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Abstract. This paper aims to propose a computational technique for estimating the region of attraction
(RoA) for autonomous nonlinear systems. To achieve this, the collocation method is applied to
approximate the Lyapunov function by satisfying the modified Zubov’s partial differential equation around
asymptotically stable equilibrium points. This method is formulated for n-scalar differential equations with
two classes of basis functions. In order to show the efficiency of the suggested approach, some numerical
examples are solved. Moreover, the estimated regions of attraction are compared with two similar
methods. In most cases, the proposed scheme can estimate the region of attraction more efficient than the
other techniques.
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1. Introduction

The characteristics of equilibrium points can explain some unpredictable behaviors of nonlinear

dynamical systems. Time integration techniques reveal the system behavior for a particular initial

condition (Rezaiee-Pajand and Alamatian 2008, 2010). Therefore, they are not able to draw a

general picture of properties for nonlinear systems including initial independent parameters.

Lyapunov based a powerful stability concept in nonlinear dynamical systems (Khalil 2002). Many

efforts were made by researchers in this subject theoretically and practicaly in scientific areas and

engineering (Lewis 2002, 2009, Tylikowski 2005, Pavlovi  et al. 2007).

A substantial issue in stability problems is to estimate the Region of Attraction (Stability Domain)

around stable equilibrium points. For this purpose, several techniques have been proposed (Genesio et

al. 1985). Some methods try to find an optimal Lyapunov function which gives less conservative

estimation of stability domains (Tan 2006, Hafstein 2005, Chesi et al. 2005). These approaches are

known as Lyapunov methods, which are extensively discussed in the literature (see, for example, Chesi

2007, Johansen 2000, Kaslik et al. 2005b). One applicable choice for estimating Lyapunov functions is

the implementation of sum-of-squares with polynomial terms (Tan and Packard 2008, Peet 2009).

Zubov showed that the Lyapunov function giving the entire region of attraction satisfies a certain

partial differential equation (Kormanik and Li 1972, Camilli et al. 2008). In most cases, it is

impossible to find a closed form solution for this kind of PDE. But, it can be approximated by
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power series (Margolis and Vogt 1963, Dobljevi  and Kazantzis 2002, Fermín Guerrero-Sánchez et

al. 2009), rational solution (Vannelli and Vidyasagar 1985, Hachicho 2007, Giesl 2007) and other

numerical techniques (see, for instance, Kaslik et al. 2005a, O’Shea 1964). Most of the numerical

methods are applicable to autonomous systems (Sophianopoulos 1996, 2000). For nonautonomous

systems, the averaging technique can be employed to transform these systems into autonomous ones

with an acceptable accuracy (see, for example, Gilsinn 1975, Yang et al. 2010, Hetzler et al. 2007).

The focus of this paper is on the approximate solution of Zubov’s partial differential equation by

the collocation approach. For this purpose, some basis functions are introduced and formulated for

n-dimensional problems. By using these basis functions, one can obtain a smooth Lyapunov

function in the vicinity of the stable equilibrium point. Afterwards, the residual error in Zubov’s

partial differential equation is vanished in a number of discrete points through the collocation

method. Finally, the unknown coefficients in the approximate Lyapunov function are calculated, and

the conservative estimation of the stability domain is computed by solving an optimization problem.

The proposed scheme is applicable to both polynomial and non-polynomial systems.

Section 2 illustrates Lyapunov theorem with some basic definitions. Furthermore, the procedure of

estimating the stability domain around a stable equilibrium point is described. This procedure needs

to be followed by finding a convenient Lyapunov function and using a proper global optimization

method. Then, the theory of moments is presented in Section 3. It is noteworthy that this theory is

useful for polynomial nonlinear systems with a polynomial Lyapunov function. Section 4

demonstrates Zubov’s partial differential equation. In this section, the construction procedure is

investigated for polynomial (Margolis and Vogt 1963) and rational Lyapunov functions (Vannelli and

Vidyasagar 1985). Afterwards, the procedure of the collocation technique is explained in Section 5.

Furthermore, two types of basis functions for n-dimensional problems are introduced in this section.

The computational steps of the suggested technique are presented in Section 6. Then, some

numerical examples are solved by the proposed method in Section 7. Concluding remarks are given

in Section 8.

2. Region of attraction

In this section, the region of attraction (RoA) which is relative to a Lyapunov function is

investigated. In this way, it is preferred to transform the governing equations of a dynamical system

into a finite number of coupled first-order ordinary differential equations (Khalil 2002, Wiggins

2003)

(1)

where,  represents the time derivative of x. The vector differential Eq. (1) is called nonautonomous (or

time dependent) system. This study is restricted to a subclass of (1) which is known as autonomous

(or not time dependent) systems

(2)

Another noteworthy concept in stability theories is the equilibrium point. If x = xe stays at its

initial position x(t0) (or x0) for all future time, xe is an equilibrium point of that dynamical system.

c′
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Based on this definition, the real roots of the following equations are the equilibrium points

(3)

For more simplification, it is assumed that the origin is an equilibrium point (f(0) = 0). In the

following, two necessary definitions are given.

Definition 2.1 Stable, unstable and asymptotically stable (Khalil 2002): The equilibrium point

x = 0 of (2) is
● stable, if , there is a δ > 0 such that 

  (4)

● unstable, if it is not stable.
● asymptotically stable, if it is stable and there is a δ > 0 such that

(5)

Here, x(t,x0) represents the solution of (2) starting at x0.

Definition 2.2 Region of attraction (Stability domain) (Khalil 2002): The domain S is the RoA of

the asymptotically stable equilibrium point x = 0 for autonomous systems (2), if S contains all x0
such that

(6)

Now, Theorems 2.3 and 2.4 illustrate the Lyapunov stability theorem and the guaranteed

estimation of RoA, respectively.

Theorem 2.3 Lyapunov stability theorem (Khalil 2002): If the origin is an equilibrium point of (2),

and V(x) :  is a continuously differentiable function (where,  is a domain containing

x = 0) such that

(7)

The equilibrium point x = 0 is
● stable, if  in D.
● asymptotically stable, if  in .

Here,  shows the time derivative of V(x) and could be obtained by Eq. (8)

(8)

Theorem 2.4 Guaranteed estimation of RoA (Khalil 2002, Hachicho 2007): If V(x) is a Lyapunov

function for system (2), and Ω is a domain such that:

(9)

f xe( ) 0=

ε∀ 0>

x0 δ<   x t x0,( ) ε<  t∀ t0≥,⇒

x0 δ<   Lim
t ∞→

 x t x0,( )⇒ 0=

S x0 R
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t ∞→

 x t x0,( ) 0=
⎩ ⎭
⎨ ⎬
⎧ ⎫
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D R→ D R
n⊂
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·
x( ) 0< D 0{ }–

V
·
x( )

V
·
x( ) ∂V x( )
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·
x( ) 0≤{ }=
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with the condition that there is no solution of (2) that can stay identically in the set of points

. Then, the guaranteed estimation of the stability domain is as follows

(10)

where, c* is the largest positive value that keeps S in Ω. In addition,  displays

the boundary of the estimated stability domain.

Finding c* is an optimization problem. Consequently, one can rewrite Eqs. (9) and (10) as a

global constrained optimization problem (Hachicho 2007)

(11)

3. Global optimization of polynomials

In most cases, the exact calculation of the stability domain of an asymptotically stable equilibrium

point in nonlinear systems (2) is quite difficult or impossible. But, as it is mentioned in the previous

section, it is possible to obtain a subset of RoA by finding a convenient Lyapunov function and

solving the optimization problem (11). In the case of polynomial systems with a polynomial

Lyapunov function, using the theory of moments could be helpful to transform this global

optimization into a sequence of convex linear matrix inequality (LMI) problem (Lasserre 2001,

Hachicho 2007). For smooth non-polynomial systems, one can approximate f(x) in Eq. (2) by using

Taylor expansion in the vicinity of the asymptotically stable equilibrium point.

The general scheme of the optimization problem is as follows

(12)

Here, p(x) :  and gi(x) :  are real-valued polynomials of degrees at most m and wi,

respectively. By comparing Eqs. (11) and (12), one can equate p(x) with V(x) and replace the

constrains  with = 0 and . For more simplification, the following notation is

applied for polynomials

(13)

In a similar way, gi(x) can be written as follows

(14)

Now, the vector y = {yα}, where yα is the α-order moment for some probability measure µ, is defined.

In addition, its first element (y0,…,0) is equal to 1. For example, Eq. (15) illustrates yα for two-

dimensional (n = 2) problem

x D 0{ }–∈ V
·
x( ) 0={ }

S x D∈ V x( ) c∗<{ }=

x D∈ V x( ) c∗={ }

c∗ minV x( )=
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(15)

After computing all elements of vector y, one can be able to establish the corresponding moment

matrix Mm(y). In case of two-dimensional problems, Mm(y) is a block matrix

(16)

where, each block is a (i + 1) × (j + 1) matrix

(17)

On the other hand, if the entry (i, j) of the matrix Mm(y) (Mi,j (y)) is defined as ys (where, the

subscript S is a function of i and j) and q(x) is a polynomial function ( ), then the

elements of moment matrix Mm(qy) are defined as follows

(18)

Afterwards, the LMI optimization problem (19) is considered

(19)

where,  is the smallest integer larger than wi/2, and N should satisfy the following

conditions

(20)

Theorem 3.1 Convergence of LMI optimization problem (19) (Lasserre 2001, Hachicho 2007): If

 in LMI problem (19), then the infimum value of  converges from below to the

minimum value of p(x) in the global constrained optimization problem (12).  

As a result, by using the theory of moments, the optimization problem (11) can be transformed into

a simple LMI optimization problem for polynomial systems with polynomial Lyapunov function. For

this purpose, one can equate p(x) with V(x) and replace the constrains  with = 0 and

.

4. Zubov’s PDE

In this section, the Zubov’s partial differential equation (PDE) associated with nonlinear autonomous
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system (2) is presented. Subsequently, the power series’ solution (Margolis and Vogt 1963, Kormanik

and Li 1972) and rational solution (Vannelli and Vidyasagar 1985) are investigated. For this purpose,

f(x) is assumed to be an infinite differentiable vector function and the origin is an asymptotically

stable equilibrium point. By these assumptions, the Zubov’s PDE for an autonomous system (2) is

as follows

(21)

where, W(x) represents a Lyapunov function, which is equal to zero at the origin, and ϕ(x) is a

positive definite function. The following equation shows the region of attraction (Margolis and Vogt

1963)

(22)

In addition, the boundary of the stability domain is obtained by Eq. (23)

(23)

Another useful partial differential equation can be derived by defining a new Lyapunov function

as follows

(24)

Substitution of this equation into (21) makes the Zubov’s PDE simpler

(25)

This equation is called the modified Zubov’s PDE. By considering the relationship between V(x) and

W(x), RoA from Eq. (26) can be obtained

(26)

Consequently, the boundary of the stability domain can be reached as follows

(27)

In many cases, it is impossible to solve the modified Zubov’s PDE (or Zubov’s PDE) for

nonlinear dynamical systems. But, the approximate solution could estimate a subset of the domain

of attraction. In the case of polynomial dynamical systems (f(x) = ),V(x) can be presumed as a

series form (Margolis and Vogt 1963)

(28)

where, Vi and fi represent a homogenous polynomials relative to x of the nth power. Fig. 1 shows

the required terms for V(x1, x2) up to the 3rd power.

∇W x( ) f x( )⋅ ϕ x( )– 1 W x( )–( )=

S x R
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∞
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After substitution of Eq. (28) into (25) and successively equating the similar terms, the unknown

coefficients in Vi will be determined by solving linear equations. Therefore, the supposed Lyapunov

function V(x) will be in hand by Eq. (28) up to the nth power. In fact, the unknown coefficients in

Vi, contain n-order partial derivatives of V(x) with respect to x at the origin. This means that the

approximation error increases when x is far from the origin.

In a similar way, V(x) can be assumed as a rational function (Vannelli and Vidyasagar 1985)

(29)

where, Ri(x) and Qi(x) are homogenous polynomials relative to x of the ith power. By considering

Eq. (29), the modified Zubov’s PDE (25) is rewritten as follows

(30)

By equating the monomials of the same degree, the following recursive relations will be achieved

(31)

(32)

Theorem 4.1 (Vannelli and Vidyasagar 1985): If x = 0 is an asymptotically stable point of the

polynomial nonlinear system (2), and the homogenous polynomials Ri(x) and Qi(x) are convincing

Eqs. (31) and (32), then Vn(x) is a Lyapunov function for all 
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Fig. 1 The required terms for approximate V with two independent variables x1 and x2
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Since there are infinite homogenous polynomials Ri(x) and Qi(x) satisfying Eqs. (31) and (32), an

infinite number of Vn(x) will be obtained. Vannelli and Vidyasagar (1985) demonstrated that 

can be shown in the following form

(34)

where, e(x) contains all monomials of degree greater than n. The comparison between Eqs. (8), (25)

and (34) concludes that among all functions Vn(x) satisfying (31) and (32), the one which minimizes

e(x) takes priority over all others.

5. Collocation

In this paper, the collocation method, which is a subset of weighted residual techniques, is

employed to solve the modified Zubov’s PDE. An advantage of this approach is that the collocation

method is applicable to both polynomial and non-polynomial dynamical systems, while the numerical

methods explained in the previous section can be used for polynomial systems. This approach

approximate V(x) by a linear combination of basis functions Ni(x) which are linearly independent

(35)

Here, Vi represents the value of the Lyapunov function at some particular points xi. These basis

functions are satisfying the following conditions

(36)

(37)

(38)

It is important to remark that satisfying the condition (38) is not mandatory for all collocation

problems. In the following subsections, the authors introduce two classes of basis functions which

are satisfying (38) for the whole space of x with an acceptable accuracy.

After substitution of this approximation into (25), the residual function R(x) will be formed

(39)

The collocation method makes R(x) zero at xi

(40)

The collocation method, as a weighted residuals technique, works appropriately when R(x) is

continuous and smooth in the vicinity of the origin (Giesl 2007). As a result, the dynamical systems
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⎜ ⎟
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⎝ ⎠
⎜ ⎟
⎛ ⎞
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(2) with non-smooth behavior are not in the scope of this paper. Another important point in this

approach is to ensure that the particular points xi is contained in the area 

(Giesl 2008). This point will be explained in Section 6. Since the modified Zubov’s PDE is linear,

the Eq. (40) obtains m linear equations and m variables Vi, which can be solved easily. It should be

reminded that this set of equations is dependent when the equilibrium point is assumed to be one of

the collocation points (Giesl 2008). In this case, the following boundary condition should be added

to Eq. (40)

(41)

By doing this and considering Eqs. (36), (37) and (41), one can conclude that the value of Vo is

equal to zero.

The crucial part of the analysis is to find a set of convenient and compatible basis functions to

have an optimum Lyapunov function. In the following subsections, two types of basis functions are

proposed in the polar and Cartesian coordinates.

5.1 Basis functions in polar coordinates

Every point in polar coordinates can be written in terms of two parameters 

and . In these coordinates, the easiest area for placing the collocation nodes in

a regular way, is a circle of radius r0

(42)

In this paper, Γ is defined as a closed area that all collocation nodes are regularly placed in. If m1

circles of radius  (j1 = 1,…,m1) with a unique center at the origin are assumed, one can put

2 × m2 collocation nodes in the perimeter of each. The perimetric nodes are placed on the vertices

of the regular polygon circumscribed by the supposed circle. Fig. 2 shows an example of node

arrangement for m1= 2 and m2= 3.

Now, the basis function suggested for the node located at ( ) is as follows

(43)

Ω x D∈ V
·
x( ) 0≤{ }=

V 0( ) Ni

i 1=

m

∑ 0( )Vi 0= =
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θ R∈ π– θ  +π<≤{ }

Γ r R∈ 0 r r0<≤{ }=

rj
1

r0≤

rj
1
 θj

2
,

N j
1
j
2

, r θ,( ) N j
1 r( ) N j

2 θ( )×=

Fig. 2 An example of node arrangement for polar coordinates
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Here, the superscripts denote the location of the supposed point. There are some characteristics that

 and  (the radial and tangential parts of basis functions, respectively) should include:

1 - The values of  and /  equal zero at the origin.

2 - Because of symmetry, a unique form is expected for all .

3 - Since θi − π and θi + π indicate the same angle (where the opposite node is located) and the
tangential part is a continuous and differentiable function,  and its first derivative at these

angles should be equal to zero.

4 - The summation of all  are equal to one for  and .

By considering the aforementioned characteristics,  can be assumed in the polynomial form

(44)

In this equation, ck represents the kth element of vector  obtained from Eq. (45)

(45)

where

(46)

(47)

Here,  is the Kronecker delta. Furthermore,  could be written as follows

(48)

It can be easily shown that the suggested  satisfies the conditions (36) and (37)

precisely, and approximately satisfies the condition (38). For , the maximum error is less than

one percent. Fig. 3 shows a basis function with its tangential part for the problem with six perimetric
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N j

1 r( )

N j
1 r( ) ck 
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1

2
--- θ θj
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 j
1
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Fig. 3 (a) A basis function (b) tangential part of basis function
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nodes (m1 = 1, m2= 3, r0= 1).

As it is mentioned, the collocation method takes the value of Lyapunov function Vi at the particular

points xi. Afterwards, Eq. (35) obtains the supposed Lyapunov function V(x). This function is not

polynomial. As a result, the optimization procedure mentioned in Section 3 cannot be applicable. An

option for computing a polynomial Lyapunov function from the calculated Vi, is to use a regression

function which is composed of a sum of homogenous polynomials with unknown coefficients (see

Eq. (28)). The unknown coefficients are obtained from the least-squares approximation. Needless to

say the number of coefficients should not exceed the number of Vi. Additionally, the selected terms

in the regression function should satisfy the conditions described in (7). 

5.2 Basis functions in Cartesian coordinates

Another technique for calculation of basis functions is presented in this section. In the n-

dimensional Cartesian coordinates, the easiest shape for the domain Γ, which includes the collocation
nodes in a regular way, is defined as an n-dimensional cuboid

Γ = {x ∈ | |xi − xi0| ≤ Li , i = 1,......,n} (49)

where, xi0 is the ith component of the cuboid’s center, and Li represents the half length of the side

dealing with the direction xi. In order to simplify the process, the following transformation is

suggested

(50)

Now, the area of Γ is redefined as follows

Γ = {ξ ∈ | −1 ≤ ξi ≤ +1,  i = 1,......,n} (51)

As a result, Γ represents an n-dimensional cube in space of ξ. This cube can be divided into n-

dimensional sub-spaces by a regular grid. Then, a series of internal and external nodes can be

placed on the vertices of these subspaces. In order to have a node at the origin, the number of nodes

in each principal direction should be an odd number. In addition, the total number of nodes (m) is

R
n

ξi

xi xi0–

Li

--------------   i, 1 .. n,,= =

R
n

Fig. 4 An example of node arrangement for 2D problems 
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equal to the product of the numbers of nodes lied on each axis (mj). Fig. 4 shows an example of

node arrangement for 2D problems (m1= 5, m2= 3).

A systematic method for generation of basis functions can be achieved by the product of a

number of independent polynomials in n-coordinates (Zienkiewicz and Taylor 2000)

(52)

Here, the superscripts denote the location of the supposed point. The basis function N i(ξ) convinces

the properties (36)-(38) precisely, as each Nj
i(ξ j) does in its own axis. In this way, the Lagrange

polynomials are presented (Ralston and Rabinowitz 1978)

(53)

where, ξ j
i illustrates the value of ξ j at the particular point i and a set of points k represents all nodes

at the direction ξ j, except the point i. Fig. 5 displays the basis function of point i and its component

N1
i(ξ1) shown in Fig. 4.
The terms used in Lagrange polynomials are important. Although the maximum power of xi in

basis functions has a direct relationship to the number of nodes on its axis minus one, the product

N
i

ξ( ) Nj

i
ξj( )   i,

j 1=

n

∏ 1... m,= =

Nj
i ξj( )

ξj ξj

k
–

ξj

i
ξj

k
–

--------------  i 1 ... m,,=

i 1 ... n,,=⎩
⎨
⎧

,
k

∏=

Fig. 5 (a) A basis function (b) a component of basis function 

Fig. 6 The required terms for a 2D problem with 4 × 4 nodes
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of Lagrange polynomials in different direction generates some higher order terms. Fig. 6 shows the

required terms for a 2D problem with 4 × 4 nodes.

The comparison between Fig. 1 and Fig. 6 shows that the additional terms could enhance the

estimation of the Lyapunov function. It is noteworthy that the linear change of variables, which can

cause shift, rotation and scaling in Γ, can impress the final result of the suggested method. Therefore,

the union of the estimated stability domains is the largest conservative region of attraction.

6. Computational steps

In this section, the steps of the suggested method are given:

Step 1: Estimation of the domain Γ is the first step of the proposed method. Γ should be contained

in Ω = {x ∈ D (x) ≤ 0} (Giesl 2008). In this way, one can compute an initial estimation of the

Lyapunov function V(x) by using other simple methods explained in Section 4. Then, an initial

estimation of Ω is calculated. In order to explain why Γ needs to be contained in Ω, it should be
noticed that the collocation method tries to find a Lyapunov function V(x), of which the time

derivative  of V along solution trajectories is approximately equal to the negative definite function

−ϕ(x) over Γ − {0}. On the other hand, according to Eqs. (9) and (10), there exists at least one point

in the boundary of the computed stability domain which  in this point is equal to zero.

Consequently, there should be a huge jump in the time derivative of Lyapunov function around this

point. This can cause an inappropriate impression on the collocation method.

Step 2: As it is mentioned, the Lyapunov function V(x) is replaced by a linear combination of basis

functions Ni(x). Depending on the nature of the dynamical system, a set of convenient basis functions

is chosen. These functions are convincing the conditions (36)-(38). In addition, according to the

modified Zubov’s partial differential equation, Ni(x) should be continuously differentiable all over the

domain Γ.

Step 3: After constructing the approximate Lyapunov function, one can vanish the residual error

R(x) through the collocation method in a number of discrete points xi. For this purpose, the linear

equations (40) are solved. As it is mentioned in Section 5, the Eq. (40) are not linearly independent

when a collocation point is located on the equilibrium point (Giesl 2008). In order to achieve the

value of the Lyapunov function at particular points xi, the boundary condition (41) is added to (40).

As a result, the approximation of V(x) will be derived either by using Eq. (35) or by employing the

regression technique explained in Section 5.

Step 4: At the final step, a new Ω is obtained. In this domain, the time derivative of the
Lyapunov function (x) is negative semi-definite. Afterward, the region of attraction will be in

hand by finding the maximum value of c* which keeps S in Ω. In this way, the theory of moments
transforms the global optimization problem (11) into a sequence of convex LMI problem (19) for

polynomial systems with a polynomial Lyapunov function.

7. Numerical examples

The estimation of RoA and its application in engineering fields has been discussed in previous

efforts (see, for example, Genesio et al. 1985). In this section, the proposed method is examined by

five examples, which are excessively used in the literature and compared with the results of V&V

V
·

V
·

V
·

V
·
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procedure (Vannelli and Vidyasagar 1985) and the Giesl method (Giesl 2007).

In the examples, the estimated RoAs, which are obtained by the suggested method with different

basis functions, are shown in diagrams. The number n illustrates the order of the relative Lyapunov

function. This could be a proper criterion for observing the rate of convergence. Furthermore, the

domain Γ, the results of V&V and the Giesl method (dot-dashed) and the exact solution (dotted) are

given. The estimated RoAs in the 3D example are shown in three 2D diagrams for three distinct

values of the third variable.

In this paper, it is preferred to use regression technique to achieve Lyapunov function when polar

basis functions are applied. In addition, the Jordan transform is employed before using the proposed

method. As it is mentioned at the end of Section 5, the linear change of variables could reshape Γ.

Therefore, the domain Γ changes from a circle or a rectangle into an oval or a parallelogram,

respectively. In order to have a better comparison between various methods, a same form is

assumed for the function ϕ(x) in the modified Zubov’s PDE

(54)

It is needless to say that all approaches mentioned in this paper obtain the region of attraction

conservatively. Therefore, the largest estimated stability domain is preferred.

7.1 Example 1

An example of the asymptotically stable equilibrium point confined by an unstable limit circle can

be found in Vander Pol oscillator (Vannelli and Vidyasagar 1985, Grosman and Lewin 2009)

(55)

This equation can be rewritten in the following form for ε = 1

(56)

By using the Jordan decomposition ({x} = [J]{z}), this system transforms into a new space (z). Eq.

(57) shows the transformation matrix

(57)

It is noteworthy that the eigenvalues of the linear part are complex. In this example, r0 (the radius

of Γ in the polar coordinates) is equal to . Moreover, L1 and L2 (the half of sides’ length of Γ

in Cartesian coordinates) are 1.2. Other properties of Lyapunov functions are given in Table 1. Fig.

7 illustrates the computed regions of attraction by the suggested Method.

As it can be seen, when the order of Lyapunov function increases, the proposed method in Cartesian
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coordinates (Fig. 7 (b)) demonstrates a higher rate of convergence to the exact solution in comparison

with the polar one (Fig. 7 (a)).

In the following, Fig. 8 compares the regions of attractions computed by the proposed scheme and

the method described in Giesl (2007) for Vander Pol oscillator with ε = 3.

Table 1 Some properties of Lyapunov functions in 2D examples

Diagram
Polar Coordinates Cartesian Coordinates

 m1 m2 Reg. Order No. of Terms m1 m2 No. of Terms

n = 2 1 3 2 3 3 3 9

n = 4 3 9 4 12 5 5 25

n = 6 5 14 6 15 7 7 49

n = 8 7 18 8 42 9 9 81

n = 10 10 30 10 63 11 11 121

Fig. 7 Example 1 (ε = 1): (a) Regions of attraction computed by the suggested method in polar and (b) Cartesian
coordinates (solid), Vannelli and Vidyasagar (1985) (dot-dashed) and the exact solution (dashed)

Fig. 8 Example 1 (ε = 3): Regions of attraction computed by the suggested method in Cartesian coordinates
(solid), Giesl (2007) (dot-dashed) and the exact solution (dashed)
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The Giesl method applies the collocation technique by using Wendland functions (Wendland

2005, Buhmann 2003) which are a subclass of radial basis functions (Giesl 2007, Giesl and

Wendland 2011). Here, the number of collocation nodes used in the Giesl method is 236, while this

number for the proposed method in Cartesian coordinates is 225. As Fig. 8 shows, the suggested

method gives a larger estimation of RoA in comparison with the other method.

7.2 Example 2

In this example, the region of attraction for the following dynamical system (a toy example) is

investigated

(58)

This system includes on asymptotically stable point at the origin and two saddle points at (± 1,2).

The stability domain for the origin is S = {(x1, x2) ∈ R2|−1 < x1 < +1} (Giesl 2007, 2008). The

eigenvectors of the linearized system are in the same directions of x1 and x2 coordinates. Consequently,

the Jordan transform is not required. Here, the proposed method with Cartesian basis functions is

used with different Γ (Fig. 9). The value of L2 is constant and equal to 0.5, while the length of L1 is

dependent on the parameter ε (L1 = 1 − ε). Fig. 9 displays the estimated RoAs by the suggested

method for ε = 0.5, 0.05 and 0.005.

As it can be seen, by decreasing the parameter ε, the proposed method obtains a larger estimation

of the stability domain. In this example, nine collocation nodes are considered, while 122 nodes are

used in Giesl method.

x·1 x1– x1
3

+=

x·2 0.5x2– x1
2

+=
⎩
⎪
⎨
⎪
⎧

Fig. 9 Example 2: Regions of attraction computed by the suggested method in Cartesian coordinates (solid),
Giesl (2007) (dot-dashed) and the exact solution (dashed)
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7.3 Example 3

The nonlinear dynamical system (59) includes an asymptotically stable equilibrium point at the

origin (Margolis and Vogt 1963, Vannelli and Vidyasagar 1985)

(59)

Similar to the previous example, the eigenvalues of the linear part are real and its eigenvectors

coincide with x1 and x2 coordinates. The presumed values of r0, L1 and L2 are equals to , 1/2

and 1/2, respectively. More information about computed Lyapunov functions can be observed in

Table 1. The estimated RoAs are drawn in Fig. 10.

Fig. 10 (b) shows a gradual improvement in estimation of stability domain, while the proposed

method in the polar coordinates does not follow any regular rule. Since the exact solution of

modified Zubov’s PDE is rational (Margolis and Vogt 1963), V&V procedure gives the whole region

of attraction.

7.4 Example 4

Another example of the asymptotically stable equilibrium point with complex eigenvalues can be

seen in Eq. (60) (Vannelli and Vidyasagar 1985, Grosman and Lewin 2009)

(60)

Furthermore, the transformation matrix for the Jordan decomposition is as follows

x·1 x1– 2x1
2
x2+=

x·2 x2–=
⎩
⎪
⎨
⎪
⎧

2 2⁄

x·1 x2=

x·2
1

2
---– x2 sin x1

π
3
---+⎝ ⎠

⎛ ⎞ sin
π
3
---⎝ ⎠
⎛ ⎞–⎝ ⎠

⎛ ⎞–=
⎩
⎪
⎨
⎪
⎧

Fig. 10 Example 3: (a) Regions of attraction computed by the suggested method in polar and (b) Cartesian
coordinates (solid), Vannelli and Vidyasagar (1985) and the exact solution (dot-dashed)
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(61)

In this example, r0, L1 and L2 are equal to 1. In addition, other properties of Lyapunov functions are

similar to the first example (see Table 1). The computed RoAs by the suggested method are

displayed in Fig. 11.

Similar to Example 1, the suggested method in Cartesian coordinates estimates RoAs with higher

rate of convergence to the exact solution compare to the polar one. Needless to say, all predicted

RoAs, except n = 2 in Fig. 11(a), contain the stability domain estimated by V&V procedure.

7.5 Example 5

The 3D dynamical system (62) includes an asymptotically stable equilibrium point at the origin

(Davison and Kurak 1979, Vannelli and Vidyasagar 1985)

(62)

Here, two eigenvalues of the linear part are complex and the third one is a real number.

Consequently, the authors employ polar basis functions for the complex part and Lagrange

polynomials for the direction relative to the real eigenvalue. In addition, the proposed method in the

3D Cartesian coordinates is applied. The following equation denotes the transformation matrix for

the Jordan decomposition

J[ ]

1

4
---

7

4
-------–

1

2
---– 0

=

x·1 x2–=

x·2 x3–=

x·3 0.915x1– 1 0.915x1
2

–( )x2 x3–+=⎩
⎪
⎨
⎪
⎧

Fig. 11 Example 4: (a) Regions of attraction computed by the suggested method in polar and (b) Cartesian
coordinates (solid), Vannelli and Vidyasagar (1985) (dot-dashed) and the exact solution (dashed)
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(63)J[ ]
1 0.977286 1.09515

0.933854– 1 1.0465

0.999035– 0.891364– 1

=

Fig. 12 Example 5: (a, c and e) Regions of attraction computed by the suggested method in polar-Cartesian
and (b, d and f) Cartesian coordinates (solid), Vannelli and Vidyasagar (1985) (dot-dashed)
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All values of r0 and L3 for Γ in polar-Cartesian coordinates and L1, L2 and L3 in 3D Cartesian

coordinates are assumed to be 0.1. Other supplementary information about Lyapunov functions are

given in Table 2.

Fig. 12 illustrates the RoAs computed by the suggested method and V&V procedure for three

distinct values of x3. In this figure, the points marked with “○ ” belong to the region of attraction,

while those marked with “● ” do not (Grosman and Lewin 2009).

As it can be observed, the proposed method in polar-Cartesian coordinates estimates the RoA much

larger than the one in the 3D coordinates and V&V procedure with fewer terms. Nevertheless, when

the order of Lyapunov function increases, the suggested method in the 3D coordinates keeps its

gradual improvement in calculation of the stability domain.

8. Conclusions

In this paper, a novel technique is proposed to solve the modified Zubov’s partial differential

equation approximately. In this way, the collocation method is applied in order to achieve a

convenient Lyapunov function. For this purpose, two types of basis functions are proposed. The

former is formulated in polar coordinate systems. These basis functions are proper for analysis of

nonlinear systems which include an asymptotically stable equilibrium point at the origin. The latter

type of basis functions is formulated in Cartesian coordinates. In this formulation, Lagrange

polynomials are employed to obtain a simple and practical form of basis functions. An advantage of

the proposed approach is that it is applicable to both polynomial and non-polynomial systems. It is

important to remark that the suggested basis functions are not the best ones and can be improved

depending on the characteristics of the dynamical stability problems.

The numerical examples indicate that the Lyapunov functions obtained by the proposed method in

Cartesian coordinates can estimate larger stability domains with higher rate of convergence to the

exact solution in comparison with the method formulated in the polar one coordinate system. In

addition, the stability domains estimated by Vannelli and Vidyasagar (1985) and Giesl (2007) are

contained in the stability domains computed by the suggested method in most cases.
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