Parhi et al. (2001) using the first order

shear deformation theory. Kim and Cho (2003) presented an efficient higher order shell theory for

laminated composites with multiple delaminations. The dynamic stability analysis of delaminated

spherical shell structures subjected to in-plane pulsating forces was carried out by Park and Lee

(2009) using the higher order shell theory. A few studies on the dynamic response analysis of

adaptive composite plates with surface bonded/embedded piezoelectric actuators and sensors

including delamination are due to Chattopadhyay et al. (2004), Ghosal et al. (2005) and Kim et al.

(2006). 

The review of literature shows that dynamic response of delaminated composite shells with

piezoelectric sensors and actuators is yet to receive its due attention in spite of the well known

existence of delaminations in the practical applications of such shells. Hence in this article, a study

on active control of dynamic response of delaminated composite shells with piezoelectric sensors

and actuators is carried out using the finite element method developed here. To ensure compatibility

of deformation and equilibrium of forces and moments at the delamination surface, multipoint

constraint algorithm is incorporated in the finite element code. The effect of different practical

parametric variations such as the locations of sensor/actuator patches, delamination size and its

location, radius of curvature to width ratio, shell types and loading conditions on the dynamic

response of piezoceramic delaminated composite shells are studied to arrive at interference of

engineering significance.

2. Theory and formulation

2.1 Constitutive equations

The constitutive relations of a piezoelectric layer (Tiersten 1969) can be written as 
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(1)

(2)

where  is the stress,  is the strain, [Q] is the elastic stiffness matrix, [e] is the piezoelectric

stress coefficient matrix, {E} is the electric field intensity, {H} is the electric displacement and [p]

is the permittivity matrix. 

The piezoelectric stress coefficient matrix [e] can be expressed in terms of the more commonly

available piezoelectric strain coefficient matrix [d] as 

(3)

Substituting Eq. (3) into Eq. (1)

(4)

The piezoelectric strain can be written as

(5)

or

(6)

where

(7)

Hence, for k th layer Eq. (1) can be written as

(8)

Eq. (8) is with reference to the principal material axes of the lamina. It is necessary to transform

the constitutive relation for any arbitrary axis. Thus, for k th layer

(9)

The transformation relations for various quantities in the lamina and shell coordinate systems can

be found in the textbook by Reddy (2004).

σ̂{ } Q[ ] ε̂{ } e[ ]T E{ }–=

H{ } e[ ] ε̂{ } p[ ] E{ }+=

σ̂{ } ε̂{ }

e[ ] d[ ] Q[ ]=

σ̂{ } Q[ ] ε̂{ } d[ ]T E{ }–( )=

ε̂{ }p

0  0  d31

0  0  d32

0  0  d33

0  d24  0

d15  0  0

0

0

E⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

=

ε̂{ }p E d{ }=

d{ } d31  d32  d33  0  0( )T=

σ̂{ }k Q[ ]k ε̂{ }k Ek Qk[ ] d{ }–=

σ{ }k Q[ ]k ε′{ }k Ek Q[ ]k d{ }–=
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2.2 Strain-displacement relations

The displacement field based on first order shear deformation theory is given by 

   (10a)

 (10b)

 (10c)

where, U, V and W are the displacements at any point  of the shell in  and z directions,

respectively; u, v and w are the associated mid-plane displacements; and  and  are the rotations

about y and x axes, respectively. The strain-displacement relations are given by

 (11a)

 (11b)

 (11c)

 (11d)

 (11e)

where  are the in-plane strains,  are the shear strains and  are the

curvatures. 

Above equations can be written as

 (12)

where

(13a)

(13b)

(13c)

The mid-surface kinematic relations of Sanders shell theory can be written as

 

 (14a)

  (14b)

  (14c)

  (14d)

  (14e)

 (14f)

 (14g)

  (14h)

U x y z, ,( ) u x y,( ) zθx x y,( )+=

V x y z, ,( ) v x y,( ) zθy x y,( )+=

W x y z, ,( ) w x y,( )=

x y z, ,( ) x y,
θx θy

εx′ εx zκx+=

εy′ εy zκy+=

γxy′ γxy zκxy+=

γxz′ γxz=

γyz′ γyz=

εx εy γxy, , γxz γyz, κx κy κxy, ,

ε ′{ } ε{ } z κ{ }+=

ε ′{ } εx
′   εy

′   γxy
′   γxz

′   γyz
′( )

T
=

ε{ } εx  εy  γxy  γxz  γyz( )T=

κ{ } κx  κy  κxy  0  0( )T=

εx ∂u/∂x w/Rx+=

εy ∂v/∂y w/Ry+=

γxy ∂u/∂y ∂v/∂x 2w/Rxy+ +=

γxz θx ∂w/∂x u/Rx v/Rxy––+=

γyz θy ∂w/∂y v/Ry u/Rxy––+=

κx ∂θx/∂x=

κy ∂θy/∂y=

κxy ∂θx/∂y ∂θy/∂x C0 ∂v/∂x ∂u/∂y–( )+ +=
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where Rx and Ry are the radii of curvature of the shell along x and y directions, respectively, and

Rxy is the twist radius of curvature. The term  is the result of Sanders’ theory

(Sanders 1959) which accounts for the condition of zero strain for rigid body motion.

An eight-noded isoparametric element is used with five degrees of freedom viz. u, v, w, θx and θy
at each node. The displacement vector at any point on the mid-plane  is defined in terms of

nodal displacement vector  and shape function matrix [N] as 

(15)

where, 

, (16)

(17)

The generalized strain vectors  corresponding to the mid-plane can be written as

 (18)

From Eqs. (14) and (15), Eq. (18) can be written as

 (19) 

where [B] is the strain-displacement matrix.

 (20)

The constitutive relation can be written as

 (21)

where  is the stress and moment resultant vector defined by

C0 0.5 1/Ry 1/Rx–( )=

δ{ }
δe{ }

δ{ } N[ ] δe{ }=

δ{ } u  v  w  θx  θy{ }T= δe{ } ui  vi  wi  θxi  θyi{ }T= i 1 2 … 8, , ,=

N[ ]

Ni  0  0  0  0

0  Ni  0  0  0

0  0  Ni  0  0

0  0  0  Ni  0

0  0  0  0  Ni

= i 1 2 … 8, , ,=

ε{ }

ε{ } εx  εy  γxy  κx  κy  κxy  γxz  γyz{ }T=

ε{ } B[ ] δe{ }=

B[ ]

∂Ni/∂x  0  Ni/Rx  0  0

0  ∂Ni/∂y  Ni/Ry  0  0

∂Ni/∂y  ∂Ni/∂x  2Ni/Rxy  0  0

0  0  0  ∂Ni/∂x  0

0  0  0  0  ∂Ni/∂y

C0∂Ni/∂– y  C0∂Ni/∂x  0  ∂Ni/∂y  ∂Ni/∂x

Ni/Rx–   Ni/Rxy–   ∂Ni/∂x  Ni  0

Ni/Rxy–   Ni/Ry–   ∂Ni/∂y  0  Ni

= i 1 2 … 8, , ,=

N{ } D[ ] ε{ } Np{ }–=

N{ }
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(22) 

(23)

(24)

The constitutive stiffness matrix [D] is given by 

(25)

The elements of the stiffness matrix [D] are defined as

(i, j = 1, 2, 6) (26)

(i, j = 4, 5) (27)

where κ, the shear correction factor, is assumed as 5/6.

The stress and moment resultant vector  due to due to the piezoelectric actuator is given by

(28)

where

(29)

N{ } Nx  Ny  Nxy  Mx  My  Mxy  Qx  Qy{ }T=

Nx  Ny  Nxy  Qx  Qy( ) σx  σy  τxy  τxz  τyz( ) zd
z
k 1–

z
k

∫
k 1=

n

∑=

Mx  My  Mxy{ } σx  σy  τxy( )z zd
z
k 1–

z
k

∫
k 1=

n

∑=

D[ ]

A11  A12  A16  B11  B12  B16  0  0

A12  A22  A26  B12  B22  B26  0  0

A16  A26  A66  B16  B26  B66  0  0

A11  A12  A16  D11  D12  D16  0  0

A12  A22  A26  D12  D22  D26  0  0

A16  A26  A66  D16  D26  D66  0  0

0  0  0  0  0  0  S44  S45

0  0  0  0  0  0  S45  S55

=

Aij Bij Dij, ,[ ] Qij( )k 1 z z
2, ,( ) zd

z
k 1–

z
k

∫
k 1=

n

∑=

Sij κ Qij( )k zd
z
k 1–

z
k

∫
k 1=

n

∑=

Np{ }

Np{ } P[ ] d{ }=

P[ ]

P11  P12  P16  0  0

P12  P22  P26  0  0

P16  P26  P66  0  0

W11  W12  W16  0  0

W12  W22  W26  0  0

W16  W26  W66  0  0

0  0  0  0  0

0  0  0  0  0

=
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(i, j = 1, 2, 6) (30)

(i, j = 1, 2, 6) (31)

where 

(32)

Vk is the electric voltage across the k th layer, hk is the thickness of the k th layer and  is the z

distance of the lamina mid-plane defined by

(33)

2.3 Delamination modeling

Fig. 1 shows a laminated composite shell with delamination. The undelaminated region is

modeled by element 1 of thickness h and the delaminated region is modeled by elements 2 and 3

(Fig. 2) whose interface contains the considered delamination (Park et al. 2009). The displacements

are represented by 

(34a)

(34b)

 (34c)

where,  is the z co-ordinate of mid-plane of element l.

Pij Ek Qij( )k zd
z
k 1–

z
k

∫
k 1=

n

∑ Vk Qij( )k
k 1=

n

∑= =

Wij Ek Qij( )kz zd
z
k 1–

z
k

∫
k 1=

n

∑ Vk Qij( )kzk
0

k 1=

n

∑= =

Ek Vk/hk=

zk
0

zk
0

1/2 zk zk 1–+( )=

Ul x y x, ,( ) ul x y,( ) z zl–( )θx x y,( )+=

Vl x y x, ,( ) vl x y,( ) z zl–( )θy x y,( )+=

Wl x y x, ,( ) wl x y,( )=

zl l 2 3,=( )

Fig. 1 Laminated composite shell with delamination
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In order to ensure the continuity of displacements at the delaminated edge, it is assumed that

transverse displacement (w) and rotations  at a common node are equal

 (35a)

 (35b)

 (35c)

The displacement-based multipoint constraints are introduced (Eq. (35a)-(35c)) into the kinematic

relations to ensure the connectivity of the delaminated region with the undelaminated part of the

laminate. The in-plane displacements of delaminated elements are

(35d)

(35e)

The strain components are derived as

 (36)

Following the delamination model proposed by Gim (1994), the numerical procedures have been

developed for modeling delamination in composite laminates. A displacement based multipoint

constraints, i.e., Eqs. (35) and (36), are imposed on the kinematics to ensure the compatibility of

deformation and the equilibrium of resultant forces and moments at the delaminated edge (Gim

1994). Accordingly, the stress and moment resultants are obtained as follows 

(37)

where, (38)

θx θy,( )

w1 w2 w3 w= = =

θx1 θx2 θx3 θx= = =

θy1 θy2 θy3 θy= = =

ul x y,( ) u x y,( ) zlθx x y,( )+=

vl x y,( ) v x y,( ) zlθy x y,( )+=

ε′{ }l ε{ } zl κ{ }+= l 2 3,=

N{ } D[ ]l ε{ }l Np{ }–=

D[ ]l

Aij  zlAij Bij+   0

Bij  zlAij Dij+   0

0  0  Sij

=

Fig. 2 Elements at connecting boundaries between undelaminated and delaminated portions 
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(i, j = 1, 2, 6) (39)

(i, j = 4, 5) (40)

Thus, the delamination reduces the mechanical stiffness of the lamina.

2.4 Governing equations of motion 

The governing equation of motion (Chandrashekhara and Agarwal 1993) is given by

 (41)

where  and  are the generalized displacement, velocity and acceleration vectors,

respectively;  and  are the mass, damping and stiffness matrices, respectively; 

is the external force vector; and  is the actuator force vector. 

 (42a)

 (42b)

 (42c)

 (42d)

where  is the electromechanical coupling matrix of the piezoelectric actuators and {V} is the

actuator voltage vector.

Assembling the element equations, the global dynamic equation can be written as

(43)

2.5 Sensor equation

Substituting Eq. (3) into Eq. (2), for k th layer

(44)

Since no external electric field is applied to the sensor layer that is poled in the z-direction, only

the electric displacement H3 is of interest. Using Eq. (7), we get

 (45)

Aij Bij Dij, ,[ ]l Qij( )k 1 z zl–( ) z zl–( )2, ,[ ] zd

h
l
/2– z

l
+

h
l
/2 z

l
+

∫
k 1=

n

∑=

Sij[ ]l κ Qij( )k zd

h
l
/2– z

l
+

h
l
/2 z

l
+

∫
k 1=

n

∑=

Me[ ] δ
··
e{ } Ce[ ] δ

·
e{ } Ke[ ]( ) δe{ }+ + Re{ } Re

p{ }+=

δe{ } δ
·
e{ }, δ

··
e{ }

Me[ ] Ce[ ], Ke[ ] Re{ }
Re

p{ }

Me[ ] N[ ]T ρ[ ] N[ ] Ad
A
∫=

Ke[ ] B[ ]T D[ ] B[ ] Ad
A
∫=

Re{ } N[ ]T q[ ] Ad
A
∫=

Re

p{ } B[ ]T Np{ } Ad
A
∫ Ke

av[ ]V= =

Ke

av[ ]

M[ ] δ
··{ } C[ ] δ

·{ } K[ ]( ) δ{ }+ + R{ } Kav[ ] V{ }+=

H{ }k d[ ] Q[ ]k ε̂{ }k p[ ] E{ }k+=

H3( )k d{ }T Q[ ]k ε̂{ }k=
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Performing standard transformation, the above equation can be expressed as

 (46)

Using Eq. (12) in Eq. (46), gives 

(47)

Now, the charge output of the sensor can be expressed in terms of spatial integration of 

over its surface as 

 

 (48)

Substituting Eq. (47) in Eq. (48) and using Eq. (33) results in

 (49)

which can be written as

 (50)

where  is the electromechanical coupling matrix of the piezoelectric sensors.  is defined

by

 

 (51)

The current on the surface of sensor is given by

 (52)

When the piezoelectric sensor is used as stain rate sensor, the current can be converted into the

open circuit sensor voltage output VS as

 (53)

where Gc is the gain of the current amplifier, which transforms the sensor current to voltage. 

H3( )k d{ }T Q[ ]k ε′{ }k=

H3( )k d{ }T Q[ ]k ε{ } z κ{ }+( )=

H3( )k

Q
S( )
t H3( )k Ad

A
∫=  

1

2
--- H3( )k Ad

A
∫⎝ ⎠
⎛ ⎞

z z
k

=

H3( )k Ad
A
∫⎝ ⎠
⎛ ⎞

z z
k 1–

=

+=

Q
S( )
t( ) d{ }T Q[ ]k ε{ } z κ{ }+( ) Ad

A
∫=

Q
S( )

d{ }T Q[ ]k H
S[ ] δ{ } Ad

A
∫ Ksv[ ] δ{ }= =

Ksv[ ] H
S[ ]

H
S[ ]

∂Ni/∂x 0 Ni/Rx zk
0 ∂Ni/∂x( )  0

0 ∂Ni/∂y Ni/Ry 0 zk
0 ∂Ni/∂y( )

1 zk
0
C0–( )∂Ni/∂y  1 zk

0
C0+( )∂Ni/∂x  2Ni/Rxy  zk

0 ∂Ni/∂y( )  zk
0 ∂Ni/∂x( )

Ni/Rx– Ni/Rxy– ∂Ni/∂x Ni 0

Ni/Rxy– Ni/Ry– ∂Ni/∂y 0 Ni

=

I t( ) Q
S( )
/ tdd=

V
S
t( ) GcI t( ) Gc Q

S( )
/ tdd( )= =
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2.6 Active control of damping 

The sensor output voltage can be fed back through an amplifier to the actuator using a control

algorithm. The actuating voltage Ve under a constant gain control algorithm can be expressed as

 (54)

where Gi is the gain of the amplifier to provide feedback control.

Substituting Eq. (50) into Eq. (54), the system actuating voltage can be written as

(55)

where G is the control gain matrix given by

 (56)

Using Eq. (55) into Eq. (43) introduces an equivalent negative velocity feedback, and the equation

of motion becomes

(57)

where [CA] is the active damping matrix given by

(58)

As shown in Eq. (57), the voltage control algorithm (Eq. (54)) has a damping effect on the

vibration suppression of a distributed system. The solution of Eq. (57) is carried out using Newmark

direct method of time integration (Reddy 2004 and Bathe 2001). 

3. Results and discussion

A number of examples are solved to study the active control of dynamic response of delaminated

composite shells with piezoelectric sensors and actuators using the finite element method. In all the

numerical computations, the selective integration rule is employed. A 3 × 3 Gaussian rule is used to

compute the in-plane, coupling between in-plane and bending and bending deformations, while a

2 × 2 rule is used to evaluate the terms associated with the transverse shear deformation. The simply

supported boundary condition (Fig. 1) used in the present study is represented by

 at  and  at 

Based on convergence study, the mesh size of 8 × 8 has been used throughout the study. 

Cantilever and simply supported plate problems are considered to validate the program of the

finite element formulation developed here. First, a cantilever laminated composite plate

(a = b = 200 mm) bonded with piezoelectric actuators on upper and lower surfaces is considered to

study the actuator’s effect on the shape control. The stacking sequence of the composite plate is

V
e

GiV
S

GiGc Q
S( )
/ tdd( )= =

V G Ksv[ ] δ
·{ }=

G GiGc=

M[ ] δ
··{ } C[ ] CA[ ]+( ) δ

·{ } K[ ]( ) δ{ }++ R{ }=

CA[ ] Kav[ ]G Ksv[ ]–=

v w θy 0= = = x 0= x, a= u w θx 0= = = y 0= y b=,
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−45/45/−45/45. The substrate is made of T300/976 graphite-epoxy composite and the piezoelectric
layers are made of PZT G1195N and their corresponding material properties can be found in Lam

et al. (1997). The plate is subjected to an uniformly distributed load of 100 N/m2. Fig. 3 shows the

authors’ results of centerline deflection of the composite plate under different active input voltages

along with those of Lam et al. (1997). It can be seen that the results are in good agreement.

Next, a simply supported square laminated plate with lamination sequence 0/90/0, bonded with

piezoelectric actuator and sensor layers on upper and lower surfaces is considered. The dimension

of the plate is a = b = 180 mm and the thickness of the substrate layers and piezo-layer are 2 mm

and 0.1 mm, respectively. The material properties are given in Moita et al. (2004). Rayleigh type

damping is considered with coefficients  and . The value of charge

amplifier gain Gc is taken as . The plate is subjected to a suddenly applied uniformly

distributed load q = 1000 N/m2. 

The non-dimensional center deflection is given by , where E22 is the

transverse moduli of the substrate layers and h is the total thickness of the plate. Fig. 4 presents the

authors’ results of both the structural damping and controlled  non-dimensional center

deflection response of the plate along with those of Moita et al. (2004). The comparison shows

good agreement between the two sets of results.

Having validated the code, a number of parametric studies are carried out to understand the

control of transient response of delaminated composite shells with piezoceramic PZT G1195N

sensor/actuator patches. The material properties (Lam et al. 1997) of the substrate layer are:

E11 = 144.23 GPa, E22 = 9.65 GPa, G23 = 3.45 GPa, G12 = G13 = 4.14 GPa, ν12 = 0.3, ρ = 1389.23 kg/

m3. For PZT G1195N, the following properties are used: Ep = 63 GPa, Gp = 24.2 GPa, νp = 0.28,

ρ = 7600 kg/m3. The shell dimensions considered are: a = b = 0.254 m, m and the

thickness of the piezoceramic patch is taken as h = 2.0 × 10−4m. The locations of the delaminations

A, B and C are determined by  and  whose co-ordinates  are (0, 0), (0, 0.25)

and (0.25, 0.25), respectively, as indicated in Fig. 5. Four pairs of piezoceramic sensors and

actuators are bonded on both the top and bottom surfaces of the composite shell in various locations

α 1 10
6–×= β 0.965 10

5–×=

1.6 10
7 Ω×

ŵ 100 E22h
3
/a

4
q( )w=

Gi 10=( )

h 2.54 10
3–×=

Lx/a Ly/b Lx/a Ly/b,( )

Fig. 3 Variation of centerline deflection of cantilever
plate under uniformly distributed load with
different actuator input voltage

Fig. 4 Effect of structural damping and active
control on the center deflection response of
simply supported square laminated plate 
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A1-D1 as depicted in Fig. 6. Unless otherwise mentioned, a simply supported eight layer symmetric

cross ply (0/90/0/90/90/0/90/0) delaminated spherical shell  in patch location A1 with

gain value of 200 is considered in the analysis. The shells are subjected to a uniform step load of

q = 1000 N/m2 and a time step of ms is used for the Newmark method. Rayleigh type

damping is considered with coefficients  and . A single square mid-

plane delamination of size c/a = 0.5, where c is the span of delamination, located at the center (type

A) of the shell (R/b = 10) is considered. 

3.1 Active vibration control for the transient response 

Fig. 7 shows the center displacements versus time of a piezoceramic delaminated composite

spherical shell with and without active control. It is observed that the displacements dampen with

increase of control gain. It is also seen that the displacement damping becomes faster with higher

control gain. 

3.2 Effect of sensor/actuator patches

The effect of for sensor/actuator patch locations A1, B1, C1 and D1 on the transient response of

delaminated composite spherical shell is investigated in Fig. 8. It is observed that the damping

characteristic of the delaminated composite spherical shell itself depends on the location of patches.

When the sensor/actuator pairs are closer the center (position D1) of the shell, the vibration control

effect is best. 

Rx Ry R= =( )

t∆ 1=

α 1 10
6–×= β 0.965 10

5–×=

Fig. 5 Delamination location  in the mid-planeLx/a Ly/b,( )

Fig. 6 Schematic diagram showing four locations of piezoelectric patches
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3.3 Effect of delamination size 

Next, the effect of delamination size on the transient response of piezoeceramic composite

spherical shell is studied and typical results are depicted in Fig. 9. For this, four different sizes of

square mid-plane delamination having c/a = 0 (no delamination), 0.25, 0.5 and 0.75, and located at

the center are considered. It is observed from the figure that the amplitude of center displacements

increase with the increase of delamination size due to reduction in elastic stiffness of the shell. It is

also observed that the delamination in the shell has reduced the damping characteristics when

Fig. 7 Transient response of a piezoceramic delaminated
composite spherical shell with and without
active control

Fig. 8 Effect of sensor/actuator patch locations A1,
B1, C1 and D1 on the transient response of
delaminated composite spherical shell subjected
to uniformly distributed load

Fig. 9 Effect of delamination size on the transient
response of piezoceramic composite spherical
shell

Fig. 10 Effect of delamination location on the
transient response of piezoceramic composite
spherical shell
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compared to shell without delamination. The maximum displacement damping occurs for shell

without delamination (c/a = 0).

3.4 Effect of delamination location

The effect of delamination location at the mid-plane on the transient response of piezoeceramic

composite spherical shell is presented in Fig. 10. It is observed from the figure that the amplitudes

of center displacements decrease when the delamination is made eccentric (in y-direction, i.e.

position B and both direction, i.e. position C) as compared to concentric delamination position (i.e.

position A) thus making the shell stiffer. It can also be seen that the shells with eccentric position of

delamination show a relatively improved damping performance compared to the centrally

delaminated case. 

3.5 Effect of radius of curvature to width ratio

Fig. 11 shows the effect of radius of curvature to width ratio (R/b) on the transient response of

piezoceramic delaminated composite spherical shell. It is observed that the amplitude of center

displacements increase with the increase of radius to width ratio (R/b) indicating that the stiffness is

decreasing with the increase of R/b. Thus the shell with the smallest R/b shows the maximum

displacement damping. However, the effect becomes minimal when R/b ≥ 100. It is further seen that
the displacement attains steady state with faster rate for higher R/b ratio.

3.6 Effect of shell types

Fig. 12 presents the transient response of four different piezoceramic delaminated composite shells

viz, cylindrical , spherical , elliptic  and hyperbolic paraboloids

 It is observed that the spherical shell has the smallest displacement amplitude and

maximum damping. Further, the displacement amplitudes consistently increase and the damping

Ry/Rx 0=( ) Ry/Rx 1=( ) Ry/Rx 2=( )
Ry/Rx 1–=( )

Fig. 11 Effect of radius to width ratio on the transient
response of piezoceramic delaminated com-
posite spherical shell

Fig. 12 Transient response of different piezoceramic
delaminated composite shells 
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decrease for other shell forms in the order elliptic paraboloid, cylindrical and hyperbolic paraboloid.

It is because of the fact that the spherical shell has the maximum average curvature

 followed by those of elliptic paraboloid, cylindrical shell and Hyperbolic

paraboloid. It is to be noted that the hyperbolic paraboloid has zero average curvature.

 

3.7 Effect of loading conditions

The effect of applied loadings on the transient response of piezoceramic delaminated composite

spherical shell is studied Four different types of loading conditions, namely, uniformly distributed

load, uniformly distributed impact load, sinusoidal load and sinusoidal impact loads are considered

and results are depicted in Fig. 13. From the figure it is observed that the displacements under the

uniformly distributed load and sinusoidal impact load have the highest and least responses,

respectively. 

4. Conclusions

The finite element method has been employed for the active control of dynamic response of

delaminated composite shells with piezoelectric sensors and actuators. A simple negative feedback

control algorithm coupling the direct and converse piezoelectric effects is used to actively control

the dynamic response of delaminated composite shells in a closed loop. Time wise integration has

been performed by Newmark’s scheme. Efficacy of the present formulation is established. A good

agreement among the available results is observed. The following conclusions are drawn from the

detailed study: 

(1) The higher control gains significantly improve the damping characteristics of the delaminated

composite shell as the center displacement dampens with increase of control gain. 

(2) The location of sensor/actuator patches affects the control performance of the structure. Here,

1/Rx( ) 1/Ry( )+[ ]/2

Fig. 13 Effect of loading conditions on the transient response of piezoceramic delaminated composite
spherical shell 
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the best control effect is obtained when the patches are located at the center of a simply supported

delaminated spherical shell.

(3) The displacement amplitude increase with the increase of delamination size for composite

spherical shell. The delamination in shell has influenced both stiffening and damping effects. 

(4) Displacement dampens out more effectively when the delamination position shifts from the

center to the periphery in the mid-plane of the delaminated composite shells. Hence the location

of delamination influences the damping performance of composite shells with piezoelectric

patches.

(5) The displacement dampens out with faster rate for lower radius to width ratio possibly due to

increase of stiffness. Thus, the geometric parameters influence the dynamic control of the

delaminated composite shell.

(6) Relatively lower values of the center displacements of the spherical shell confirm its

superiority to other doubly curved and cylindrical shells.

(7) The center displacement of the delaminated composite shell under uniformly distributed load is

the maximum as compared to uniformly distributed impact load, sinusoidal load and sinusoidal

impact loads.

It is worth mentioning that the present work opens a rich field of research on delaminated

composite shells with piezoelectric sensor/actuators. There are enough scopes in applying other

theories and methodologies to confirm and/or add new results in the field of active control of

dynamic response of composite shells including debonding or delamination also.
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