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Abstract. This paper presents a new nine-node Lagrangian quadrilateral plate bending element (MQP9)
using the Integrated Force Method (IFM) for the analysis of thin and moderately thick plate bending
problems. Three degrees of freedom: transverse displacement w and two rotations θx and θy are considered
at each node of the element. The Mindlin-Reissner theory has been employed in the formulation which
accounts the effect of shear deformation. Many standard plate bending benchmark problems have been
analyzed using the new element MQP9 for various grid sizes via Integrated Force Method to estimate
defections and bending moments. These results of the new element MQP9 are compared with those of
similar displacement-based plate bending elements available in the literature. The results are also
compared with exact solutions. It is observed that the presented new element MQP9 is free from shear
locking and produced, in general, excellent results in all plate bending benchmark problems considered. 

Keywords: integrated force method; mindlin-reissner plate theory stress-resultant fields; displacement fields;
shear locking

1. Introduction

The finite element stiffness method, which is based on an assumed displacement field, has become

the method of choice for solving a wide variety of problems in structural mechanics. The advantages

of the stiffness method include (i) the capability to efficiently and accurately model domains with

complex geometric configurations and varying material properties and (ii) the capability to accurately

analyze problems with geometrical and material nonlinearities. The development of finite stiffness

elements and their corresponding formulations has been a subject of extensive research.

Shortcomings of the assumed displacement method have been observed in the analyses of certain

classes of problems, such as modeling nearly incompressible materials, bending of thin plates, and

optimizing structures. Moreover, since stresses are calculated indirectly by using displacement

derivatives, the accuracy of stress predictions may be reduced. Two alternative finite element
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formulations may be utilized to analyze the aforementioned problems and to calculate stress more

accurately: (i) the hybrid stress method, and (ii) the force method. Because both of these formulations have

certain disadvantages compared to the assumed displacement method, their use and availability in general

purpose programs has been limited. In the hybrid method, the flexibility matrix must be inverted in order

to generate the element stiffness matrix; this can become a computational burden, especially if high order

approximations of stress fields are required. In the standard force method, on the other hand, an auxiliary

statically determinate structure and a corresponding set of redundant forces must be selected. This process

is not easily adapted to computer automation. Several attempts have been made to improve the process by

which redundancies are selected. The pertinent formulations were summarized by Kaneko et al. (1983).

All of these procedures, however, either resulted in matrices with certain undesired properties or lacked a

physical interpretation, which made them unattractive to the engineering community and led to the demise

of the standard force method.

An alternate formulation, termed the Integrated Force Method (IFM), has been developed by

Patnaik (Patnaik 1973) to analyze problems in structural mechanics. It is a new formulation for

computerizing the classical force method of analysis. In the Integrated Force Method all

independent forces are treated as unknown quantities that can be calculated by simultaneously

imposing both equilibrium and compatibility conditions. Generation of compatibility conditions for

elasticity and discrete models have been reported by Patnaik et al. (2000). Nagabhushanam and

Patnaik (1990) have developed a general purpose program to generate compatibility matrix for the

IFM. Automatic generation of sparse and banded compatibility matrix for the Integrated Force

Method has been reported by Nagabhushanam and Srinivas (1991). IFM has been successfully

implemented for analyzing, plane stress problems (Nagabhushanam and Srinivas 1991), two/three

dimensional problems (Kaljevic et al. 1996, Kaljevic et al. 1996), dynamics (Patnaik and Yadagiri

1976), Optimization (Patnaik et al. 1986) and non-linear problems (Krishnam Raju and

Nagabhushanam 2000). A 4-node rectangular plate bending element based on the Kirchhoff theory

has been formulated using the IFM (Patnaik et al. 1991) The element considers a transverse

displacement and two rotations as degrees of freedom at each node. The performance of this

element was compared with those obtained by force method (Przemieniecki 1968, Robinson 1973).

Dhananjaya et al. (2009), proposed a new 8-node quadrilateral plate bending element for the

analysis of thin and moderately thick plates using IFM and compared the results with those obtained

from similar displacement based quadrilateral plate bending finite elements.

Research on thin (Kirchhoff theory) and moderately thick (Mindlin-Ressner theory) plates has

attracted large community of research engineers and scientists for the past few decades. The

Kirchhoff plate theory based plate bending elements consider C1 continuity which rather difficult to

adopt for higher order finite elements and neglect the effect of shear. However the Mindlin-

Reissner theory based plate bending elements consider C0 continuity, accounting effect of shear and

avoid C1 continuity. Quite a many quadrilateral plate bending elements are available in the

literature. Few of them are reported by (Choi and Park 1999, Choi et al. 2002, Kim and Chang-Choi

2005, Kanber et al. 2006, Ozgan et al. 2007, Pian 1964, Tong 1970, Lee et al. 1982. Pian et al.

1982, Wanji et al. 1987, Dimitris et al. 1984, Dar lmaz 2005 and Kutlu Dar lmaz and Nahit

Kumbasar 2006, Spilker 1982, Dhananjaya et al. 2009). Nine-node heterosis plate bending element

is developed by (Huges and Martin 1978). 

Almost void nine-node displacement-based finite element plate bending elements are available in

the literature. Therefore it becomes necessary to develop force-based nine-node plate bending

element for the analysis of thin and moderately thick plate bending problems. It also helps in
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comparing the results of similar other plate bending elements available in the literature. Towards

this goal, this paper proposes a new nine-node Lagrangian quadrilateral plate bending element

(MQP9) to analyze the thin and moderately thick plate bending problems using IFM. The Mindlin-

Reissner theory has been employed in the formulation which accounts for the shear deformation.

This element considers three degrees of freedom namely a transverse displacement and two

rotations at each node. Suitable displacement and stress-resultants fields are chosen over the element

and element equilibrium and flexibility matrices are developed. The shear correction factor as

suggested by Reissner (1945) has been considered in the formulation. Standard plate bending

benchmark problems are analyzed using the proposed element MQP9 via Integrated Force Method.

The results of this element are compared with those of similar displacement based quadrilateral

elements. The results of proposed nine-node plate bending element (MQP9) are also compared with

those of force-based eight-node plate bending element MQP8. The results of MQP9 are also

compared with exact solutions. The proposed nine-node Lagrangian quadrilateral plate bending

element has produced, in general, excellent results and can be successfully used to analyze the thin

and moderately thick plate bending problems accounting shear deformation.

2. Formulation of element equilibrium and flexibility matrices

For the completeness, the basic theory of IFM is given in the appendix A. 

In this section a brief formulation on the development of equilibrium and flexibility matrices of

plate bending element using Integrated Force Method is described. The Mindlin – Reissner theory

has been employed in the formulation. In the Mindlin – Reissner theory, a line that is straight and

normal to mid-surface of the un-deformed plate remain straight but not necessarily normal to the

mid-surface of the deformed plate. This leads to the following definition of the displacement

components u, v, w in the x, y, z Cartesian coordinates system

 (1)

where

x, y are coordinates in the reference mid-surface

z is the coordinate through the thickness of the plate t with -t/2 ≤ z ≤ t/2

w is the transverse (lateral) displacement

θx, θy represent the rotations of the normal in x-z and y-z planes respectively

Engineering strains for the Mindlin-Reissner plate theory can be written as
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The stress - strain relations for an isotropic two-dimensional plate material is given by

 (3)

where  = vector of stress components

 = vector of strain components

[Ccon] = constitutive matrix 

E = Young’s modulus; ν = Poisson’s ratio

The stress-resultants for plates can be written as

(4)

Eqs. (2), (3) and (4) yield the moment-curvature relations as

  (5)

Where{M} = vector of stress-resultants

[C1] = matrix relating stress-resultants to curvatures

{k} = vector of curvatures

From the Eq. (5), the curvature-moment relations can be written as
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where 

            = matrix relating curvatures to stress-resultants 

σ{ } Ccon[ ] ε{ }=

σ{ } σs   σy   τxy   τyz   τxz[ ]T=

ε{ } εx   εy   γxy   γyz   γzx[ ]T=

E

1 ν
2

–( )
-----------------

1 ν 0 0 0

ν 1 0 0 0

0 0
1 ν–( )
2

--------------- 0 0

0 0 0
1 ν–( )
2

--------------- 0

0 0 0 0
1 ν–( )
2

---------------

=

Mx zσx zd
 t 2⁄–

 t 2⁄

∫=

My zσy zd
 t 2⁄–

 t 2⁄

∫=

Mxy zτxy zd
 t 2⁄–

 t 2⁄

∫=

Qy τyz zd
 t 2⁄–

 t 2⁄

∫=

Qx τxz zd
 t 2⁄–

 t 2⁄

∫=

M{ } C1[ ] k{ }=

Mx   My   Mxy   Qy   Qx[ ]T=

∂θx

∂x
-------- 

∂θy

∂y
-------- 

∂θx

∂y
--------

∂θy

∂x
--------+  θy

∂w
∂y
-------–  θx

∂w
∂x
-------–

T

=

k{ } C1[ ] 1–
M{ } H[ ] M{ }= =

H[ ] C1[ ] 1–
=



New nine-node Lagrangian quadrilateral plate element based on Mindlin-Reissner theory using IFM 209

The matrix [H] for the Mindlin - Reissner plate with Reissner's shear correction factor (Reissner

1945) of 5/6 can be written as

 (7)

where 

The strain energy Up of the elastic plate in bending and shear is written as 

 (8)

The vectors {M} and {k} for a discrete plate bending element can be expressed in matrix notations in

terms of assumed stress-resultants and displacement fields respectively as

  (9)

(10)

 where

[ψ] = matrix of polynomial terms for stress-resultant fields

[Fe] = vector of force components of the discrete element
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[A] = matrix formed by substituting the coordinates of the element nodes into the polynomial of

displacement fields
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{Xe} = vector of displacements of the discrete element

[Dop]= differential operator matrix 
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expressed as

(11)

where [Be] represents the element equilibrium matrix and is given by

 (12)

The complementary strain energy for the elastic plate in bending and shear is expressed as

Using the Eq. (7), the complementary strain energy for the discrete element is written as

 (13)

where [Ge] represents the element flexibility matrix and is given by

 (14)

The Eqs. (12) and (14) are used to obtain element equilibrium matrix [Be] and element flexibility

matrix [Ge] respectively. These element matrices [Be] and [Ge] of all elements are assembled to

obtain the global equilibrium matrix [B] and global flexibility matrix [G] of the structure and they

are used to setup the IFM governing equation to analyze the plate problems by IFM.

2.1 Displacement and stress-resultant fields

The assumed polynomials for displacement fields should satisfy the convergence requirements.

Displacement fields for Kirchhoff theory based plate bending elements should satisfy the C1

continuity while that for the Mindlin-Reissner theory based plate bending elements should satisfy

the C0 continuity. The single displacement field w representing transverse displacement is enough in

the Kirchhoff theory based plate bending elements as other two rotations θx and θy are expressed in

terms of the transverse displacement w itself. However independent displacement fields are required

to be assumed for transverse displacement w and rotations for θx and θy to satisfy the C0 continuity,

in the Mindlin-Reissner plate theory.

The IFM allows describing polynomials for stress-resultant fields. The stress-resultant fields

should be expressed in polynomial terms along with generalized force parameters/components. The
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Fig. 1 A typical nine-node Lagrangian quadrilateral plate bending element
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assumed stress-resultant fields should satisfy the plate equilibrium equations. Further the generalized

force parameters/components in stress-resultant fields should be independent of each other which

ensure the kinematic stability of the element model in IFM.

A typical nine-node Lagrangian quadrilateral plate bending element is shown in the Fig. 1. Three

degrees of freedom namely, the transverse displacement (w) and two rotations (θx and θy) are

considered at each node of this element. The Eq. (15) show the assumed independent displacement

fields for the transverse displacement (w) and two rotations (θx and θy).

(15)

Eq. (16) shows the assumed stress-resultant fields in terms of generalized independent forces

F1,F2 … F24 for this 9-node Lagrangian quadrilateral plate bending element.

 (16)

Substituting displacement and stress-resultant fields given by Eqs. (15) and (16) along with the

Eq. (7) into Eqs. (12) and (14), element equilibrium and flexibility matrices for this nine-node

Lagrangian element are obtained

3. Numerical tests and discussions

The performance of the proposed element MQP9 is illustrated by analyzing the following standard

benchmark plate bending example problems available in the literature.

1. A square thin plate (t/L = 0.01) with simply supported/clamped boundary conditions subjected

to uniform load/central point load. The parameters of the problem are: size of the

plate = 100 × 100, t = 1, E = 1 × 107, ν = 0.3, q = 10, P = 400 (Spilker 1982).

2. A rectangular thin plate (aspect ratio = 2 or 3) with simply supported/clamped boundary

conditions subjected to uniform load. The parameters of the problem are: size of the

plate = 200 ×  100 or 300 × 100, t = 1, E = 1 × 107, ν = 0.3, q = 10. (Spilker 1982).

3. A square moderately thick plate (t/L = 0.1) with simply supported/clamped boundary conditions

subjected to uniform load/central point load. The parameters of the problem are: size of the

plate = 100 × 100, t = 10, E = 2 × 105, ν = 0.3, q = 10, P = 400.

4. The Morley's plate problem (Fig. 2) - the parameters of the problems are: L = 100, B = 100, t =

1, E = 1.092 × 106, ν = 0.3 and q = 1, inclination of the plate θ = 300, w = 0 on all boundaries

(Morley 1963).

5. The Razzaque's plate problem (Fig. 3). The parameters of the problems are: L = 100, B = 100, t
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= 1, E = 1.092 × 106, ν = 0.3 and q = 1, inclination of the plate θ = 600 (Razzaque 1973).

These example problems are analyzed for different grid sizes using the proposed element MQP9

to estimate central deflections and bending moments. The results of the proposed element MQP9

are compared with those of displacement-based similar quadrilateral plate bending elements QH1,

QH2, QH3 and QH4 available in literature (Spilker 1982), and those computed using similar

elements in commercial software packages NISA (NISA version 9.3). The results are also compared

with those from force-based 8-node quadrilateral plate bending element MQP8 (Dhananjaya et al.

2009). The results are also compared with the exact solutions given in the references (Timoshenko

1957, Jane and Tessler 2000) for thin plates and moderately thick plates respectively. The exact

solutions for central deflection and bending moment of square plates are given in the Table B1

(Appendix B, (Jane and Tessler 2000)). The results of the proposed element MQP9 for skew plates

with various boundary conditions are compared with the exact solutions given in references (Morley

1963, Razzaque 1973).

Due to symmetry of the plate, loading and boundary conditions, the square or rectangular thin/

Fig. 2 Morley’s plate: L = 100, B = 100, t = 1, E = 1.092 × 106,
ν = 0.3 and q = 1, inclination of the plate θ = 300,
w = 0 on all sides of the plate

Fig. 3 Razzaque’s plate: L = 100, B = 100, t = 1,
E = 1.092 × 106, ν = 0.3 and q = 1, inclina-
tion of the plate θ = 600 (Two opposite
edges simply supported while other two
free)

Fig. 4 A typical mesh (2 × 2) in one quadrant of the rectangular plate
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thick plate example problems 1-3 are analyzed considering one quadrant of the plate. A typical

mesh (2 × 2) in one quadrant of the plate for the element MQP9 is shown in the Fig. 4. 

3.1 Square thin plate problems (Example Problem 1)

Normalized central deflections and moments for a simply supported square thin (t/L = 0.01) plate

subjected to uniform load (example problem 1) are summarized in the Tables 1 and 2 respectively.

The corresponding converging trends are shown in Figs. 5 and 6 respectively. 

Tables 3 and 4 respectively show normalized central deflections and moments for a clamped

square thin (t/L = 0.01) plate subjected to uniform load (example problem 1). The corresponding

Table 1 Normalized central deflection for simply supported thin square plate with uniform load (Example
Problem 1) (t/L = 0.01)

Elements QH1 QH2 QH3 QH4 MQP8 MQP9

1 × 1 0.955 0.890 0.900 0.835 0.954 0.981

2 × 2 1.000 0.985 0.990 0.980 1.000 1.000

3 × 3 1.000 0.990 0.990 0.990 1.000 1.000

4 × 4 1.000 0.990 0.990 0.990 1.000 1.000

Table 2 Normalized central moment for simply supported thin square plate with uniform load (Example
Problem 1) (t/L = 0.01)

Elements QH1 QH2 QH3 QH4 MQP8 MQP9

1 × 1 0.580 0.560 0.640 0.700 0.475 0.871

2 × 2 0.980 1.015 0.965 1.010 1.010 1.022

3 × 3 0.990 1.030 0.985 1.006 1.006 0.997

4 × 4 0.990 1.020 0.990 1.006 1.006 1.001

Table 3 Normalized central deflection for clamped thin square plate with uniform load (Example Problem 1)
(t/L = 0.01)

Elements QH1 QH2 QH3 QH4 MQP8 MQP9

1 × 1 1.170 0.900 0.990 0.440 1.153 1.099

2 × 2 0.990 0.955 0.940 0.830 0.994 1.010

3 × 3 1.000 0.980 0.985 0.935 1.003 1.005

4 × 4 1.000 0.990 0.990 0.970 1.003 1.003

Table 4 Normalized central moment for clamped thin square plate with uniform load (Example Problem 1) (t/L =
0.01)

Elements QH1 QH2 QH3 QH4 MQP8 MQP9

1 × 1 0.950 0.570 0.790 0.940 0.836 0.707

2 × 2 0.820 0.780 0.730 0.870 0.790 1.033

3 × 3 0.990 0.990 0.980 0.990 0.970 0.992

4 × 4 0.990 1.010 0.980 0.990 0.980 0.996
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converging trends are shown in Fig. 7 and 8 respectively.

Normalized central deflections for simply supported thin square (t/L = 0.01) plate and clamped

thin square (t/L = 0.01) plate with central point load (example problem 1) are summarized in Tables

5 and 6. The corresponding converging trends are shown in Figs. 9 and 10. 

The results of the proposed element MQP9 in Tables 1-6 are better, in general, compared to all

other elements QH1, QH2, QH3, QH4 and MQP8. Figs. 5-10 indicate that results of MQP9 are fast

converging to the exact solutions. 

Fig. 5 Normalized central deflection for simply supported thin square plate with uniform load (t/L = 0.01,
Example Problem 1)

Fig. 6 Normalized central moment for simply supported thin square plate with uniform load (t/L = 0.01,
Example Problem 1)
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Fig. 7 Normalized central deflection for clamped thin square plate with uniform load (t/L = 0.01, Example
Problem 1)

Fig. 8 Normalized central moment for clamped thin square plate with uniform load (t/L = 0.01, Example
Problem 1)

Table 5 Normalized central deflection for simply supported thin square plate with central point load (Example
Problem 1) (t/L = 0.01)

Elements QH1 QH2 QH3 QH4 MQP8 MQP9

1 × 1 0.96 1.06 0.93 0.76 0.963 1.125

2 × 2 1.00 1.02 1.00 0.93 1.001 1.023

3 × 3 1.00 1.01 1.00 0.95 1.001 1.008

4 × 4 1.00 1.00 1.00 0.97 1.000 1.007
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Table 6 Normalized central deflection for clamped thin square plate with central point load (Example Problem 1)
(t/L = 0.01)

Elements QH1 QH2 QH3 QH4 MQP8 MQP9

1 × 1 1.15 1.28 1.10 0.505 1.154 1.251

2 × 2 1.00 1.04 0.98 0.81 1.002 1.051

3 × 3 1.01 1.03 1.00 0.92 1.009 1.021

4 × 4 1.01 1.02 1.01 0.96 1.009 1.018

Fig. 9 Normalized central deflection for simply supported thin square plate with central point load (t/L =
0.01, Example Problem 1)

Fig. 10 Normalized central deflection for clamped thin square plate with central point load (t/L = 0.01,
Example Problem 1)
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3.2 Rectangular thin plate problems with aspect ratio 2 and 3 (Example Problem 2)

Normalized central deflections and moments for a simply supported rectangular thin plate with the

aspect ratio 2, subjected to uniform load (example problem 2) are summarized in the Tables 7-9.

The corresponding converging trends are shown in Figs. 11-13.

Tables 10 and 11 respectively show normalized central deflections for a simply supported and

clamped thin rectangular plate with the aspect ratios 3 subjected to uniform load (example problem

2). The corresponding converging trends are depicted in Figs. 14 and 15 respectively. Here also

Tables 7-11 and corresponding Figs. 11-15 indicate that the proposed element MQP9 performs

better, in general, compared to other elements considered.

3.3 Square thick plate problem (Example Problem 3)

Central deflections and moments for a simply supported square thick (t/L = 0.1) plate subjected to

uniform load (example problem 3) are given in the Tables 12 and 13 respectively. The corresponding

converging trends are shown in Figs. 16 and 17 respectively.

Tables 14 and 15 respectively show central deflections and moments for a clamped square thick (t/L

= 0.1) plate subjected to uniform load (example problem 3). The corresponding converging trends

Table 7 Normalized central deflection for a simply supported thin rectangular plate (aspect ratio = 2) with
uniform load (Example Problem 2) 

Elements QH1 QH2 QH3 QH4 MQP8 MQP9

1 × 1 0.975 0.870 0.910 0.855 0.960 0.975

2 × 2 1.000 0.990 1.010 0.980 1.000 0.999

3 × 3 1.000 1.000 1.000 0.990 1.000 1.002

4 × 4 1.000 1.000 1.000 0.995 1.000 1.000

Table 8 Normalized central moment Mx for a simply supported thin rectangular plate (aspect ratio = 2) with
uniform load (Example Problem 2)

Elements QH1 QH2 QH3 QH4 MQP8 MQP9

1 × 1 0.720 1.800 1.020 1.090 0.410 1.079

2 × 2 1.040 1.550 0.970 0.980 0.940 0.922

3 × 3 1.020 1.140 0.980 0.985 0.970 0.983

4 × 4 1.010 1.090 0.990 0.990 0.980 1.002

Table 9 Normalized central moment My for a simply supported thin rectangular plate (aspect ratio = 2) with
uniform load (Example Problem 2)

Elements QH1 QH2 QH3 QH4 MQP8 MQP9

1 × 1 0.640 0.860 0.890 0.690 0.520 0.852

2 × 2 1.080 1.060 1.070 1.100 1.010 1.028

3 × 3 1.020 1.025 1.025 1.030 1.000 1.001

4 × 4 1.010 1.015 1.015 1.020 1.000 1.000
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are shown in Figs. 18 and 19 respectively.

In both the above cases, the proposed element MQP9 has performed better, in general, compare to

other elements considered.

Fig. 11 Normalized central deflection for a simply supported thin rectangular plate (aspect ratio = 2) with
uniform load (t/L = 0.01, Example Problem 2)

Fig. 12 Normalized central moment Mx for a simply supported thin rectangular plate (aspect ratio = 2) with
uniform load (t/L = 0.01, Example Problem 2)
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3.4 Morley's plate problem (Example Problem 4)

The central deflections of the Morley's plate (skew plate, θ = 300, example problem 4) for various

grid sizes, subjected to uniform load are plotted and converging trends are shown in Fig. 20. The

proposed element MQP9 is found to be converging continuously faster towards the exact solution.

Fig. 13 Normalized central moment My for a simply supported thin rectangular plate (aspect ratio = 2) with
uniform load (t/L = 0.01, Example Problem 2)

Table 10 Normalized central deflection for a simply supported thin rectangular plate (aspect ratio = 3) with
uniform load (Example Problem 2)

Elements QH1 QH2 QH3 QH4 MQP8 MQP9

1 × 1 1.020 0.865 0.920 0.890 0.990 1.016

2 × 2 1.006 1.075 1.028 0.980 1.000 0.998

3 × 3 1.000 1.006 1.008 0.985 1.000 1.001

4 × 4 1.000 1.000 1.000 0.990 1.000 1.000

Table 11 Normalized central deflection for a clamped thin rectangular plate (aspect ratio=3) with uniform load
(Example Problem 2)

Elements QH1 QH2 QH3 QH4 MQP8 MQP9

1 × 1 1.19 1.10 1.08 0.82 0.90 1.044

2 × 2 1.09 1.05 0.97 0.81 0.90 1.008

3 × 3 1.05 1.00 0.94 0.85 1.01 1.009

4 × 4 1.02 0.99 0.97 0.89 1.01 1.007
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3.5 Razzaque's plate problem (Example Problem 5)

Central deflections for various grid sizes of the Razzaque's plate (skew plate, θ = 600, example

problem 5) subjected to uniform load are plotted and converging trends are shown in Fig. 21. The

Fig. 21 indicates that the proposed element MQP9 is converging faster towards the exact solution.

Fig. 14 Normalized central deflection for a simply supported thin rectangular plate (aspect ratio = 3) with
uniform load (t/L = 0.01, Example Problem 2)

Fig. 15 Normalized central deflection for a clamped thin rectangular plate (aspect ratio = 3) with uniform load
(t/L = 0.01, Example Problem 2)
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3.6 Shear locking test

To study the shear locking behavior of the proposed element MQP9, the square plate of various

thickness-span ratios (t/L = 0.00001, 0.0001, 0.001, 0.01 and 0.1) with simply supported and clamped

boundary conditions subjected to uniform load is considered. The parameters of the problem

Table 12Central deflection for simply supported thick square plate with uniform load
(Example Problem 3)

Elements MQP9 NISA

2 × 2 0.2288 0.2217

4 × 4 0.2333 0.2331

6 × 6 0.2334 0.2333

8 × 8 0.2334 0.2333

Exact 0.2331

Table 13 Central moment for simply supported thick square plate with uniform load
(Example Problem 3)

Elements MQP9 NISA

2 × 2 4123.60 6703.07

4 × 4 4883.05 5162.60

6 × 6 4824.50 4946.61

8 × 8 4794.32 4875.57

Exact 4790.00

Fig. 16 Central deflection for simply supported thick square plate with uniform load (t/L = 0.1, Example
Problem 3)
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considered are: L = 50, B = 50, t = 5, 0.5, 0.005, 0.005, 0.0005, E = 2 × 105, ν = 0.3, q = 1 and

P = 10. One quadrant of this plate problem is analyzed using proposed element MQP9 for the mesh

size (4 × 4) to estimate the central deflections and moments. The exact central deflections and

moments are calculated from the Kirchhoff theory (Timoshenko and Krieger 1959) and Mindlin

theory (Jane and Tessler 2000, Table B1) solutions for thin and moderately thick plate bending

Fig. 17 Central moment for simply supported thick square plate with uniform load (t/L = 0.1, Example
Problem 3)

Table 14 Central deflection for clamped thick square plate with uniform load 
(Example Problem 3)

Elements MQP9 NISA

2 × 2 0.0866 0.0956

4 × 4 0.0824 0.0820

6 × 6 0.0823 0.0822

8 × 8 0.0822 0.0822

Exact 0.0819

Table 15 Central moment for clamped thick square plate with uniform load
 (Example Problem 3)

Elements MQP9 NISA

2 × 2 1690.80 4875.00

4 × 4 2400.75 2735.18

6 × 6 2347.12 2484.82

8 × 8 2328.2 2408.99

Exact 2310.0
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problems respectively. The central deflections and moments of simply supported plate with uniform

for various thickness-span ratios by the proposed element are plotted in the Figs. 22 and 23

respectively. Figs. 24 and 25 respectively show central deflections and moments for the clamped

plate subjected to uniform load. The results indicate that the proposed element MQP9 is free from

the shear locking and performs excellent in both thin and moderately thick plate bending situations.

In all the example problems 1-5, Tables 1-15 and Figs. 5-25 indicate that the proposed nine-node

Lagrangian quadrilateral plate bending element (MQP9) has yielded, in general, excellent results.

These results of MQP9 are compared with those of similar displacement-based quadrilateral plate

Fig. 18 Central deflection for clamped thick square plate with uniform load (t/L = 0.1, Example Problem 3)

Fig. 19 Central moment for clamped thick square plate with uniform load (t/L = 0.1, Example Problem 3)
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Fig. 20 Central deflection for Morley’s plate (Example
Problem 4)

Fig. 21 Central deflection for Razzaque’s plate (Example
Problem 5)

Fig. 22 Normalized central deflections of simply
supported plate with uniform load for various
thickness-span ratios (t/L = 0.00001, 0.0001,
0.001, 0.01 and 0.1)

Fig. 23 Normalized central moments of simply supported
plate with uniform load for various thickness-
span ratios (t/L = 0.00001, 0.0001, 0.001,
0.01 and 0.1)

Fig. 24 Normalized central deflections of simply supported
plate with uniform load for various thickness-span
ratios (t/L= 0.00001, 0.0001, 0.001, 0.01 and 0.1)

Fig. 25 Normalized central moments of clamped plate
with uniform load for various thickness-span
ratios (t/L= 0.00001, 0.0001, 0.001, 0.01 and 0.1)
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bending elements QH1, QH2, QH3, QH4 and NISA8 (from NISA commercial software version 9.3)

considered from literature. The results of MQP9 are also compared with those of 8-node force-

based quadrilateral plate bending element MQP8. These results are better, in general, compare to 8-

node force-based quadrilateral plate bending element MQP8 and other displacement-based quadrilateral

plate bending elements considered. The results of proposed nine-node Lagrangian quadrilateral plate

bending element (MQP9) are also compared with exact solutions. These results of proposed element

MQP9 are fast converging to the exact solutions. 

4. Conclusions

Based on the Mindlin-Reissner theory, a new nine-node Lagrangian quadrilateral plate bending

element (MQP9) has been proposed using Integrated Force Method to analyze the thin and

moderately thick plate bending problems. The proposed element MQP9 considers three degrees of

freedom namely a transverse displacement w and two rotations (θx and θy) at each node.

Various standard plate bending benchmark problems have been analyzed using this new proposed

element (MQP9) via Integrated Force Method. The proposed element (MQP9) has yielded, in

general, the excellent results in all the example problems considered and in comparison these results

are better than the displacement-based similar quadrilateral plate bending elements considered from

literature, Results of the proposed element (MQP9) are also better, in general, than force-based eight

node quadrilateral plate bending element (MQP8). 

Further the proposed element MQP9 is free from spurious energy modes and it does not lock

under thin plate bending situations. Hence the same element can be used to analyze both thin and

moderately thick plate bending problems. This proposed new nine-node Lagrangian quadrilateral

plate bending element (MQP9) becomes an alternative higher order force-based plate bending

element to analyze thin and moderately thick plate bending problems and to compare results of

displacement-based similar elements available in the literature.
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Notations

[A] = matrix relating nodal degrees of freedom and coefficients of the polynomial
[B] = global equilibrium matrix (m × n)
[Be] = element equilibrium matrix (me × ne)
[C] = compatibility matrix (r × n)
D = flexural rigidity of the plate 
[Dop] = differential operator matrix
E = Young's modulus
{F} = vector of internal forces of the structure (n × 1)
{Fe} = vector of internal forces of the discrete element (ne × 1)
[G] = global flexibility matrix (n × n)
[Ge] = element flexibility matrix (ne × ne)
[H] = matrix relating the curvatures to stress resultants
[J] = deformation coefficient matrix (m × n)
L, B = length and breadth of the plate
Mc = central moment of the plate
{M} = vector of stress resultants
P = point load at the center or tip of the plate
{P} = vector of external loads (m × 1)
q = uniform load over the plate
[S] = IFM governing matrix (n × n)
Wc = Central deflection of the plate
{X} = vector of displacements of the structure (m × 1)
{Xe} = vector of displacements of the discrete element (me × 1)
{k} = vector of curvatures
n, m = force and displacement degrees of freedom of the structures respectively
ne, me = element force and displacement degrees of freedom respectively
t = thickness of the plate
{α} = generalized coordinates of the polynomial in the displacement field.
{β} = vector of elastic deformations
{βo} = vector of initial deformations
ν = Poisson's ratio
[φ1] = matrix of polynomial terms for displacement fields
[ψ] = matrix of polynomial terms for stress-resultants fields
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Appendix A: Basic Theory of IFM

In the Integrated Force Method of analysis, a structure idealized by finite elements is designated as “struc-
ture (n, m)”, where n and m are force and displacement degrees of freedom of the discreet model, respectively.
The ‘structure (n, m)’ has m equilibrium equations (EE) and r = (n-m) compatibility conditions (CC).
The equilibrium equation (EE) represents the vectorial summation of the internal forces {F} to the external

loads {P} at the nodes of the finite element discretization. It can be written in symbolized matrix notation as:
Equilibrium Eqs. (EE)

[B]{F} = {P}  (A.1)

where

[B] = global equilibrium matrix (m × n)
{F} = vector of internal forces of the structure (n × 1)
{P} = vector of external loads on the structure (m × 1)

The compatibility conditions (CC) are constraints on strains, and for finite element models they are also
constraints on member deformations.
In IFM St. Venant’s approach has been extended for discrete mechanics to develop the compatibility condi-

tions. Development of CC is briefly explained below:
The Deformation-Displacement Relationship (DDR) for discrete mechanics is equivalent to the strain-dis-

placement relationship in elasticity. The DDR for discrete analysis was obtained during the development of
the variational energy formulation for the IFM.
According to work energy-conservation theorem, the internal energy (IE) stored in the structure is equal to

the work done by the external load (WD), that is

I E = W D

(A.2)

where {X} represents nodal displacements. Eq. (A.2) can be rewritten by eliminating the load {P} in favor of
forces {F}, by using Eq. (A.1) to obtain the following relation

(A.3)

Eq. (A.3) can be simplified as

(A.4)

Because the n forces can be arbitrary and {F} is not a null vector, its coefficient should be zero, which
yields the DDR as 

(A.5)

where {β} are member deformations.
This equation represents the Deformation-Displacement Relations (DDR) for the discrete structure. The

elimination of m displacements from n deformations displacement relations given by the above equation
yields r = (n − m) compatibility conditions and the associated matrix [C]. It can be symbolized in matrix nota-
tions as 

(A.6)

where [C] is the (r × n) compatibility matrix. It is a kinematic relationship, and is independent of design
parameters, material properties and external loads. This matrix is rectangular and banded. The deformation

1

2
--- F{ }T β{ } 1

2
--- P{ }T

X{ }=

1

2
--- F{ }T

B[ ]T X{ } 1

2
--- F{ }T

β{ }=

1

2
--- F{ }T

B[ ]T X{ } β{ }–[ ] 0=

β{ } B[ ]T X{ }=

C[ ] β{ } 0=
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{β} in the compatibility conditions (CC) given by the Eq. (A.6) represents the total deformation consisting of
an elastic component {βe} and the initial component {βo} as 

(A.7)

The CC in terms of elastic deformation can be written as 

(A.8)

where

(A.9)

Using element flexibility characteristics, Eq. (A.6) with initial deformation can be rewritten as 

(A.10)

Clubbing of Eq. (A.1) and Eq. (A.10) will lead to the IFM governing equation as 

(A.11)

The solution of the Eq. (A.11) yields n forces {F}. The m displacements {X} are obtained from the forces
{F} by back substitution as 

(A.12)

where [J] = m rows of [[S]−1]T.

Appendix B: The exact solutions for central deflection and bending moment of

square plates 

The exact solutions for central deflection and bending moment of square plates are given in the Table B1.

Table B1 The exact solutions for central deflection and bending moment of plates 

Boundary conditions and loading Wthin Wmind Mthin/mind

Simply supported with central point load 0.011603PL2/D -------- --------

Clamped with central point load 0.005595PL2/D -------- --------

Simply supported with uniform load 0.004066qL4/D 0.004270 qL4/D 0.0479 qL2

Clamped with uniform load 0.001264PL4/D 0.001500 qL4/D 0.0231 qL2

β{ } βe{ } βo{ }+=

C[ ] β{ } C[ ] βe{ } C[ ] βo{ }+=

C[ ] βe{ } δR{ }=

δR{ } C[ ] βo{ }–=

C[ ] G[ ] F{ } δR{ }=

B[ ]

C[ ] G[ ]
F{ }

P

δR⎩ ⎭
⎨ ⎬
⎧ ⎫

=

S[ ] F{ } P*{ }=

X{ } J[ ] G[ ] F{ } βo{ }+{ }=




