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Abstract. This paper addresses the finite strip formulations for the stability analysis of viscoelastic
composite plates with variable thickness in the transverse direction, which are subjected to in-plane forces.
While the finite strip method is fairly well-known in the buckling analysis, hitherto its direct application
to the buckling of viscoelastic composite plates with variable thickness has not been investigated. The
equations governing the stiffness and the geometry matrices of the composite plate are solved in the time
domain using both the higher-order shear deformation theory and the method of effective moduli. These
matrices are then assembled so that the global stiffness and geometry matrices of a moderately thick
rectangular plate are formed which lead to an eigenvalue problem that is solved to determine the
magnitude of critical buckling load for the viscoelastic plate. The accuracy of the proposed model is
verified against the results which have been reported elsewhere whilst a comprehensive parametric study
is presented to show the effects of viscoelasticity parameters, boundary conditions as well as combined
bending and compression loads on the critical buckling load of thin and moderately thick viscoelastic
composite plates.

Keywords: buckling; effective moduli; shear deformation; viscoelasticity; variable thickness; finite strip
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1. Introduction

Advanced composite plates are extensively used in industrial structures, such as aircraft, marine

vessels etc. Because of viscoelastic properties of such materials, demand for using the linear

viscoelastic theory has grown rapidly in recent years. As a result of memory effect of viscoelastic

composite materials, buckling response of such materials depends on the time parameter

(Christensen 1982).

Przemieniecki (1973) presented a finite element method for the local buckling analysis of thin

plates. His proposed formulations led to the standard eigenvalue equations from which, the bucking

stresses were determined. The critical buckling load for simply supported viscoelastic plates

subjected to the biaxial in-plane forces was determined by Wilsom and Vinson (1984). The quasi-

static stability analysis of fiber-reinforced viscoelastic composite plates subjected to in-plane edge

load systems was investigated by Zenkour (2004). The study was based on the transverse shear
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deformation effects and the effective moduli while the solution concerned the determination of the

critical in-plane edge loads associated with the asymptotic instability of plates. The three

dimensional linearised theory of stability of deformable solid body mechanics was developed by

Akbarov et al. (2001) and Akbarov (2007) in which the three-dimensional stability loss problem of

a viscoelastic composite plate was presented using semi-analytical finite element method and

Laplace transformation. They assumed the plate was clamped at longitudinal edges and was simply

supported at the loaded edges while all procedures were made on the plate from the composite

material that was modelled as homogenous anisotropic linear viscoelastic material with normalised

mechanical properties. Wang and Wang (2008) presented the differential equations of motion of the

viscoelastic plate with variable thickness that was based on the thin-plate theory and the two-

dimensional viscoelastic differential constitutive relation. The general eigenvalue equations of the

viscoelastic plate with multiple cracks under different boundary conditions were calculated while the

effects of various geometric parameters, dimensionless delay time and dimensionless crack

parameters on the transverse vibration characteristics of a viscoelastic plate containing multiple all-

over part-through cracks were analysed. Reddy and Phan (1985) developed a higher-order shear

deformation theory to determine the natural frequencies and buckling loads of elastic plates in

which the proposed theory took into account the parabolic distribution of the transverse shear strains

through the thickness of the plate and rotary inertia. It was shown that the exact proposed solutions

for simply supported plates agree well with the exact solutions of three-dimensional elasticity

theory, the first-order shear deformation theory, and the classical plate theory. Buckling and

vibration of rectangular composite viscoelastic sandwich plates under thermal loads were investigated

by Vangipuram and Ganesan (2007) while the temperature dependence of viscoelastic core

properties and effects of pre-stresses were taken into account. 

 A thick finite strip method was applied by Hinton (1977) to the problem of flexure of composite

laminates that was based on Mindlin’s plate theory which took account of transverse shear

deformation. While a good agreement was reported between the results from the three-dimensional,

thick plate and thick finite strip analyses, it was found that in some cases thin plate theory appears

to be inadequate. Eisenberger and Alexandrov (2003) presented the biaxial buckling loads of

variable thickness thin isotropic elastic plates with combinations of boundary conditions, using the

extended Kantorovich method where the thickness varied in the directions parallel to the two sides

of the plate. The buckling load was found as the in-plane load that made the determinant of the

stiffness matrix equal to zero. Azhari et al. (2004) investigated the inelastic local buckling of flat

plate structures containing variable thickness plates, using the semi-analytical complex finite strip

method that was augmented with transverse bubble functions. Stiffness and stability matrices, which

were based on the deformation theory of plasticity, were derived for inclusion in the finite strip

method. The inelastic local buckling of tapered plates subjected to compression and shear with

different boundary conditions was investigated and the developed methodology was applied to the

inelastic local buckling of channel sections with tapered flanges and stiffened plates with variable

thickness and different geometries. An analysis of the local buckling of composite laminated plates

and folded plate assemblies subjected to arbitrary loading was presented by Azhari et al. (2000).

The analysis used the spline finite strip method, which utilised β3- spline functions for the

longitudinal variation of buckling displacements, and an interpolation of Hermitian polynomials for

the buckling displacements in the transverse direction. The method was programmed to study the

local buckling of laminated flat plates and L-sections. Hatami et al. (2008) developed an exact finite

strip method for the free vibration analysis of axially moving viscoelastic plates. Using the
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differential equation that governed the vibration of plates travelling at a constant axial speed, and

utilising the rheological models to model the viscoelastic behaviour of materials, the exact stiffness

matrix of a finite strip of plate was extracted in the frequency domain. By assembling the stiffness

matrices of the finite strips, the global stiffness matrix of a plate moving on intermediate rollers was

obtained, from which the eigenvalues defining the free vibration of the plate were extracted within

the domain of complex numbers, while the effects of axial speed and viscoelastic parameters on the

free vibration of moving plates were examined. 

Designing structures using the variable thickness plate may result in lighter structures, so it can be

used for cases where weight is an important factor such as space structures, aircrafts and so on.

While the finite strip method is fairly well-known in buckling analysis and has been developed for

different application (Azhari et al. 2004, Hatami et al. 2008, Azhari and Bradford 1993, Heidarpour

and Bradford 2007, 2008), hitherto its direct application to the buckling of viscoelastic composite

plates with variable thickness has not been investigated, and therefore in this paper the finite strip

formulations are developed to investigate the buckling behaviour of variable thickness viscoelastic

composite rectangular plates subjected to in-plane loading. Utilising the higher-order shear deformation

theory and method of effective moduli, the stiffness and the geometry matrices are determined. The

critical buckling load of a rectangular plate with linearly variable thickness in the transverse

direction is determined by solving the eigenvalue problems related to the global matrices, and the

effect of combined bending and compression loads on the critical buckling load is investigated.

2. Theoretical model

2.1 General

The basic constitutive relation for a linear viscoelasticity is expressed as (Shinuk 2009)

 (1)

where  and  are the tensors of stress and strain respectively that are functions of time t,

λ and µ are the material properties which depend on the time parameter τ and the dot superscript

represents the derivation respect to time. It is further assumed that the viscoelastic composite plate

is made up of two phases; phase 1 which is an elastic material and is used as the reinforcement, and

phase 2 which is either elastic or viscoelastic material and is used as the filler. Er (modulus of

elasticity) and  (Poisson’s ratio) represent the properties of phase 1, while Ef and  represent the

properties of phase 2.

For a moderately thick rectangular plate, normal stress σz in the z direction shown in Fig.1 is small

and negligible. So the stress-strain relationship for a viscoelastic composite plate is expressed as

 s = Ce (2)

where s and e are stress and strain vectors respectively that are given by

 and (3)

 (4)
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In Eq. (2), the square matrix C is the effective modulus tensor that is represented by

 (5)

For a linear isotropic viscoelastic material, the components of tensor C can be obtained from

(Zenkour 2004)

 ;  ;  (6)

in which K is the bulk modulus and  is the relaxation function which is a dimensionless

parameter and is determined from 

 (7)

where c1 and c2 are constants and

 (8)

in which t is the time, ts is the relaxation time. It is worth noting that for a viscoelastic composite

material, the components of tensor C can be also indicated by (Zenkour 2004)

 ; ; ; ; ; (9)

where

;    and (10)

;   and  (11)

;   (12)

In Eqs. (10) to (12) γ is the volume fraction, which is defined as the ratio of the reinforcement

area to the total area of plate at y = 0, and Ef and  are determined in the Laplace domain from

(Zenkour 2004)
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2.2 Higher-order shear deformation

The higher-order shear deformation theory proposed by Reddy (1997) can be expressed by the

following equations

 (15)

 and  (16)

 (17)

In Eqs. (15) to (17) u is in-plane displacement in the x direction, v is in-plane displacement in the

y direction and u0, v0 and w0 represent the magnitudes of mid-plane displacements. w is the

displacement in the z direction and is assumed to be constant over the thickness of the composite

plate, while w0, x and w0, y represent the first derivation of w0 respect to x and y respectively, and ψx

and ψy are rotations of the mid-plane about y and x directions, respectively. In the Eqs. (15) and

(16) h is calculated on the section with variable thickness as

 (18)

in which h1 and h2 are the thicknesses of plate at x = 0 and x = B respectively, where B is the width

of the composite plate.

2.3 Finite strip formulation

The finite strip method is a variant of the finite element method that has been put to highly

effective use in the study of the stability of thin-walled structures and provides an incredibly

powerful simplification to finite element method since in the finite element method the plate must

be subdivided into two perpendicular directions, while the finite strip method replaces numerous

elements by a single strip with limited degrees of freedom. From the other side, in the present

paper, in order to consider the history of local buckling coefficients of viscoelastic composite plates

in Laplace domain, the equations governing the stiffness and geometry matrices of the viscoelastic

composite plate are solved in the time domain for which using finite strip method leads to the less

unknown displacements, and therefore the stability and stiffness matrices given by finite strip

method have less rank in comparison to those given by finite element method.

For the purposes of this paper, rectangular viscoelastic composite plates with variable thickness

are modelled by several finite strips where each strip is assumed to have three nodal lines as

depicted in Fig. 1. Displacement vector of each strip for the mth harmonic can be written as

(Akhras et al. 1993)

 (19) 

in which ui and vi are displacements of the ith nodal line (i = 1 to 3) along x and y directions
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respectively, wi represents the displacement of the ith nodal line (i = 1, 3) in the z direction, ψxi and

ψyi are the rotations of the ith nodal line about y and x axes respectively, and wj, x ( j = 1, 3)

represents the first derivation of wj respect to x. The magnitude of the mid-plane displacements u0,

v0 and w0 can be obtained from interpolation functions so that

 (20)

 and (21)

 (22)

Similarly, the magnitudes of the mid-plane rotations can be determined by 

 and (23)

 (24)

where M is the number of harmonics, L is the length of the strip, and Ni(x) is the shape function in

the x direction for nodal line i, which can be stated in the form of second order Lagrangian

interpolation functions such that

     (25)
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Fig. 1 A typical strip with three nodal lines
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In the Eq. (22) Fi(x) and Hi(x) (i = 1, 3) are the Hermitian interpolation functions in the x direction

for nodal line i, which can be found from

,      (26)

,     (27)

where b is the width of each strip.

The strain-displacement relationship is expressed as

 e = eL + eNL (28)

where eL and eNL are the linear and nonlinear parts of the strain vector, respectively. eL can be stated as

 (29)

in which dm is given by Eqs. (19) and Bm is the strain matrix for the mth harmonic of the strip

which is obtained from

(30)

where , ,  and  in which h is the thickness of the plate

given by Eq. (18).

The nonlinear part of the strain vector, eNL , in Eq. (28) can be found by
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and using the equations proposed by Cheung et al. (1992) leads to

(32)

 (33)

 (34)

where m is the number of the series terms, BGu,m, BGv,m and BGw,m are the strain matrices used to

calculate the geometry matrices for the mth harmonic of the strip. 

The stress matrix σ 0 for a rectangular plate is defined by

 (35)

where  is the compressive stress in the x direction,  is the compressive stress in the y

direction and  is the shear stress as shown in Fig. 2. The stiffness and the geometry matrices of

each strip can be determined using the principle of virtual work such that (Akhras et al. 1994)

 and (36)
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Fig. 2 A typical strip subjected to in-plane stresses
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where n is the number of the series terms and  and  represent the surface of the

composite plate and its thickness domains, respectively.

The stiffness and geometric matrices of each strip given by Eqs. (36) and (37) are then assembled

so that the critical buckling load can be determined from

 (38)

where K is the global stiffness matrix and KG is the global geometry matrix of the viscoelastic

composite plate. It is noted that once the history of local buckling coefficients of plate is solved in

Laplace domain, the time domain is obtained using the inverse Laplace transform, so that the

buckling load in the time domain can be represented by

 (39)

The coefficients fj in Eq. (39) are determined from the equations given in the Appendix.

3. Illustration

The finite strip methodology proposed in the previous section is used to perform a comprehensive

parametric study as described in the following sections. Without loss of generality, the material

properties are assumed as follows for all computations unless otherwise stated

 (40)

where  is the ratio of bulk modulus to the modulus of elasticity ( ). The ratio of width to  the

average thickness of the composite plate (2B/h1 + h2) is assumed to be 10 unless otherwise stated.

Furthermore, it is assumed that the local buckling coefficient of the plate, k, is formulated by

 (41)

where σcr is the critical load determined by solving the eigenvalue problem using Eq. (36) and D is

the flexural rigidity of the fully elastic plate given by

 (42)

where H is the average thickness of the composite plate (i.e., H = (h1 + h2) / 2)

3.1 Verification

The accuracy of the presented model is validated against the available results reported elsewhere.

Tables 1 and 2 present the magnitudes of the local buckling coefficients, k, of uniaxial and biaxial

simply supported square plates (h1 = h2 and B/H = 10) given by Zenkour (2004) in comparison to the

finite strip model proposed in this paper for different values of γ and α where. 
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As it can be seen, for all values of the ratio of the length to the thickness of the composite plate,

the magnitudes of the local buckling coefficients given by the proposed model agree well with the

results obtained from Zenkour’s model (2004).The results shown in Tables 1 and 2 indicate that the

local buckling coefficients increase with the increase of length to thickness ratio, while it is seen

that local buckling coefficients for the case of fully viscoelastic plate (γ = 0) are much greater than

the obtained results for the case of fully elastic plate (γ = 1).

Fig. 3 shows the variation of local buckling coefficients k of simply supported uniaxial rectangular

fully elastic (γ = 1) thin plates for different values of aspect ratio (L/B) given by the proposed model

(solid lines) in comparison to those obtained by Eisenberger and Alexandrov (2003) (broken lines).

It can be seen that the proposed finite strip method is accurate enough to evaluate the magnitude of

local buckling coefficient for rectangular viscoelastic composite plates with variable thickness.

3.2 Parametric study

Fig. 4 shows the local buckling coefficients for a uniaxial viscoelastic square plate with constant

thickness (h = h1 = h2) under combined bending and compression loads. The ratio of width to

thickness is assumed to be B/h = 5 in this case. The distribution of the applied force can be written as

  (43)σy

 
σy

 0
1 r

x

B
---–⎝ ⎠

⎛ ⎞=

Table 1. Local buckling coefficient (k) of a viscoelastic square plate (a = 0)

γ = 1 γ = 0

Proposed model
Zenkour’s model 

(2004)
Proposed model

Zenkour’s model 
(2004)

4 2.809 2.9607 49.3605 52.2070

5 3.1344 3.2653 54.6306 57.0209

10 3.7344 3.7866 64.1333 65.0422

20 3.9296 3.9444 67.1639 67.4184

50 3.9887 3.9910 68.0771 68.1155

L

H
----

Table 2. Local buckling coefficient (k) of a viscoelastic square plate (a = 1)

γ = 1 γ = 0

Proposed model
Zenkour’s model 

(2004)
Proposed model

Zenkour’s model 
(2004)

4 1.3999 1.4804 24.5965 26.1035

5 1.5634 1.6327 27.2480 28.5105

10 1.8658 1.8933 32.0426 32.5211

20 1.9643 1.9722 33.5753 33.7092

50 1.9943 1.9955 34.0375 34.0578

L

H
----
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where 0 ≤ r ≤ 2 is a numerical factor for which when r = 0 the composite plate is subjected to the

uniformly compressive load whereas r = 1 or r = 2 indicate that the composite plate is subjected to

the hydrostatic pressure and pure bending, respectively. Fig. 4 indicates that the magnitude of the

local buckling coefficient increases with the increase of the numerical factor, r, while the highest

values of k occur for a fully viscoelastic plate (γ = 0) and the lowest values occur for a fully elastic

plate (γ = 1).

Fig. 3 Local buckling coefficient, k, of uniaxial fully elastic thin plates (γ = 1) with variable thickness against
the variation of aspect ratio given by proposed model in comparison to Eisenberger and Alexandrov’s
model (2003)

Fig. 4 Local buckling coefficient, k, of uniaxial viscoelastic composite plates with simply supported edges
against the numerical factor r for different values of γ = (α = 0)
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The magnitudes of local buckling coefficients of uniaxial rectangular viscoelastic thin or

moderately thick plates versus aspect ratio for different values of h2/h1 have been depicted in Figs. 5

to 8. It can be seen that for a given value of aspect ratio, the magnitude of local buckling coefficient

k decreases as the ratio of h2/h1 decreases so that the lowest value of k occurs when the thickness of

the plate is constant in the transverse direction. As expected, the local buckling coefficients of fully

viscoelastic plates (γ = 0) are greater than the obtained results for composite viscoelastic plates (0

< γ < 1); however in all cases the magnitude of local buckling coefficient k reaches a constant value

when L/B > 2 whilst the obtained results fluctuate when 0.5 < L/B < 1.5. 

Fig. 5 Local buckling coefficient, k, of simply supported uniaxial viscoelastic thin plates (γ = 0) with variable
thickness against the variation of aspect ratio (α = 0)

Fig. 6 Local buckling coefficient, k, of simply supported uniaxial viscoelastic thin plates (γ = 0.5) with
variable thickness against the variation of aspect ratio (α = 0.5)
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As depicted in Figs. 7 and 8, the magnitude of local buckling coefficient k for viscoelastic

moderately thick plates (H/L > 0.1) does not significantly vary with the value of aspect ratio L/B ≥
1; however, as expected, the viscoelastic moderately thick plates experience higher values of

buckling loads than viscoelastic thin plates.

The effect of boundary condition on the magnitude of local buckling coefficient k of uniaxial

rectangular viscoelastic moderately thick plates (γ = 0.5) for different values of aspect ratio has been

Fig. 7 Local buckling coefficient, k, of simply supported uniaxial viscoelastic moderately thick plates (γ = 0)
with variable thickness against the variation of aspect ratio (α = 0)

Fig. 8 Local buckling coefficient, k, of simply supported uniaxial viscoelastic moderately thick plates
(γ = 0.5) with variable thickness against the variation of aspect ratio (α = 0.5)
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depicted in Figs. 9 to 13 in which the loaded edges are assumed to be simply supported while the

unloaded edges in the longitudinal direction of the viscoelastic composite plate are assumed to be

clamped-clamped (denoted as SSCC), clamped-simply supported (denoted as SSCS), clamped-free

(denoted as SSCF), simply supported-free (denoted as SSSF) or free-free (denoted as SSFF). These

figures indicate that the value of local buckling coefficient decreases as the rigidity of the boundary

condition along the unloaded edges decreases, and therefore the highest local buckling coefficient

occurs when the longitudinal edges are clamped-clamped (Fig. 9) and the lowest local buckling

coefficient occurs when the unloaded edges are free-free (Fig. 13). 

Fig. 9 Local buckling coefficient, k, of SSCC uniaxial viscoelastic moderately thick plates (γ = 0.5) with
variable thickness against the variation of aspect ratio 

Fig. 10 Local buckling coefficient, k, of SSCS uniaxial viscoelastic moderately thick plates (γ = 0.5) with
variable thickness against the variation of aspect ratio 
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Unlike the fully simply supported moderately thick viscoelastic composite plates (Fig. 8), the

magnitude of local buckling coefficient k varies significantly when at least one longitudinal edge of

the composite plate is free and L/B ≤ 2, as depicted in Figs. 11 to 13; however for higher values of

aspect ratio, the variation of plate thickness or the value of aspect ratio have no significant effect on

the magnitude of buckling load as depicted in Figs. 11 to 13. 

Fig. 11 Local buckling coefficient, k, of SSCF uniaxial viscoelastic moderately thick plates (γ = 0.5) with
variable thickness against the variation of aspect ratio 

Fig. 12 Local buckling coefficient, k, of SSSF uniaxial viscoelastic moderately thick plates (α = 0.5) with
variable thickness against the variation of aspect ratio 
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4. Conclusions

The stability analysis of viscoelastic composite plates with variable thickness in the transverse

direction was studied using the finite strip method. The governing equations are based on higher-

order shear deformation theory and the effective moduli method. The results of analysis showed that

the maximum local buckling coefficients occurred in the case of fully viscoelastic plates. Local

buckling coefficients of plates with variable thickness become constant for large values of aspect

ratio. It was also obtained that local buckling coefficients of thin plates were larger than those for

moderately thick plates with the same conditions.

The effect of the rigidity of the longitudinal edges of the viscoelastic composite plate on the value

of buckling load was also investigated. It was shown that the value of local buckling coefficient of

moderately thick plates varies significantly for lower values of length to width ratio when at least

one edge of the plate is free. The model developed in this paper has a potential to be used for

buckling analysis of viscoelastic composite plates with variable thickness which are extensively

used in the industrial structures such as aircraft, marine vessels, etc. 
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Appendix

The coefficients fi in Eq. (39) are determined from

     i= 1, 2,..5 

where

  and  

in which σcrt is given by Eq. (37) and φi can be represented by (Zenkour 2004) 

;  ;  ;  ;  

where

;  ;  
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