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Abstract. The Force Density Method (FDM) is a well known and extremely versatile tool in form
finding of cable nets. In its linear formulation such method makes it possible to find all the possible
equilibrium configurations of a net of cables having a certain given connectivity and given boundary
conditions on the nodes. Each singular configuration corresponds to an assumed force density distribution.
Its improvement as Non-Linear Force Density Method (NLFDM) introduces the possibility of imposing
assigned relative distances among the nodes, the tensile level in the elements and/or their initial
undeformed length. In this paper an Extended Force Density Method (EFDM) is proposed, which makes
it possible to set conditions in terms of given fixed nodal reactions or, in other words, to fix the positions
of a certain number of nodes and, at the same time, to impose the intensity of the reaction force. Through
such extension, the (EFDM) enables us to deal with form findings problems of cable nets subjected to
given constraints and, in particular, with mixed structures, made of cables and struts. The efficiency and
the robustness of method are assessed through comparisons with other form finding techniques in dealing
with characteristic applications to the prestress design of cable systems. As a further extension, the EFDM
is applied to structures having some parts not yet geometrically defined, as can happen in designing new
creative forms.
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1. Introduction

 

Cable structures differ from the conventional ones for their lightness and for the versatility of their

shapes. As they work only by axial tensile forces, the structural geometry and the pretensioning

intensity applied to the cables are closely related. Being the geometry depending on the relationship

between form and forces, it is impossible a direct design of such structures, as it happens in the

case of the conventional ones. In sixties, when the first lightweight structures of this type were built,

the only way for the design cable nets was the experimental one. Through physical models the cable

net form, the cutting pattern and the behavior under external load were measured by means of

photogrammetric methods and then assumed as basis for the design. In the same years the first
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rational solutions of the form finding problem were introduced. Barnes proposed a dynamical

relaxation method (Barnes 1975), Argyris developed a F.E.M. approach suitable to deal with

prestressed cable nets (Argyris 1974).

At the beginning of seventies, Schek proposed the so called Force Density Method (Schek 1974).

Through the FDM the geometry of a pin-jointed network structures is found when the internal

forces balance the external ones. In its linear formulation such method makes it possible to find all

the possible equilibrium configurations of a net of cables having a certain given connectivity and

given boundary conditions on the nodes. Each singular configuration corresponds to an assumed

force density distribution. Such method still remains one of the most used tools for finding the

initial basic geometry and the initial prestressing set and suggested several improvements and

refinements. The so called Non-Linear Force Density Method (NLFDM) introduces the possibility

of imposing assigned relative distances among the nodes, the tensile level in the elements and/or

their initial undeformed length.

In parallel, Pellegrino (1993) presented a method based on the Singular Value Decomposition

(SVD) technique, focused to identify both the independent self stress modes and the independent

displacement modes. 

Vassart and Motro (1999) presented a multiparametric form finding method, specialized to

tensegrity structures. The form finding of tensegrity structures are studied by Zhang and Ohsaky

(2006) who, through iterative eigenvalue analysis and spectral decomposition, find the feasible set

of force densities that satisfies the requirements on rank deficiency of the equilibrium matrix with

respect to the nodal coordinates. Recently, Yuan et al. (2007) proposed the concept of feasible

integral pretensioned modes, defined through a general method based on a Double Singular Value

Decomposition (DSVD), particularly efficient in determining the initial prestressing distribution of

cable domes having different shapes and connectivities.

Spectacular applications of the tensegrity concepts, like the tensegrity cable domes, had been

proposed by Geiger (1986), Levy (1994) and Kiewitt (1960).

In this paper an Extended Force Density Method (EFDM) is proposed, which makes it possible to

set conditions in terms of given fixed nodal reactions or, in other words, to fix the positions of a

certain number of nodes and, at the same time, to impose the intensity of the reaction force.

Through such extension, the (EFDM) enables us to deal with form findings problems of cable nets

subjected to given constraints and, in particular, with mixed structures, made of cables and struts.

We mean mixed systems those made of tensioned cables and compressed struts and subjected to the

different types of the constraints usually imposed by the actual design conditions. Such an approach,

in addition to provide the same results of those based on the SVD, is actually more general, as it

does not require the definition of the entire structural geometry. The efficiency and the robustness of

method are assessed through comparisons with other form finding techniques in dealing with

characteristic applications to the prestress design of cable systems. As a further extension, the

EFDM is applied to structures having some parts not yet geometrically defined, as can happen in

designing new creative structural forms.

 

2. An outline of the force density method (FDM)

With reference to a generic net, having n free nodes and nf fixed nodes (the total number of nodes

is ns = n + nf), connected by m cable elements, it is assumed that: a) the net is made of straight
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cable elements, connected at the nodes; b) the net connectivity is known and its geometry is defined

by the nodal coordinates; c) the cable elements are weightless; d) the net is subjected to

concentrated forces, applied at the nodes. With reference to the ith node of Fig. 1, the equilibrium

equations in the x, y, z, directions are respectively 

(1)

Where Tij is the tensile force and Lij is the length of the cable element between the nodes i and j. 

By introducing the following vectors and matrices, Eq. (1) can be set into a matrix form:

- xS, yS, xS, [nS × 1], coordinates of the nodes. By numbering the set of the fixed nodes after that

of the free ones, the three vectors are partitioned into the following subvectors: x, y, z, [n × 1],

coordinates of the free nodes; xf, yf, zf, [n × 1], coordinates of the fixed nodes;

- fx, fy, fz, [n × 1], nodal forces;

- l, [m × 1], length of the elements. L = diag(l);

- t, [m × 1], tensile forces in the elements.

- connectivity matrix CS, having dimensions [m × nS], whose terms are 

 

(2)

The difference between the couples of coordinates in the three directions x, y, z, are 

 

 (3)

 

In this equation, by partitioning the matrix CS, we can put in evidence separately the coordinates

of the free nodes and those of the fixed nodes, as follows

(4)

 

By introducing the diagonal matrices U = diag(u), V = diag(v), W = diag(w), L = diag(l), the

equilibrium equations are expressed by the system

Tij

xj xi–

Lij

------------ Tik

xk xi–

Lik

------------- Til

xl xi–
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------------ Tim

xm xi–
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-------------- Fxi+ + + + 0=
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yl yi–
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-------------- Fyi+ + + + 0=
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Lij

------------ Tik
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zl zi–
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------------ Tim

zm zi–
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------------- Fzi+ + + + 0=
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⎪
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⎪
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Fig. 1 Generical free node
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(5)

Now, if we introduce the concept of force density , in matrix form we obtain

 

(6)

 

Through this transformation, the equations of the system (5) become linear and uncoupled in the

three cartesian directions

(7)

 

By introducing the diagonal matrix Q = diag(q), the following identities hold 

 

 (8)

 

and substituting Eq. (4) and Eq. (8) into Eq. (7), we obtain the following relationships

 

(9)

whose solution is

(10)

Being Q diagonal and (QT = Q), the matrix D is symmetric and, for pretensioned nets, positive

defined. Given a net topology and assumed a vector q of force densities, Eq. (10) allows us to find

the unique equilibrium configuration of the system.

2.1 Influence of the force density choices on the net configuration

We consider a square net made of 21 × 21 = 441 nodes and 840 elements. The net has 4 fixed

nodes (Fig. 2). Fig. 3 shows some equilibrium configurations generated by varying the force density

only, according to the combinations between force densities on the internal and on the border

elements showed in Table 1. An increase of the force densities on the border elements with respect

to the internal ones, widens the net (cases 3(a) and 3(b)). Different values of the force densities,

having the same ratio between internal and border elements, lead to the same equilibrium

configuration (3(c) and 3(d)). For a given net, its shape depends from the ratio of the internal and

border densities only and not from their actual values. An increase of the force density in the

internal elements shrinks the net and increases the curvature of the borders. The actual value of the

force density distributions influences the stiffness of the net (Linkwitz 1999, Grnding 2000). This is

important when we want to control the deformation of a net under assigned loads, as in Fig. 3(f).

An increase of the force densities increases the pretensioning state and makes the structure stiffer. 
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Fig. 2 A cable network made of 21 × 21 = 421 nodes (4 fixed) and 840 elements 

Table 1 Force densities for internal and border elements of the square net of Fig. 2 

(a) (b) (c) (d) (e) (f*)

qinternal elements 1 1 5 10 5 1

qborder elements 1 10 20 20 1 1

(f*) with a concentrated force at the centre.

Fig. 3 Equilibrium configurations for different ratios between qborder and qinternal on a cable network made of
21 × 21 = 421 nodes (4 fixed) and 840 elements 
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3. The non-linear force density method (NLFDM)

The linear formulation of the force density method allows us to find all the possible equilibrium

configurations of a net with a certain given connectivity and with given boundary conditions of the

nodes. Each singular configuration corresponds to an assumed force density distribution. The

possibility of imposing some further additional constraints should help us to find shapes not only

equilibrated, but also technologically sound. The possibility of imposing assigned relative distances

among the nodes, the tensile level in the elements and/or their initial undeformed length, was once

again introduced in Schek (1974). If we suppose that all these conditions are function of the nodal

coordinates and of the force densities, the generic additional condition assumes the following form

(11)

For all the r conditions introduced, we have

(12)

We choose an initial force density vector . For this assumed force density state, Eq. (12) is in

general not satisfied. Hence, the solution is searched in an iterative form. We adopt the Newton

method and search for a vector ∆q which satisfies the following linearized condition

(13)

By calling

and (14)

Eq. (14) becomes

(15)

Being m > r, the system (15) is underdetermined and admits  solutions. Among the infinite

solutions we search that one having minimum norm. In other words, among all the vectors which

satisfy the system (15) we search the solution ∆q which satisfy also the equation 

(16)

Eqs. (15) and (16) form a problem of constrained optimisation, consisting in the search for the

minimum of the function

, with the constraints (17)

By appling the Lagrange multipliers method we have

(18)
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G
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Being the initial conditions approximated through the linearization given by the Eq. (14), the

solution is reached in an iterative way. At the beginning of each iteration we assume

(19)

Then, after the updating of the corresponding matrix GT and of the vector r and, we compute

through Eq. (18) the vector ∆q. The iterative process is stopped, when we obtain, with a given

small tolerance 

(20)

3.1 Jacobian matrix

The iterative solution involves an efficient formulation of the Jacobian matrix . By expanding

 through the chain rule derivation we obtain

(21)

The derivatives ( ) are independent from Eq. (12) and can be expressed in

terms of known quantities as follows

, , (22)

Instead the derivatives  and  depend on the additional conditions set

by Eq. (12) and, hence, on the assumed additional conditions. Explicit forms of these derivatives

have been done to impose constraints on the distances between the end nodes, or on the forces

acting in the elements or of the cutting lengths (Schek 1974).

3.2 The choice of the initial force densities

A typical question arising in form finding methods is the way the force densities are initially

chosen. The solution of this constrained problem (Eq. (17)) is not unique and so the Newton

method finds that more near to the initial distribution of force densities. 

The non-linear force density method is now used in form finding of cable nets, having elements

with assigned length between the end nodes. Such introductory application concerns the cable

towers (Tibert 1999). For an assigned cable net topology, we want to search for that particular form

associated with assigned values of the radius of the inferior ring (RInf), the radius of the superior

compressed ring (RSup), the level of the superior compressed ring (HT) and the height of the antenna

(HP), as shown in Fig. 4. For the sake of the example, we assume that the 16 nodes at the basis and

the node at the top of the antenna are fixed and that the antenna has infinite axial stiffness. The

general dimensions are: RSup = 6.00 m, RInf = 9.00 m, HP = 25.00 m, HT = 21.00 m. The upper ring is

divided in nP = 16 elements. The lateral envelope is made of a rectangular mesh of 400 elements

and 209 nodes. The cable net form depends on the initial configuration assigned to the cable net,

that is on the given set of the force densities assigned to the hangers (qp), to the compressed ring

(qr), to the vertical meridian cables (qc,v) and to the circumferential parallel cables (qc,c). The
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numerical values assumed for these force densities are summarized in Table 2.

From these given data, fixed values of the distances between certain couples of nodes follow and,

in particular we obtain: the length of the hangers: ; the length of the segments

that form the upper compressed ring , with , (np = number of

hangers).

lp
2

Ht Hp–( )2 Rsup

2
+=

lsup 2Rsupcos ϑ/2( )= ϑ 2π/np=

Fig. 4 Cable tower 

Table 2 Influence of the initial choice of the force densities 

(a) (b) (c) 

qp 400 400 400

qr -2800 -3000 -3000

qc,v 100 100 1000

qc,c 100 100 100

Initial 
Configuration

Final 
Configuration
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These values can be obtained by using the nonlinear FDM, specifically by imposing the constraint

on the distance between nodes. The results of the form finding process dealt with NLFDM are

shown in Table 2. We can observe that the configurations (a) and (b) differ only in the force

densities given to the compressed ring , with an increase of +7%. Both the

solutions fit the imposed conditions, but the case (b) leads to results bereft of practical significance.

In order to avoid to go blindly on the initial choice of the force densities, a specific attention to

the static role of the different groups of elements must be paid. This allows us to exclude

degenerate solutions. In this case, for instance, it is easy to observe that the vertical cables tend to

open the net, while the circumferential ones tend to close it. This distinction between the roles of

the two sets of cables can guide us in the choice of the given force densities. In fact, for the same

values of qp, qr, qc,c 
and for , we obtain the final configuration shown in

Table 2, column (c), which can be adopted for practical applications.

4. An extension of the force density method

As shown, the non-linear force density method allows us to deal with constraints concerning

imposed relative distances among the nodes, the tensile level in the elements and/or their initial

undeformed length. A contribution which extends the capabilities of the method consists in posing

conditions in terms of given fixed nodal reactions or, in other words, to fix the positions of a certain

number of nodes and, at the same time, to impose the intensity of the reaction force. 

4.1 Fixed end reaction computation

Eq. (1) set the equilibrium equations of a free node of the net. The equilibrium of a fixed node is

set in an analogous way, by substituting the forces Fi with the end reactions Ri, projected in their

three components. Through this substitution the equilibrium equations of the fixed nodes are 

(23)

The steps to compute the end reactions are: (1) for a given topology of the net and for a given set

of force densities, through Eq. (10) the free nodal coordinates are determined; (2) being known the

nodal coordinates and the corresponding diagonal matrices U, V, W, Eq. (23) furnishes directly the

end reactions.

4.2 Constraints on the end reactions

Through Eq. (23), which allows the end reaction computation, new form finding conditions can be

set. The previous conditions were working on sets of r elements. The constraints on the end

reactions work on sets of the nf fixed nodes. We suppose that the constraints are set on a number

 of the fixed nodes. Each reaction has three components. We treat the reactions in each

direction separately and compute the difference between the basic value of the reactions  given
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by Eq. (23) and the value of the reactions we want to impose .

(24)

Doing the same in the other directions and writing the equations in matrix form, we have 

(25)

The vectors  and  have dimensions  and contain respectively the basic values

of the end reactions and the prescribed values to be imposed. They are obtained by partitioning the

vectors  as follows

(26)

Matrix  has dimensions , as it can be verified by the inspection of matrices and vectors

in Eq. (26). This matrix derives from matrix , by extracting the row corresponding to the nodes

to be constrained. It must be pointed out that, working on the nodes, and not on the elements, all

the elements and all the terms of the matrices  and of the vector t are involved in the

computation.

4.3 Jacobian matrix

With reference to Eq. (21), the derivatives of the nodal coordinates with respect to the force

densities ∂x/∂q, ∂y/∂q ∂z/∂q should be computed as before, while ∂g/∂x, ∂g/∂y, ∂g/∂z and ∂g/∂q,

depend on the new conditions to be imposed. We consider the vector . The vectors  and 

should be treated in an analogous manner. Being  a constant vector, we can write that 

(27)

 

The dimensions of  and  are respectively . By remembering

Eq. (4), Eq. (6) and Eq. (8) after some manipulation we obtain

(28)

Since , the derivatives  and  are equal to zero. 
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(29)

In its final form, the Jacobian matrix G has dimensions  and is given by

(30)

With these equations we can solve the problem of finding the geometry of a net for which, in

certain fixed nodes, the end reactions assume prescribed values in the three directions of the

reference system.

4.4 Multiple constraints

We suppose to assign end reaction forces with arbitrary intensities and directions. This involves a

generalization of the method with the setting of multiple conditions. Let  and  the number of

the constrained nodes respectively in x and y directions. The  additive conditions are

(31)

and the form finding problem, under given end reaction forces, can be solved through the following

steps. By letting the constraint conditions in matrix form, we obtain the non linear system

 which can be linearized as  (Eq. (15)). The solution

 is iterated up to convergence, by minimizing the residuals r below a prefixed

tolerance. At each step, the vector  has to satisfy both the conditions on x and y, which are given

by 

or, in compact form (32)
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matrix  and the vector  have respectively dimensions  and ,

while  maintains the dimension . From the computational point of view, it is sufficient to

introduce and compile the set of relations listed in Eq. (33). In the following, this procedure will be

called Extended Force Density Method (EFDM).

5. Dealing with mixed systems

 The Extended Force Density Method (EFDM) allows us to deal with form findings problems of

cable nets subjected to given constraints and in particular with mixed structures, made of cables and

struts, as shown through the following topical examples. 

5.1 The rombic system

We consider the simple structure shown in Fig. 5. It is a mixed system, made of four cable and a

strut. The strut opens the net and generates two opposite curvature (Tibert 1999).

In absence of singularities, by the system of Eq. (10) we obtain 

(35)

According to this solution, the length of the strut results zero, regardless to the force density

values assigned to the strut and hence, despite the presence of the strut, the structure degenerates

into a straight line, passing through the fixed ends. Such a problem can be overcame adopting the

Singular Value Decomposition technique (SVD, Pellegrino (1993)), or by EFDM.

5.1.1 Solution through the Singular Value Decomposition (SVD)
For the rombic frame shown in Fig. 5, let a = 0.5 and b = 1. We compile the equilibrium matrix

A. By the SVD operator we obtain three matrix so that

A = UDVT (36)

By calling r = rank(A), the  right columns of the vector V are the bases of the s states

of self-stresses. All these states satisfy the equilibrium condition . 

For our structure is r = 1. So, from the last column of V, we directly obtain the intensity of the

prestressing and then we compute all the force densities. The results are summarized in Table 3.
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Fig. 5 A simple mixed system
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5.1.2 Solution through the Extended Force Density Method (EFDM)

Previously it was shown that, in presence of aligned constraints, the rombic structure degenerates

on the line joining their ends. A solution which does not became flat can be obtained by fixing the

nodes of the strut by auxiliary constraints. In this way, however, we alter the static scheme of the

structure, because the nodes remain fixed thanks to reactions which do not exist in the real

structure. By Eq. (34) is possible to search for the particular distribution of q such that the reactions

in the auxiliary constraints are null. In this case we have to obtain null reactions in two directions

(x-z) and hence multiple conditions must be set. We proceed according to EFDM, as described in

Section 4.4, through the following steps: (1) the ends of the struts are fixed with auxiliary

constraints; (2) an initial distribution of force densities is assumed and by Eq. (26) the reaction

forces provided by the auxiliary constraints are computed; (3) through the EFDM, the reactions of

the auxiliary constraints are set null. In this way the additional constraints allow to open the net

without alter the overall equilibrium. We assume as set of initial force densities the vector q = [2 2

2 2 −1]T. We obtain that at the nodes 1 and 2 the reactions Rx are zero (by symmetry), while the

reactions Rz are equal to −1 and 1 respectively. The additional constraints open the net, but the

assumed configuration do not fulfill the objective of the searching procedure, because the free body

equilibrium is altered. Through the EFDM, we set null the reactions of the auxiliary constraints and

we obtain the tensile forces in the elements and the force densities listed in Table 4. One can

observe that the ratio among the forces is again the ratio found by the SVD and shown in Table 3.

The EFDM removes some limitations of the NLFDM and is suitable to solve the force finding

problems for mixed system. In the following, more complex applications, like cable domes

structures, are presented.

5.2 Cable domes 

A typical cable dome consists of ridge cables, diagonal cables, hoop cables, vertical struts, an

inner tension ring and an outer compression ring. Cables work in tension and individual struts work

in compression. The rigidity of the dome is a result of self-stress equilibrium between cables and

struts (Yuan 2007). We consider here the topologies and the prestressing systems defined by Geiger

Table 3 Solution obtained by SVD 

Elem. no.

1 2 3 4 5

Prestress 0.46 0.46 0.46 0.46 -0.41

Force densities 0.41 0.41 0.41 0.41 -0.41

Table 4 Solution obtained by EFDM 

Elem. no.

1 2 3 4 5

Prestress 2.01 2.01 2.01 2.01 -1.80

Force densities 1.80 1.80 1.80 1.80 -1.80
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(1986), Levy (1994), and Kiewitt (1960). Some variations of the Geiger scheme is also studied. In

all the following examples only prestress is considered. A simple approach for force finding

analysis of circular Geiger domes considering self-weight is proposed in (Wang 2010). Once the

initial equilibrium problem has been solved, the structural behaviour under other loads can be dealt

throught some tool of analysis like, for instance, the FEM (Zong 2009). 

5.2.1 Geiger dome

In a Geiger dome, the ridge cables are radially oriented, and the roof is composed by wedge-

shaped basic units in plan, cyclically distributed around the center. We consider a Geiger dome,

defined by a total number of nodes n = 84 and connected by m = 156 elements, as shown in Fig. 6.

The structure is composed by 36 struts and 120 cables. The 12 external nodes are fixed. The

symmetry of the domes allows us to subdivide the elements into 13 groups, as show in Fig. 6(d).

Given the connectivity and the fixed nodes, we search for that equilibrated form, which puts cables

in tension and struts in compression. Dealing with the SVD technique, we have a single eigenvector

which respects this condition and the solution, shown in Table 5, is immediate. The same problem

is solved through the EFDM. In giving the vector of the initial force densities, we adopt the simple

criterion to assign q = 1 to the cables and q = −1 to the struts. The results are the same and agree,

in this case, with those reported by Yuan (2007).

It is easy to verify the vertical equilibrium in a central node of the top ring. With reference to the

Cable No. 2, the inclination is  and the compressive force in Strut

No. 1 is: .

α tg
1–

8 6.667–( )/20[ ] 3.81
o

= =

T2 sinα⋅ 0.437 0.066⋅ 0.029 T1= = =

Fig. 6 Geiger dome 
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5.2.2 Levy dome
In the Levy form, the ridge cables form a triangular pattern. The roof surface is then primarily

comprised of quadrilateral saddle shaped (anticlastic) membrane panels, connected at ridge cables.

Fig. 7 shows a Levy dome, defined by a total number of nodes n = 44, connected by m = 121

elements. The structure is composed by 19 struts and 102 cables. 

The equilibrium matrix A has rank r = 114 and so we have s = m − r =121 − 114 = 7 independent

self-equilibrated modes. The DSVD technique (Yuan 2007) allows us to find the sole eigenvector

combination, which satisfy the condition of tensioned cables and compressed struts. The results are

listed in Table 6. 

In applying the EFDM, we choose the initial force densities as in the previous case and we obtain

the same results given by DSVD. As a check we write the vertical equilibrium at the top node of

the central strut. The inclination of the six cables of group 2 is 

and we obtain . 

α tg
1–

9.8 7.8–( )/10[ ] 11.31
o

= =

6 T⋅ 2 sinα⋅ 6 0.850 0.196⋅ ⋅ 1 T1= = =

Table 5 Prestress in the Geiger dome, by SVD and EFDM 

Group no.

1 2 3 4 5 6 7 8

Prestress -0.029 0.437 0.220 -0.087 0.659 0.338 -0.196 1

9 10 11 12 13

Prestress 0.528 0.421 0.631 0.947 0.842

Fig. 7 Levy dome 
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5.2.3 Kiewitt dome

This dome is show in Fig. 8. It is defined by a total number of nodes n = 56, connected by m =

145 elements, and it is composed by 19 struts and 126 cables. The 18 external nodes are fixed. The

symmetry of the domes allows us to subdivide the elements into 18 groups, as show in Fig. 8(d). In

this case the SVD operator applied to the equilibrium matrix, identify 31 independent self-stress

modes. By proceeding through the DSVD, we can get four solutions (integral prestress modes

(Yuan 2003)) which do not satisfy the condition of tensioned cables and compressed struts. Yuan

(2007) search for a solution by means of an optimization technique and shows that a linear

combination of these solutions can be found through an optimum cable prestressing design. The

present solution, based on EFDM, allows us to remain in the frame of a pure equilibrium problem

and to obtain directly a feasible prestress system which satisfies the condition of tensioned cables

and compressed struts. Once again, for the first step, we have assigned q = 1 to the cables and

Table 6 Prestress in the Levy dome, by DSVD and EFDM 

Group no.

1 2 3 4 5 6 7 8

Prestress -1 0.850 0.400 1.028 0.480 -0.359 0.526 3.640

9 10 11 12 13 14 15

Prestress 1.878 -1.070 1.334 18.987 15.290 -5.848 6.785

Fig. 8 Kiewitt dome 
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q = −1 to the struts. Also this choice introduces an a priori criteria, but in this case it directly

conditions the mechanic of the dome towards the static function attributed to tensioned and

compressed elements. The results is listed in Table 7. 

By writing the vertical equilibrium in the top node of the central strut, we correctly obtain:

, with .

In all these cases, the EFDM represents another type of solution of the same problem, which is

alternative with respect to SVD and DSVD, but without giving evident improvements. The

advantages of the proposed method will appear in the following applications.

5.2.4 Cable system with new forms

The cable systems shown in the previous examples mainly stem from human intuitions. Once the

geometry is defined, through the methods already shown it is possible to compute the prestress

system or, equivalently, the cutting lengths. However, sometime the intuition may be misleading. It

may happen, for instance, that all these method should not be able to evaluate a system of forces

suitable to balance those corresponding to the assigned geometry, because such an arrangement do

not exist. Through the EFDM is possible to give the connectivity and the fixed end nodes, but

leaving an unknown geometry. The particular spatial arrangement of the elements with unknown

end nodes is suggested by the method itself.

To this purpose, we consider, for sake of simplicity, the same Geiger dome show before with new

four elements (14-15-16-17), with unknown location (Fig. 9). The structure is now divided into 17

6 T⋅ 1 sinα⋅ 6 0.415 0.0877⋅ ⋅ 0.218 T13= = = α tg
1–

7.76 6.88–( )/10[ ] 5.03
o

= =

Table 7 Prestress in the Kiewitt dome, by EFDM 

Group no.

1 2 3 4 5 6 7 8 9

Prestress 0.415 0.176 0.272 0.179 0.227 0.274 1 -0.213 0.086

10 11 12 13 14 15 16 17 18

Prestress 0.244 -0.141 0.178 -0.218 0.064 -0.188 0.361 0.309 0.079

Fig. 9 Geiger dome with other elements 

Table 8 Initial force densities

q0 (a) (b)

q2,3,5,6,8,9,10,11,12 100 1000

q1,4,7 -10 -10

q14,15,16,17 1 1
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groups. The solution obtained depends from the tentative force densities. By specializing the static

function of the elements we can explore the two configurations generated by the initial force

densities listed in Table 8. The results are shown in Fig. 10. In the case (a), the added elements are

tensioned, in the case (b) they are compressed. These two choices may be used to govern the

curvatures along the ridges and between the ridges.

6. Conclusions

 

An Extended version of the Force Density Method (EFDM) has been presented. It contains the

basic features of the originals FDM (Force Density Method) and NLFDM (Non Linear Force

Fig. 10 A modified Geiger dome

Table 9 Prestress in the dome (a), by EFDM 

Group no.

1 2 3 4 5 6 7 8 9

Prestress -0.029 0.437 0.217 -0.097 0.660 0.341 -0.201 1 0.529

10 11 12 13 14 15 16 17

Prestress 0.419 0.632 0.946 0.842 0.013 0.004 0.005 0.005

Table 10 Prestress in the dome (b), by EFDM 

Group no.

1 2 3 4 5 6 7 8 9

Prestress -0.029 0.440 0.220 -0.074 0.661 0.338 -0.165 1 0.520

10 11 12 13 14 15 16 17

Prestress 0.422 0.636 0.953 0.847 -0.019 -0.002 -0.046 -0.005
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Density Method) proposed by Schek (1974). As known, the FDM finds an equilibrated cable net

form, given the connectivity, the fixed end nodes and the distribution of the force densities. In

addition, the NLFDM allows us to take into account also assigned constraints, that is (a) prescribed

distances between the nodes, or (b) prescribed forces in the elements, or (c) prescribed cutting

lengths. The Extended Force Density Method (EFDM) is suitable to deal both with nets of cables

only and, in addition, with mixed systems, made of cables and struts. From the conceptual point of

view, the method derives from the same criteria at the basis of the form finding procedures and,

hence, it maintains the problem into the frame of a pure equilibrium methodology. However, its

extended features make it suitable to deal also with force finding problems. This means that the

method allows us to find, for a given geometry, the set of feasible prestress distributions, with

respect to the conditions of tensioned cables and compressed struts. To this purpose, one can

observe that the cable systems really built mainly stem from human intuitions. Once the geometry is

defined, it is possible to compute the prestress system. This can be done also with others

approaches, like the Singular Value Decomposition (SVD). Sometime, however, the intuition may

be misleading. It may happen, for instance, that all these methods should not be able to evaluate a

system of forces suitable to balance those corresponding to the assigned geometry, because such an

arrangement do not exist. Through the EFDM is possible to give the connectivity and the fixed end

nodes, but leaving part of the geometry unknown. In this case, by specializing the static function of

the elements, we can explore new configurations generated by intuitive sets of the initial force

densities. Through these sets, the EFDM allows us to find a particular spatial arrangement of the

elements with unknown end nodes which satisfy all the requirements. This can help in the

formulation and validation of cable systems with new forms. 

References

Argyris, J.H., Angelopoulos, T. and Bichat, B. (1974), “A general method for the shape finding of lightweight
tension structures”, Comput. Meth. Appl. Mech. Eng., 3(1), 135-149.

Barnes, M.R. (1975), “Applications of dynamic relaxation to the design and analysis of cable, membrane and
pneumatic structures”, International Conference on Space Structures, Guildford.

Fu, F. (2005), “Structural behavior and design methods of tensegrity domes”, J. Constr. Steel Res., 61(1), 23-35.
Geiger, D.H. (1986), “The design and construction of two cable domes for the Korea Olympics. Shells”,

Membranes and Space Frame, Proceedings of pf IASS Symposium.
Grnding, L., Moncrieff, E., Singer, P. and Ströbel, D. (2000), “A history of the principal developments and

applications of the force density method in Germany”, IASS-IACM 2000 Fourth International Colloquium on
Computation of Shell & Spatial Structures, Chania-Crete, Greece.

Haber, R.B. and Abel, J.F. (1982), “Initial equilibrium solution methods for cable reinforced membranes part I--
formulations”, Comput. Meth. Appl. Mech. Eng., 30(3), 263-284.

Kiewitt, G. (1960), “The new look of lamella roofs”, Architectural Record, February, 226.
Levy, Matthys P. (1994), “Georgia dome and beyond achieving lightweight-longspan structures”, Proceedings of

the Spatial, Lattice and Tension Structures, 560-562.
Linkwitz, K. (1999), “About formfinding of double-curved structures”, Eng. Struct., 21(8), 709-718.
Pellegrino, S. (1993), “Structural computations with the singular value decomposition of the equilibrium matrix”,

Int. J. Solids Struct., 30(21), 3025-3035.
Schek, H.J. (1974), “The force density method for form finding and computation of general networks”, Comput.

Meth. Appl. Mech. Eng., 3, 115-134. 
Tibert, G. (1999), “Numerical analyses af cable roof structures”, Lic. Thesis, Royal Institute of Technology,

Stockholm. 



210 P.G. Malerba, M. Patelli and M. Quagliaroli

Vassart, N. and Motro, R. (1999), “Multiparametered formfinding method: application to tensegrity systems”,
International Journal of Space Structures”, Int. J. Space Struct., 14(2), 147-154.

Wang, Z., Yuan, X. and Dong, S. (2010), “Simple approach for force finding analysis of circular Geiger domes
with consideration of self-weight”, J. Constr. Steel Res., 66(2) , 317-322.

Zong, Z. and Guo, Z. (2009), “Nonlinear numerical analysis of cable dome structure with rigid roof”, Eng.
Mech., 7, DOI: CNKI:SUN:GCLX.0.2009-07-025.

Yuan, X., Chen, L. and Dong, S. (2007), “Prestress design of cable domes with new forms”, Int. J. Solids Struct.,
44 , 2773-2782.

Yuan, X. and Dong, S. (2003), “Integral feasible prestress state of cable domes”, Comput. Struct., 81(21), 2111-
2119.

Zhang, J.Y. and Ohsaki, M. (2006), “Adaptive force density method for form-finding problem of tensegrity
structures”, Int. J. Solids Struct., 43, 5658-5673.




