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Abstract. This paper provides an iteration approach for the solution of multiple notch problem, which
is based on the complex variable boundary integral equation (CVBIE). The contours of notches are
applied by some loadings. The source points are assumed on the boundary of individual notch and the
displacements along the boundaries become unknowns to be investigated. After discretization of the BIE,
many influence matrices are obtained. One does not need to assemble many influence matrices into a
larger matrix. This will considerably reduce the work in the program. The displacements along the many
boundaries can be obtained from an iteration. There is no limitation for the configuration of notches.
Several numerical examples are provided to prove the efficiency of the suggested approach.
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1. Introduction

The boundary integral equation methods (BIE) were initiated by many pioneer researchers (Rizzo

1967, Cruse 1969, Jaswon and Symm 1977, Brebbia et al. 1984, Hong and Chen 1988, Cheng and

Cheng 2005). Generally, it is difficult or impossible to find a solution in a closed form for an

arbitrary geometry of boundary, if one directly uses the BIE. Therefore, the boundary element

method (BEM) was suggested to solve BIE numerically. The BEM distinguishes itself as a

boundary method, meaning that the numerical discretization is conducted at reduced spatial

dimension (Cheng and Cheng 2005). Particularly, it is difficult to model elasticity problem for the

infinite region by using the finite element method. However, BIE can model the elasticity problem

for the infinite region without any difficulty.

Many researchers studied the stress concentration problems for multiple circular holes and elliptic

notches (Muskhelishvili 1963, Savin 1961, Nisitani 1978, Isida and Igawa 1991, Denda and Kosaka

1997, Tsukrov and Kachanov 1997, Ting et al. 1999a, b, c, Wang et al. 2003). A closed form

solution for a single elliptic notch was obtained in an earlier time (Muskhelishvili 1963). Many

results for stress concentration were collected in (Savin 1961). For a single circular hole in an

infinite domain subjected to the arbitrary tractions across the circle boundary, an analytical solution

was derived. The multiple circular hole problem was solved by an alternative method (Ting et al.
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1999a, b). Multiple circular hole problem was solved by a complex variable boundary integral

equation method combined with series expansion technique (Wang et al. 2003). It is seen from

those references that the studied problems were mainly limited to the cases of the circular or the

elliptic contour. 

Recently, a null-field approach for the multi-inclusion problem under antiplane shears was

suggested (Chen and Wu 2007). In addition, the torsional rigidity of a circular bar with multiple

circular inclusions was investigated, which is based on the null-field integral approach (Chen and

Lee 2009). Solution of periodic notch problems in an infinite plate was presented, where a BIE in

conjunction with remainder estimation technique was suggested (Chen 2011). A hypersingular

boundary integral equation was developed to solve a plane elasticity problem of finite region

(Zhang and Zhang 2008).

By using the finite element method, the through-thickness variations of stress concentration

factors along the wall of elliptic holes in finite thickness plates of isotropic materials subjected to

remote tensile stress were studied (She and Guo 2007). Three-dimensional stress fields near notches

and cracks were studied (She et al. 2008). The strength of the structures with stress gradient usually

shows strong three-dimensional (3D) effects even under in-plane loading. The elastic stress and

strain fields in a plate of finite thickness containing an elliptical hole are investigated using the 3D

finite element method (Yang 2009). The elastic stress and strain fields of finite thickness large plate

containing a hole are systematically investigated using 3D finite element method (Yang et al.

2008). The variation of the stress and strain concentration factors along the thickness are studied in

detail.

A boundary element method was developed to solve the doubly periodic inclusion problem in an

infinite plate (Dong and Lee 2006). The effective elastic modulus was evaluated. In the formulation,

if the inclusion is very soft the inclusion problem will reduce to the hole problem. By using the

boundary integral equation method, the effective elastic properties of doubly periodic array of

inclusions of various shapes by the boundary element method were investigated (Dong 2006).

In an earlier year, a boundary element method was developed to analyze the stress concentration

problems of multiple elliptical holes in an infinite domain (Ting et al. 1999c). In the formulation,

the tractions on the hole contours were chosen as an iteration parameter. In the case of the elliptical

holes, many computed results for stress concentration factor were presented.

This paper provides an iteration approach for the solution of multiple notch problem, which is

based on complex variable boundary integral equation (CVBIE). It is assumed that the contours of

notches are applied by some loadings. In the formulation, the source points are assumed on the

boundary of individual notch. The displacements along the boundaries become unknowns to be

investigated. After discretization of the BIE, many influence matrices are obtained. In the suggested

iteration approach, one does not need to assemble many influence matrices into a larger matrix. This

will considerably reduce the work in the program. In addition, the displacements along the many

boundaries can be obtained from an iteration. From the computed results for displacements along

boundaries, the hoop stress around notches can be finally determined. There is no limitation for the

configuration of notches. Several numerical examples including five elliptic notches in series and

two square notches are provided to prove the efficiency of the suggested approach. Stress intensity

factors (SIFs) are evaluated in all numerical examples.
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2. Analysis

2.1 Boundary integral equation for multiple notch problem

Recently, a boundary integral equation for an exterior region using complex variable (CVBIE)

was suggested (Chen and Lin 2010), which is equivalent to the formulation based on real variable

(Brebbia et al. 1984, Cheng and Cheng 2005, Chen et al. 1995). Comparing the CVBIE with that in

real variable, the suggested CVBIE is more informative because the behavior of involved kernels

can easily be recognized from their explicit form (see below Eqs. (1) to (4)). Some relevant

formulations for BIEs based on complex variable can be referred to (Chen et al. 2002, Chen and

Chen 2000, Kolte et al. 1996, Linkov 2002, Mogilevskaya and Linkov 1998, Mogilevskaya 2000).

 The suggested CVBIE for exterior region takes the following form (Chen and Lin 2010) (Fig. 1)

 

, (1)

where Γ denotes the boundary of notch, and 

 (2)

(3)

(4)

In Eq. (1), both “t” and “to” are located on the boundary Γ, and the increase “dt” is adopted along

the boundary Γ in the anti-clockwise direction (Fig. 1). In Eq. (2),  denotes
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Fig. 1 Formulation of BIE for an exterior region 
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the traction applied on the boundary and  denotes the boundary displacements. In

Eq. (3) G denotes the shear modulus of elasticity,  in plane strain case, and ν the

Poisson’s ratio. B1 and B2 are two elastic constants.

It is assumed that the remote loading is , and many elliptic notches are placed in an

infinite plate (Fig. 2). The proposed original problem shown by Fig. 2(a) can be considered as a

superposition of two problems shown by Fig. 2(b) and (c) respectively. The stress distribution for

the uniform field shown by Fig. 2(b) is easy to find out. In the problem shown by Fig. 2(c), the

applied loadings on the contours are same in magnitude and opposite in direction to those in the

uniform field shown by Fig. 2(b). Therefore, the aim of this study is to solve the boundary value

problem (BVP) shown by Fig. 2(c) numerically.

For the multiple notch problem shown by Fig. 2(c), Eq. (1) can be rewritten as

(5)

where  means that the term j = i should be excluded in the summation.
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Fig. 2 Formulation of multiple notch problem: (a) the original problem, (b) the uniform stress field and (c)
the perturbation field 
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A particular feature of Eq. (5) is as follows. If  and the integration “dt” is performed along

the boundary Γj with , the relevant kernels in Eq. (5) are not singular.

 

2.2 Discretization of the BIE and the iteration method 

After discretization, Eq. (5) may be written as follows 

,  (6)

where  means that the term j = i should be excluded in the summation. Note that, the vector {ui}

is composed of many (u, v) components at many discrete points along the boundary, and the vector

{qi} is composed of many ( ) components at many discrete points along the boundary Γi. 

Note that, the vectors   are given beforehand. Thus, Eq. (6) can be

rewritten as 

,  (7)

Physically,  represents a matrix acting upon displacement where the field point to is on the i-

th notch and the source point “t” and “dt” are on the j-th notch

Since the matrix  is invertible (Chen et al. 2009). Thus, from Eq. (7) we have

, (8)

where

 

,

(9)

For the algebraic Eq. (8), we propose the following iteration

,  (10)

In computation, we may assume . From Eq. (10), we can get  (m = 2, 3, ..)

successfully. 

Sometimes, one may propose an alternative scheme for iteration as follows 
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alternative scheme of iteration. However, in the case of five notches, particularly, in the case of

narrow spacing between notches, the suggested alternative scheme is necessary in computation. The

parameter α is simply determined by some test computation. It is known that, once a FORTRAN

program is composed, it is an easy task for changing the parameter from α = 0.1 to α = 0.2, …,

which needs a few minutes.

The iteration is completed under the following condition is satisfied

(where ε a small value)  (12)

After the vectors  (i = 12, .. N) are obtained, the hoop stress σT can be evaluated

immediately (Figs. 1, 2). To this end, the following technique is suggested. In fact, in the plane

strain case, the strain component εT (in T-direction) can be expressed by using Hook’s law 

(13)

or

(14)

where E is the Young’s modulus of elasticity. In Eq. (14), the component σN is from input datum,

and εT is the strain in the T-direction which can be evaluated from the solution of displacements on

the boundary. Thus, the value of σT at discrete points is obtainable.

 

3. Numerical examples

Several numerical examples are provided to prove the efficiency of the suggested method. In the

examples, the plane strain condition and ν = 0.3 are assumed. In computation, we choose 

for the error tolerance in Eq. (12). It is proved in the following numerical examples that all

iterations in Eq. (11) are convergent if α = 0.25 is adopted. Stress concentration factors (SIFs) are

evaluated in all examples.

As claimed previously, the original field for the notch problem is a superposition of the uniform

field and a perturbation field, which is shown in Fig. 2. In all following examples below, the stress

contribution from the uniform field has been added to the final result.

Example 1

The first example is devoted to examine the achieved accuracy for the suggested method

(Fig. 3(a)). In the example, we assume that two elliptic notches are in series. The elliptic notch has

the half-axis “a” and “b” and the spacing between two notches is denoted by “c”. The remote

loading is denoted by . In the solution of BIE, 96 divisions are used for the discretization of

elliptic contour.

It is known that for the single notch case, the maximum hoop stress at the crown point is

. For the following cases: b/a = 0.25, 1/3, 0.5 and 1.0 and c/a = 0.1, 0.2,…to 1.0,

the hoop stresses at the point “E” and “G” are denoted by
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, , with  (15a)

The computed non-dimensional stress concentration factors  and  are

listed in Table 1. It is found that in the case of b/a = 0.25 and c/a = 0.1, or a rather narrow spacing

case, the stress concentration factor can reach a huge value, or  = 17.235p (pc = 9p

in the case of b/a = 0.25). In addition, for the case of b/a = 1/3, the computed results coincide with

those obtained by other researcher (Tsukrov and Kachanov 1997).

σT E, sE b/a c/a,( )pc= σT G, sG b/a c/a,( )pc= pc 1
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b
------+⎝ ⎠

⎛ ⎞p=

sE b/a c/a,( ) sG b/a c/a,( )

σT G, 1.915pc=

Fig. 3 (a) two elliptic holes in series under remote tension , (b) two elliptic holes in a stacking
position under remote tension , (c) five elliptic holes in series under remote tension , (d)
two square holes with round corners in series under remote tension 
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Table 1 Non-dimensional stress concentration factors  (at the point E) and  (at the
point G) for two elliptic notches in series under the remote loading , with ,

 (see Fig. 3(a) and Eq. (15a))

c/a = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

b/a =

0.25 1.153 1.120 1.101 1.087 1.077 1.069 1.062 1.057 1.052 1.048

1/3 1.156 1.121 1.101 1.087 1.076 1.068 1.061 1.055 1.051 1.047

1/3* 1.150 1.120 1.090 1.080 1.070 1.065 1.060 1.050 1.045 1.040

0.50 1.163 1.126 1.104 1.089 1.078 1.068 1.061 1.055 1.050 1.046

0.75 1.169 1.133 1.111 1.095 1.082 1.073 1.065 1.058 1.052 1.047

1.00 1.172 1.138 1.116 1.100 1.087 1.077 1.069 1.062 1.056 1.050

c/a = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

b/a =

0.25 1.915 1.485 1.331 1.250 1.200 1.165 1.141 1.122 1.107 1.095

1/3 2.053 1.527 1.342 1.249 1.194 1.158 1.132 1.113 1.098 1.087

1/3* 2.060 1.510 1.330 1.240 1.180 1.150 1.130 1.110 1.090 1.080

0.50 2.338 1.658 1.405 1.278 1.205 1.158 1.126 1.104 1.088 1.075

0.75 2.658 1.867 1.545 1.371 1.265 1.195 1.148 1.115 1.091 1.073

1.00 2.860 2.028 1.675 1.475 1.346 1.259 1.196 1.151 1.117 1.091

*from (Tsukrov and Kachanov 1997).

sE b/a c/a,( ) sG b/a c/a,( )
σy

∞

p= s σT/pc=
pc 1 2a/b( )+( )p=

sE b/a c/a,( )

sG b/a c/a,( )

Table 2 Non-dimensional stress concentration factors  (at the point E) and  (at the
point G) for two elliptic notches in series under the remote loading  (see Fig. 3(a) and Eq.
(15b))

c/a = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

b/a =

0.2 12.675 12.323 12.115 11.970 11.859 11.772 11.700 11.640 11.589 11.544

0.2* NA NA NA NA NA NA NA NA NA NA

c/a = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

b/a =

0.2 20.339 16.203 14.645 13.801 13.265 12.891 12.616 12.404 12.236 12.100

0.2* 20.3 16.3 14.9 14.0 13.8 13.0 12.9 12.8 12.7 12.5

*measured from a figure in Ting et al. (1999)
NA not available

hE b/a c/a,( ) hG b/a c/a,( )
σy

∞

p=

hE b/a c/a,( )

hG b/a c/a,( )



An iteration approach for multiple notch problem 599

In addition, other comparison with the method developed by Ting et al. (1999c) is carried out.

Alternatively, the computed results are expressed as 

 
, (15b)

 
In the case of b/a = 0.2 and c/a = 0.1, 0.2, … to 1.0, the computed results are listed in Table 2.

From tabulated results we see that the deviation from different methods is minor. 

Example 2

In the second example, two elliptic notches are in a stacking position (Fig. 3(b)). The same

computation conditions used in Example 1 are used in this example.

For the following cases: b/a = 0.25, 0.5 0.75 and 1.0 and e/b = 0.2, 0.4, … to 2.0, the hoop

stresses at the point “E” “F” and “H” are denoted by

, , (16)

The computed non-dimensional stress concentration factors ,  and

 are listed in Table 3. 

σT E, hE b/a c/a,( )p= σT G, hG b/a c/a,( )p=

σT E, sE b/a e/b,( )p= σT F, sF b/a e/b,( )p= σT H, sH b/a e/b,( )p=

sE b/a e/b,( ) sF b/a e/b,( )
sH b/a e/b,( )

Table 3 Non-dimensional stress concentration factors  (at the point E), and  (at the
point F), and  (at the point H) for two elliptic notches in stacking position under the
remote loading  (see Fig. 3(b) and Eq. (16))

e/b = 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

b/a =

0.25 7.080 7.321 7.558 7.784 7.986 8.156 8.295 8.407 8.497 8.570

0.50 4.194 4.394 4.561 4.679 4.759 4.814 4.853 4.881 4.902 4.918

0.75 3.207 3.367 3.470 3.531 3.568 3.592 3.608 3.620 3.628 3.634

1.00 2.701 2.824 2.890 2.926 2.947 2.960 2.969 2.975 2.979 2.983

e/b = 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

b/a =

0.25 -0.384 -0.320 -0.444 -0.579 -0.682 -0.756 -0.808 -0.846 -0.874 -0.895

0.50 -0.342 -0.589 -0.753 -0.839 -0.887 -0.916 -0.935 -0.948 -0.957 -0.963

0.75 -0.482 -0.751 -0.860 -0.910 -0.936 -0.952 -0.961 -0.968 -0.972 -0.976

1.00 -0.605 -0.829 -0.905 -0.937 -0.954 -0.964 -0.970 -0.974 -0.977 -0.979

e/b = 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

b/a =

0.25 -0.867 -0.855 -0.862 -0.875 -0.889 -0.903 -0.915 -0.926 -0.934 -0.942

0.50 -0.869 -0.885 -0.908 -0.927 -0.941 -0.952 -0.959 -0.965 -0.969 -0.973

0.75 -0.883 -0.912 -0.935 -0.950 -0.960 -0.967 -0.972 -0.975 -0.978 -0.980

1.00 -0.897 -0.929 -0.949 -0.960 -0.968 -0.973 -0.976 -0.978 -0.980 -0.981

sE b/a c/a,( ) sF b/a c/a,( )
sH b/a c/a,( )
σy

∞

p=

sE b/a c/a,( )

sF b/a c/a,( )

sH b/a c/a,( )
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It is found that in the case of a rather narrow spacing between notches, the stacking effect is

rather higher. For example, in the case of b/a = 0.25 and e/b = 0.2, we have = 7.080

and = −0384. However, in a single notch of b/a = 0.25, we have sE = 9.000 and sF =

−1.000.

Example 3

In the third example, we assume that five elliptic notches are in series. The elliptic notch has the

half-axis “a” and “b” and the spacing between two notches is denoted by “c” (Fig. 3(c)). The

remote loading is denoted by . In the solution of BIE, 96 divisions are used for the

discretization of elliptic contour.

For the following cases: b/a = 0.25, 0.5, 0.75 and 1.0 and c/a = 0.1, 0.2, … to 1.0, the hoop

stresses at the points “Ej”, “Gj” (j = 1, 2, 3) are denoted by (see Fig. 3(c))

 (for the first notch)

(for the second notch)

(for the third notch) (17)

The computed non-dimensional stress concentration factors ,  c/a),

 and  are listed in Table 4. It is found that in the case of b/a = 0.25 and

c/a = 0.1, or a rather narrow spacing case, the stress concentration factor can reach a huge value, for

example, we have = 11.584, = 20.947, = 21.553, 

c/a) = 23.186 and = 23.317, respectively. We see from listed results that the central

notch is under most severe loading condition. We know that, in a single notch with the ratio

b/a = 0.25, the non-dimensional stress concentration factor is .

sE b/a e/b,( )
sF b/a e/b,( )

σy

∞
p=

σT E
1

, sE
1

b/a c/a,( )p= σT G
1

, sG
1

b/a c/a,( )p=,

σT E
2

, sE
2

b/a c/a,( )p= σT G
2

, sG
2

b/a c/a,( )p=,

σT E
3

, sE
3

b/a c/a,( )p=

sE
1

b/a c/a,( ) sG
1

b/a c/a,( ), sE
2

b/a,(
sG

2
b/a c/a,( ) sE

3
b/a c/a,( )

sE
1

b/a c/a,( ) sG
1

b/a c/a,( ) sE
2

b/a c/a,( ) sG
2

b/a,(
sE

3
b/a c/a,( )

sF 1 2a/b+( )a/b 4= 9= =

Table 4 Non-dimensional stress concentration factors  (at the point E1),  (at the point
G1),  (at the point E2),  (at the point G2),  (at the point E3) for
five elliptic notches in series position under the remote loading  (see Fig. 3(c) and Eq. (17))

c/a = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

b/a =

0.25 11.584 10.917 10.558 10.319 10.145 10.011 9.904 9.816 9.743 9.680

0.50 6.605 6.162 5.924 5.768 5.656 5.570 5.503 5.448 5.403 5.365

0.75 4.952 4.602 4.410 4.282 4.190 4.119 4.063 4.018 3.980 3.948

1.00 4.112 3.821 3.657 3.546 3.465 3.403 3.353 3.313 3.279 3.250

c/a = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

b/a =

0.25 20.947 15.319 13.297 12.239 11.583 11.135 10.809 10.562 10.368 10.212

0.50 14.737 9.739 7.935 7.037 6.515 6.182 5.954 5.791 5.669 5.576

0.75 12.675 8.238 6.524 5.623 5.081 4.730 4.490 4.320 4.195 4.101

1.00 11.429 7.472 5.888 5.024 4.484 4.121 3.865 3.678 3.539 3.434

sE
1

b/a c/a,( ) sG
1

b/a c/a,( )
sE

2
b/a c/a,( ) sG

2
b/a c/a,( ) sE

3
b/a c/a,( )

σy

∞

p=

sE
1

b/a c/a,( )

sG
1

b/a c/a,( )
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Table 4 Continued

c/a = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

b/a =

0.25 21.553 15.896 13.833 12.735 12.042 11.561 11.205 10.931 10.713 10.535

0.50 15.136 10.116 8.278 7.348 6.798 6.439 6.190 6.008 5.870 5.761

0.75 12.980 8.546 6.809 5.883 5.317 4.944 4.685 4.498 4.358 4.251

1.00 11.651 7.731 6.138 5.257 4.698 4.316 4.043 3.842 3.689 3.571

c/a = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

b/a =

0.25 23.186 16.688 14.331 13.084 12.302 11.763 11.367 11.063 10.822 10.627

0.50 16.478 10.705 8.621 7.574 6.959 6.559 6.283 6.081 5.929 5.810

0.75 14.262 9.117 7.138 6.095 5.464 5.051 4.766 4.560 4.407 4.291

1.00 12.893 8.302 6.472 5.474 4.849 4.425 4.125 3.904 3.738 3.611

c/a = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

b/a =

0.25 23.317 16.807 14.439 13.181 12.390 11.843 11.440 11.130 10.885 10.685

0.50 16.567 10.786 8.692 7.637 7.014 6.609 6.328 6.122 5.966 5.844

0.75 14.332 9.185 7.198 6.148 5.511 5.093 4.803 4.594 4.438 4.319

1.00 12.945 8.360 6.526 5.523 4.893 4.465 4.160 3.936 3.767 3.637

sE
2

b/a c/a,( )

sG
2

b/a c/a,( )

sE
3

b/a c/a,( )

Fig. 4 The hoop stress distributions  along
the contours of first, second and third notch in
the case of b/a = 0.5 and c/a = 0.1 (see
Fig. 3(c))

σT p= Fig. 5 The hoop stress distributions  along
the contours of first, second and third notch in
the case of b/a = 1 and c/a = 0.1 (see
Fig. 3(c))

σT p=
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For two cases (a) b/a = 0.5 and c/a = 0.1 and (b) b/a = 1 and c/a = 0.1, the non-dimensional

 along the three notch contours are plotted in Figs. 4 and 5, respectively. From Figs. 4 and

5 we see that the central notch is under most severe loading condition.

As claimed above, for the case of five notches, the suggested alternative scheme of iteration

shown by Eq. (11) is necessary in computation. For a narrow spacing case, for example, in b/a = 0.5

and c/a = 0.1, the number of iteration is 38. However, in the wider spacing case, for example, in

b/a = 0.5 and c/a = 1, the number of iteration is reduced to 15. 

Example 4

The fourth example is devoted to find out SCFs for two square notches with the round corners

(Fig. 3(d)). The square notch has a width “2a”, and the corner has a radius “0.5a”. The spacing

between two notches is denoted by “c”. The remote loading is denoted by . In the solution

of BIE, 96 divisions are used for the discretization of contour.

In the case of and c/a = 0.1, 0.2,…to 1.0, the hoop stresses at the point “C”, “D” “E” “F” and

“G” points of the left notch are denoted by

 
(18)

The computed non-dimensional stress concentration factors ,  and

 are listed in Table 5. It is found that in the case of c/a = 0.1, or a rather narrow spacing

case, the stress concentration factor at the point “G” can reach a large value, or 

= 5.422. However, at the opposite point “C”, SCF has a smaller value  = 2,233.

4. Conclusions

Some advantages can be found from the suggested formulation. It is assumed that the problem for

five notches will be solved, and 96 divisions along the boundary are used in computation. In the

case, for example, the matrices [Gi] (i = 1, 2..5) have a dimension (192*192). If we do not use the

iteration method, and use Eq. (8) to solve the problem directly, we need to formulate ,

 total 25 matrices. In addition, one needs to assemble those matrices in a

larger matrix, which has a dimension (960*960). In fact, it is a rather complicated work to assemble

so many matrices in a larger matrix. This is an inconvenient point in the direct solution from

s σT/p=

σy

∞
p=

σT C, sC c/a( )p, σT D, sD c/a( )p, σT E, sE c/a( )p= = =

σT F, sF c/a( )p, σT G, sG c/a( )p= =

sC c/a( ) sD c/a( ) sE c/a( ), , sF c/a( )
sG c/a( )

sG c/a( ) c/a 0.1=

sC c/a( ) c/a 0.1=

G1[ ] G12[ ],
G13[ ] G14[ ] G15[ ] …, , ,

Table 5 Non-dimensional stress concentration factors  and  for two
square notches in series position under the remote loading  (see Fig. 3(d) and Eq. (18))

c/a = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.0 1.0

Points

C 2.233 2.171 2.128 2.096 2.070 2.049 2.031 2.016 2.003 1.992

D 2.138 2.032 1.960 1.906 1.864 1.830 1.802 1.778 1.757 1.740

E -0.826 -0.817 -0.810 -0.804 -0.799 -0.795 -0.791 -0.788 -0.786 -0.783

F 1.284 1.723 1.908 1.993 2.033 2.049 2.053 2.049 2.042 2.031

G 5.424 4.340 3.740 3.341 3.045 2.812 2.625 2.474 2.352 2.254

sC c/a( ) s, D c/a( ) sE c/a( ) sF c/a( ),, sG c/a( )
σy

∞

p=
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Eq. (8). In the meantime, if we use iteration shown by Eqs. (10) or (11) to solve the problem, we do

not need to assemble many matrices in a proper position of a larger matrix. In real computation, the

iteration needs a short time on a personal computer. Particularly, we have examined that the 40 sets

of solution (or b/a = 0.25, 0.5, 0.75 and 1, c/a = 0.1, 0.2, …1) for five notches in Example 3 only

toke 3 minutes and 55 seconds by using a FORTRAN program. 

Secondly, the suggested method can be used to arbitrary shapes for the contours. For example, we

have solved the problem for two square notches with round corners in the fourth example. Thirdly,

the suggested iteration method based on BIE can provide accurate results for stress concentration

factors, which was shown in the first example.

As stated above, a boundary element method was developed to analyze the stress concentration

problems of multiple elliptical holes in an infinite domain (Ting et al. 1999c). In the formulation,

the tractions on the hole contours were chosen as an iteration parameter. In fact, the formulation is

based on the superposition method (Ting et al. 1999). On the other hand, the displacements on the

contours are chosen as an iteration parameter in this paper. Secondly, the BIE is formulated on the

boundary of notches, and no superposition method is used in the formulation.
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