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Stability analysis of bimodular pin-ended slender rod
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Abstract. Many novel materials, developed in recent years, have obvious properties with different
modulus of elasticity in tension and compression. The ratio of their tensile modulus to compressive
modulus is as high as five times. Nowadays, it has become a new trend to study the mechanical
properties of these bimodular materials. At the present stage, there are extensive studies related to the
strength analysis of bimodular structures, but the investigation of the buckling stability problem of
bimodular rods seems to cover new ground. In this article, a semi-analytical method is proposed to
acquire the buckling critical load of bimodular slender rod. By introducing non-dimensional parameters,
the position of neutral axis of the bimodular rod in the critical state can be determined. Then by
combining the phased integration method, the deflection differential equation of bimodular pin-ended
slender rod is deduced. In addition, the buckling critical load is obtained by solving this equation. An
example, which is conducted by comparing the calculation results between the three of the methods
including the laboratory tests, numerical simulation method and the method we developed here, shows
that the method proposed in the present work is reliable to use. Furthermore, the influence of bimodular
characteristics on the stability is discussed and analyzed.

Keywords: bimodular; slender rod; buckling critical load; semi-anlytical method; nondimensional
parameters 

1. Introduction 

Numerous studies (Destrade et al. 2009, Barak et al. 2009, Klisch 2006, Bertoldi et al. 2008)

have indicated that many materials exhibit a phenomenon that the elastic properties in the extension

differ from those in the compression. This phenomenon known as bimodularity has been

experimentally demonstrated in many engineering materials such as concrete, metal, graphite,

plastic, rock, and biomaterials, etc. Especially for the new polymer materials and composite

materials, which have been developed in recent years, the ratio of their tensile modulus to

compression modulus is as high over four times. Therefore, great attention has been paid to the

study on mechanical behaviors of structures of these bimodular materials.

The elastic theroy of different modulus was firstly proposed by Jones (1977), Bert (1977),

American researcheres, and Ambartsumyan (1986), a Russian researcher. In 1986, Ambartsumyan

published his monograph about the elasticity of different moduli. In his book, he summarized the
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initial concept of different tension-compression modulus, basic assumptions and presented a

criterion to distinguish between the tensile zone and compressive zone based on the sign of the

normal stress. 

Owing to the constitutive discontinuity, analytical solutions are difficult to find in general, for the

analysis of bimodular structures, the finite element method and iterative techniques were therefore

exploited in numerical calculations (Tseng and Lee 1995, Ye 1997, Tseng and Jiang 1998, Yao et al.

2006). Considering some advanced compound materials that display high bimodular characteristics,

Raffaele (2001) and Patel (2004) adopted the finite element procedure to analyze the stress and

deformation of bimodular laminated composite plates based on the model proposed by Bert (1977).

The finite element methods were also extended to the non-linear analysis of composite plates

(Bruno et al. 1994) and thermal buckling of sandwich beams (Lan et al. 2003). The stress-strain

relation of a composite plate and a sandwich beam are somewhat similar to that of a bimodular

plate and a bimodular beam. However, the buckling behaviour can be substantially different because

additional bending action can be developed in a bimodular structure as the neutral axis moves

during the buckling process. Becasuse of the complicated nature of the bimodular buckling problem,

Bert and Ko (1985) used the finite difference method to analyze the buckling behaviour for

bimodular cantilever column. Due to some problems including unstable iteration and slow

convergency in calculations, a newly form of shear modulus (He et al. 2009) are proposed to

increase the rate of iteration and convergence. Yang et al. (2006, 2009) described the non-linear

relationship of stress and strain by employing smoothing functions, which can avoid the judgement

of sign of the normal stress, thus leading to a higher computing efficiency. Based on this, the initial

stress finite element method and the neural network model are established.

In view of the peculiar nonlinear (bilinear or piecewise linear) characteristics for bimodular

problems, analytical solutions are only available in some typical structures. Yao and Ye (2004,

2005, 2006, 2008) resorted to the flowing coordinate system and phased integration method to

deduce the analytical solution of neutral axis, stress, strain and displacement for bending-

compression column, bending beam subject to lateral force, retaining wall and bending-

compression/tension memebers with different modulus under complex stress and subjected to the

combined loadings. They also developed the iterative program combining with the phased

integration method for calculating nonlinear internal force and thermal stresses in statically

indeterminate structures with different moduli. In order to simplify the derived process, He et al.

(2007) obtained the approximate elasticity solution of a bimodular beam and a bimodular bending-

compression column by employing the equivalent section method. Based on the equivalent

modulus of elasticity of analytical solution for bending-compression column (Yao and Ye 2004),

Qu (2009) derived the analytical solution for the deflection of geocell with different tension and

compression modulus. By applying the principle of strain invariant, Cai and Yu (2009) developed a

new kind of constitutive relation in the form of tensor for the elastic isotropy materials with

different elastic moduli in tension and compression. Leal et al. (2009) derived the compressive

strength equation of the high performance fibres with different modulus and analyzed the effects of

bimodularity on the compressive strength.

The previous studies on the bimodular structures mainly focus on the strength analysis, whereas

investigations of stability problem of bimodular structures or rods are scant. There are only very

few computational methods for buckling behaviour of bimodular structures, which are actually

derived from numerical methods. However, the numerical methods are complicated and time-

consuming. The major obstacle of solving these bimodualr problems is caused by the nonlinear
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problems that the position of neutral axis in the buckling critical state is relative to both the critical

load and critical deflection equation. With the above consideration, in this paper, a semi-analytical

method is proposed to determine the position of the neutral axis in critical state by using the

nondimensional parameters. Then the differential deflection equation of bimodular pin-ended slender

rod is derived based on the phased integration method and the critical load is obtained. Finally, the

effects of bimodular characteristics on the stability of bimodular rod are investigated.

2. Basic concept and assumption

In the action of tension or compression stress with the same absolute value, bimodular materials

will produce a corresponding tension or compression strain with different absolute value. When this

kind of materials are subjected to axial stress, the constitutive relationship of which is nonlinear

(bilinear). That is to say, the materials have the different tension modulus Et and compression

modulus Ec. As shown in the Fig. 1, the bimodulus problem is physically nonlinear (bilinear).

Assuming that the elastic body investigated be continuous deformation, homogeneous, and

isotropic, with the difference in the symbol of normal stress, correspondingly, there are different

elastic properties. This material has a linear elastic deformation in the random stress state, and

satisfies the general law of continual medium mechanics. In other words, basic equations are

identical to that of the same modulus theory, and the difference is only reflected in the physical

equation.

3. Theoretical analysis and structurual model

As shown in Fig. 2, a pin-ended slender rod with the same modulus remains straight till the axial

load is increased to the critical value of Fcr. And then the rod will bow. Simultaneously, the neutral

axis of the cross-section will coincide with the geometrical center line which divides the cross-

section into two parts, the tensile zone and the compressive zone. After taking into account the

effect of different moduli in tension and compression, the neutral axis will move to the tensile zone

for Et > Ec, while for Et < Ec, the condensable zone, as plotted in Fig. 3. Hence, the initial problem

to be addressed is the determination of the position of neutral axis, following which the buckling

critical load of the rod can be ascertained.

Fig. 1 Constitutive relationship of bimodular materials (bilinear models)
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Consider a uniform rod of length L, width b, height h with two ends pin-jointed boundary

conditions, ignoring body weight and subjected to axial load F, as displayed in Fig. 4. It should be

noted that, as shown in Fig. 4, the neutral axis of the cross-section moves to the tensile zone in the

case of Et > Ec. Using the symbol δ (hereinafter referred to as offset) to denote the distance of the

neutral axis from the geometrical center line, and for any cross section in the yoz plane along x axis,

the origin of coordinate will uniformly passes through the neutral axis Fig. 5 depicts the distribution

of stress and strain in the section, where εc and εt represent the compressive strain and the tensile

strain which take place on both edges of the cross section in the x direction respectively.

Correspondingly, σc and σt respectively denote stress of tension and compression region on both

edges of the section in the x direction.

4. Neutral axis and deflection differential equation 

The bending deformation of buckling occurs to the bimodular pin-jointed rod owing to the action

Fig. 2 Buckling of pin-ended slender rod Fig. 3 Neutral axis of bimodular rod under critical
state

Fig. 4 Structure model Fig. 5 Distribution of stress and strain in the section
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of axial load F which reaches the critical value of Fcr. As no shear stress applies along the cross

section, the neutral layer can be directly determined according to the sign of the normal stress. The

deflections of the central axis along from the intial position are identified by v and the deformation

still conforms to plane cross-section assumption, that is, the cross section is still plane after

deformation, perpendicular to the rod axis, and only makes a relative rotation. 

Take a segment dx with its relative rotation dθ from a rod and the radius of curvature of the

neutral layer is ρ, as shown in Fig. 6. The normal strain of a random point whose distance to the

coordinate is y can be expressed as

  (1a)

Herein, the assumption in the formula of critical buckling load with the same modulus theory for

slender rod is still adopted. That is, the deflection curve of the linear elastic rod is smooth and flat,

so v'(x) << 1, (1+v' 2)3/2 ≈ 1, then we have

 (1b)

As it is a phycically bilinear problem, applying a physical equation to the tensile or compressive

region gives the normal stress of any point in an arbitrary section

,  (2)

Where, σp, σn are the normal stresses of tension and compression zones in the x direction.

It is found that the neutral axis will move to the tensile zone with an offset δ in the case of Ec/Et

< 1, therefore the extensinal region height is hp, and the compressive region height hn, as shown in

Fig. 7. Herein, hp and hn are expressed with δ as follows

 (3)
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 (4)

Substituting Eq. (2) into Eq. (4) and performing integral operation yields

 (5)

From the above equation, δ can be derived as follows

 

 (6)

In Eq. (6), δ is referred to as the offset of neutral axis determined from the nonlinear relationship

among which Et being the tensile modulus, Ec being the compressive modulus, Fcr being the critical

load and d2v/dx2 the curvature. Nevertheless, the critical load Fcr is the unkown parameter what we

want to acquire. Consequently, we should look for another way to evaluate the critical load for we

couldn’t obtain it by solving Eq. (5) directly.

According to the Saint-Venant principle, we have

 (7)

Combining Eq. (2) with Eq. (7) and integrating gives the bending moment of any cross section

written as

(8)
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Substituting Eq. (5) and Eq. (8) into Eq. (9), we solve

(10)

Simplifying Eq. (10), we get

  (11)

Moving the term of δ to the right side of Eq. (11) and simplifying it, the deflection of the central

axis for the bimodular rod can be derived as follows

 (12)

Introducing the following definitions

 (13)

where η represents nondimensional quantity of the offset of the neutral axis and ζ denotes

nondimensional quantity of the deflection, into Eq. (12) yield

(14)

Eq. (14) presents the evolution of ζ against corresponding η with different value of Ec/Et. In order

to demonstrate the relationship between ζ and η with clarity, within the definition of Ec/Et = m, the

variations of ζ against η at various m which vary from 0.2 to 10 are plotted in Fig. 9.
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From Table 1, we can see that, in the buckling critical state,with the increment of the ratio of

compressive modulus to tensile modulus, the neutral axis moves to the direction which extends the

tensile zone (lessen the compressive zone). The offset of neutral axis can be ultimately obtained at

various m when the deflection approaches the maximum value. This implies that the bearing

capacity of the cross section for the bimodular rod no longer increases and reaches the critical

load. 

Based on the internal force equilibrium condition, we subsititute Eq. (8) into Eq. (11), and the

deflection differential equation of bimodular rod can be achieved as follows

 (15)

Eq. (15) is the buckling deflection differential equation of bimodular slender rod subjected to the

axial load. When Ec = Et and δ = 0, the formula above returns to that of the same modulus theory

in classical mechanics.
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Fig. 9 Relationship between neutral axis and deflection

Table 1 Parameters of bimodular rod with different m in critical state

m (Ec/Et) ζ (δ/h) η (v/h) vmax/m δ/m

0.20 0.20 7 10*h 0.20*h

0.40 0.12 7 10*h 0.12*h

0.50 0.08 7 11*h 0.08*h

1.00 0.01 7 15*h 0.01*h

2.00 -0.09 7 11*h -0.09*h

4.00 -0.18 7 11*h -0.18*h

5.00 -0.20 7 10*h -0.20*h

10.00 -0.26 7 10*h -0.26*h
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5. Calculation for the buckling critical load of bimodular slender rod

According to Eq. (15), it is found that the buckling critical load of bimodular slender rod is

determined by the tensile modulus, compressive modulus, offset of the neutral axis and the

curvature. Owing to the semi-analytical method proposed in this paper, the offset δ of the neutral

axis can be achieved. Thus, if the offset δ as a known quantity is introduced to Eq. (15), the general

solution of Eq. (15) can be easily written in the following form

(16)

The coefficient of D can be deduced based on the boundary condition of , and

it yields D = 0. Hence, Eq. (16) can be rewritten as

 (17)

Eq. (17) is the deflection equation of pin-ended rod, in which the deflection of the rod reaches the

maximum C at x = L/2.

Differentiating the function v twice, then subsitituting it into Eq. (15), the critical load can be

expressed as

(18)

Fig. 9 in the third section shows the process that how the offset of the neutral axis in the buckling

critical state and the corresponding maximum delfection C are determined, and the results are listed

in Table 1. Substituting the obtained δ and C into Eq. (18), ultimately the buckling critical load Fcr

of pin-ended bimodular slender rod can be obtained.

6. Example and result
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b × h = 0.01 m × 0.01 m, as shown in Fig. 4. Let us choose different elastic modulus in the
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varies in a range with Et/Ec = 0.1~10. The rod is loaded by a concentrated tip load F. The critical

buckling load is obtained by using the same modulus theory in classical mechanics, the different

modulus theory proposed and the FEM method. To develop a model of the pin-ended rod under

buckling analysis, the general purpose finite element program ANSYS was employed in this study.

The aforementioned rod has been modeled with SOLID45. SOLID45, the element which is defined

by eight nodes having three degrees of freedom at each node: translation in the nodal x, y, and z

directions, is used for the three-dimensional modeling of solid structures. Fig. 10 and Fig. 11
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present the results modeled by ANSYS, which are compared to those obtained by the other two

methods mentioned above. The buckling critical loads, that are computed by the three methods, are

tabulated in Tables 2-5 (partial results list only).

Fig. 10 Buckling deformation of bimodular rod (Ec = 1600 MPa, Et = 6400 MPa, Fcr = 23.01 N)

Fig. 11 Buckling deformation of bimodular rod (Ec = 6400 MPa, Et = 1600 MPa, Fcr = 23.53 N)

Table 2 The neutral axis offset and the critical buckling load with the same modulus in classical mechanics

The ratio of two 
modulus Ec/Et = 1.0

The extensional 
modulus Et/MPa

The compressive 
modulus Ec/MPa

Neutral axis offset 
δ/m

Buckling critical load 
Fcr/N

4000 4000 0 32.90

1000 1000 0 8.22

Table 3 The neutral axis offset and buckling critical load of two methods with unchanged average modulus E

E = 4000 MPa

Et/MPa Ec/MPa Et/Ec δ/m
Fcr/N

(semi-analytcical 
method)

Fcr/N
(FEM)

The errors of 
two methods 

δFcr(%)

7272.7 727.3 10.0 0.26h 13.32 13.81 3.68

7111.1 888.9 8.0 0.24h 15.43 15.75 2.09

6857.1 1142.9 6.0 0.22h 18.41 18.61 1.07

6400.0 1600.0 4.0 0.17h 22.84 23.01 0.69

5333.3 2666.7 2.0 0.08h 29.78 29.85 0.24

4000.0 4000.0 1.0 0.01h 32.89 32.91 0.06

Et/MPa Ec/MPa Ec/Et δ/m
Fcr/N

(semi-analytical 
method)

Fcr/N
(FEM)

The errors of 
two methods 

δFcr (%)

4000.0 4000.0 1.0 0.01h 32.89 32.91 0.06

2000.0 6000.0 3.0 -0.13h 26.95 26.59 1.34

1333.3 6666.7 5.0 -0.20h 21.53 20.94 2.74

1000.0 7000.0 7.0 -0.23h 17.92 17.33 3.29

800.0 7200.0 9.0 -0.25h 15.35 14.81 3.52

727.3 7272.7 10.0 -0.26h 14.34 13.81 3.70
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7. Test and result

For a further validation of the proposed semi-analytical method, the experiments are designed to

perform tests on the materials mechanical properties of graphite (MSL82) specimens by the

electronic universal testing machine (WDW-E100) and the electronic universal testing machine

(CMT5306). The tests include the following: 1) uniaxial compressive test; 2) uniaxial tensile test; 3)

buckling test.

7.1 Material mechanical properties tests

In the uniaxial tensile test, four specimens are made of graphite (MSL82). The size of the

cylindrical specimens are Radius = 10 mm and Height = 50 mm. While in the uniaxial compressive

Table 4 The neutral axis offset and buckling critical load of two methods with unchanged tensile modulus Et

Et = 1000 MPa

Ec/MPa Ec/Et δ/m
Fcr/N

(semi-analytical 
method)

Fcr/N
(FEM)

The errors of 
two methods 

δFcr (%)

100 0.1 0.28h 1.83 1.90 3.83

300 0.3 0.16h 4.03 4.12 2.23

600 0.6 0.07h 6.21 6.27 0.97

800 0.8 0.03h 7.30 7.34 0.55

1000 1.0 0.01h 8.22 8.23 0.12

3000 3.0 -0.14h 13.48 13.23 1.85

6000 6.0 -0.22h 17.10 16.59 2.98

8000 8.0 -0.24h 18.60 17.96 3.44

10000 10.0 -0.28h 19.72 18.99 3.70

Table 5 The neutral axis offset and buckling critical load of two methods with unchanged compressive
modulus Ec

Ec = 1000 MPa

Et/MPa Et/Ec δ/m
Fcr/N

(semi-analytical 
method)

Fcr/N
(FEM)

The error of 
two methods 

δFcr (%)

100 0.1 -0.26h 1.97 2.04 3.71

300 0.3 -0.15h 4.21 4.30 2.08

600 0.6 -0.07h 6.33 6.39 0.97

800 0.8 -0.03h 7.37 7.40 0.44

1000 1.0 0.01h 8.22 8.23 0.12

3000 3.0 0.13h 12.98 13.21 1.78

6000 6.0 0.22h 16.11 16.69 3.16

8000 8.0 0.24h 17.36 17.96 3.45

10000 10.0 0.26h 18.31 18.96 3.55
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test, the size of the four cylindrical specimens are Radius = 10 mm and Height = 200 mm. The

contents of these texts contain ultimate tensile strength, ultimate compressive strength, tensile

elastic modulus, compressive elastic modulus and calculate Ec/Et. The test results are tabulated in

Table 6.

7.2 Buckling tests

The buckling stability tests are conducted in the electronic universal testing machine (WDW-

E100) which is shown in Fig. 12. The configuration and dimensions (500 mm × 30 mm × 30 mm) of

graphite (MSL82) specimens are shown in Fig. 13 and Fig. 14. Test results are tabulated in Table 7

and plotted in Fig. 15.

Table 6 Test results on the mechanical properties of graphite (MSL82)

Specimen
number

Ultimate tensile 
strength 
(MPa)

Ultimate 
compressive strength 

(MPa)

Tensile elastic 
modulus 

(GPa)

Compressive 
elastic modulus 

(GPa)
Ec/Et

1 26.70 72.76 8.62 11.90 1.38

2 30.70 68.37 8.59 12.32 1.43

3 28.77 65.02 8.84 12.58 1.42

4 26.70 70.95 8.73 12.26 1.40

Mean 28.22 69.28 8.70 12.27 1.41

Fig. 12 Testing device and loading mode Fig. 13 Specimen size 
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Fig. 14 Specimens of graphite materials (MSL82) 

Table 7 Buckling tests results and semi-analytical solutions

Specimen number 1 2 3 Mean
Semi-analytical 

solutions
The error δFcr

 (%)

Buckling critical load (kN) 34.58 25.38 34.78 31.58 28.51 9.7

Fig. 15 The diagram of the tests
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8. Discussion

8.1 Model verification and error analysis

The solutions(see Tables 3-5) obtained by the semi-analytical method for the same modulus

problem are in very good agreement with those obtained by the analytical solutions (see Table 2) of

the same modulus theory in classical mechanics. The error amount is around 0.01%. Thus, the

analytical solutions by using different modulus can return to the results of the same modulus theory

in classical mechanics. Besides, Fig. 16 shows a good coincidence between the semi-analytical

solutions and the results of finite element analysis. As is depicted in Fig. 17, the maximum error is

3.8%. Moreover, comparing the semi-analytical solutions with the test results (see Tables 6, 7) for

the graphite material (MSL82) with Ec/Et of 1.41, there is a good agreement with a difference

within 9.7% between the two results. Thus, the semi-analytical method developed in this paper is

reliable.

8.2 The difference between different modulus and same modulus problems

When different moduli are introduced, regular variations occur in the neutral axis of the bimodular

rod, as shown in Fig. 18. With the increase of Ec/Et, the neutral axis gradually moves from the

tensile zone to the compressive zone. In other words, the height of tension region tends to increase

with increasing Ec/Et, and vice versa.

For the materials with the average modulus E equalling to 4000 MPa, when Ec as well as Et

varies (see Fig. 16 in which the logarithmic coordinate is chosen as the transverse axis), comparing

to the rod with the same modulus, the critical buckling load is smaller whether Ec/Et increases or

declines. Moreover, the critical buckling load is more sensitive to the deduction of Ec (see Fig. 19). 

When introducing the different moduli, one of which remains the same at 1000 MPa, and the

addition reflected only in the other modulus, then the enhancement of Fcr characterizes regionally,

as shown in Figs. 20, 21 (the logarithmic coordinate is chosen as the transverse axis). That is, Fcr

has a notable change from 1.83 N to 8.22 N (3.5 times of the original value) when Ec increases by

Fig. 16 The results of the two methods with
unchanged average modulus E = 4000 MPa

Fig. 17 The errors of the two methods with different
modulus  
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10 times of 100 MPa. However, as Ec varies from 1000 MPa to 10000 MPa (increases by 10 times

as well), Fcr enhances slowly (only increases by 1.4 times). In addition, a similar phenomenon will

happen with the variation of Et (see Fig. 21).

When remaining Ec (or Et) unchanged, Ec and Et have different regional influence on Fcr. As is

depicted in Fig. 22, in the case of Ec/Et (Et/Ec) < 2, the curve about the variation of Fcr against Ec is

in coincidence with that about the evolution of Fcr against Et. That is to say, to increase Ec or Et has

almost the same impact on the improvement of Fcr. However, when Ec/Et (Et/Ec) > 2, the difference

between the two curves will enlarge and the curve about the variation of Fcr against Ec is steeper. It

implies that the increase of Ec has a more remarkable effect on enhancing Fcr.

Fig. 18 The variation of the neutral axis offset against
the ratio of two modulus

Fig. 19 The variation of critical buckling loads against
Ec/Et (Et/Ec) when the average modulus
equalling 4000 MPa

Fig. 20 The variation of critical buckling load against
Ec/Et when Et = 1000 MPa

Fig. 21 The variation of critical buckling load against
Et/Ec when Ec = 1000 MPa
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For the aforementioned materials with different moduli in the three cases, when comparing with

the results of the same modulus problem, the difference between which and the semi-analytical

solutions will be wider with the continuous increase or decrease of the ratio of Ec/Et. Particularly,

when Ec increases to 5 times of Et, the results errors of two methods have reached 30%, 60%, 80%,

respectively (see Fig. 23).

9. Conclusions

In this study, the results of Ec/Et (Et/Ec) = 0.1-10 are listed. It is shown that the analytical solutions

by using different modulus can return to the result of the same modulus theory in classical

mechanics. And there is a good agreement between the results of the introduced approach and the

finite element method and the buckling tests. Thus, the method proposed in this paper is effective

for buckling analysis of bimodular rod. Some conclusions are drawn as follows:

(1) When the total of the two modulus stays the same, compared with the same modulus problem,

the critical buckling load decreases with the increasing difference of different modulus. This is

because of the uneven stiffness caused by the bimodular difference of the two modulus. This

uneven stiffness will induce a weakening effect on the resistance of buckling. Consequently,

stability analysis of bimodular structures is extremely important.

(2) As only one modulus increases with the other unchanged, the enhancement of critical buckling

load reflects regionally. In the case of Ec/Et (Et/Ec) = 0.1-1, the buckling critical load increases fast.

This indicates that, owing to the increase of the modulus, the global section stiffness increases and

gradually becomes even, which accounts for a notable improvement for the rod to resist buckling.

In the case of Ec/Et (Et/Ec) = 1-10, the critical load increases slowly. Because the gap of the two

modulus widens, which causes the stiffness uneven. So the ability for the rod to withsand

buckling improves relatively slowly.

(3) Compared with the results of the same modulus problem, the critical load increases

Fig. 22 The variation of critical buckling load against
Ec/Et (Et/Ec) 

Fig. 23 The errors between the same modulus and
different modulus methods versus Ec/Et in
three cases 
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remarkably due to the increment of Ec. Accordingly, for the structure with different modulus, we

can improve structure stability by increasing the compressive modulus, so that the structure can be

optimized.

(4) Most materials applied in the engineering have the ratio of different modulus within a range of

Ec/Et = 1-5. For Ec/Et = 5, the error of the results between the different modulus methods and the

same modulus methods has reached approximately 78%. Therefore, for the structure with great

difference between tension modulus and compression modulus, it should be calculated and

analyzed by the different modulus theory instead of the same modulus theory. 

By using the method proposed in this paper to determine the neutral axis, the cost of computation

may be lower than that of the multi-iterations methods because of the advantage of improved

stability and faster convergence. The method is also simple and straightforward. Hence, this

methodology could be very valuable in solving the buckling problem of bimodular rods or

bimodular structures.
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Notations

The following are symbols used in this paper:
Et : the tensile modulus;
Ec : the compressive modulus;
Fcr : critical buckling load;
δ : neutral axis offset;
v : deflection at point x;
ρ : radius of curvature;
σp : normal stress in tension area;
σn : normal stress in compression area;
hp : the height of tension area;
hn : the height of compression area;
d2v/dx2 : the curvature;
M : bending moment of any section;
η : nondimensional quantity of the neutral axis offset;
ζ : nondimensional quantity of the deflection;
m : the ratio of Ec to Et;
vmax : maximum deflection;
E : the average modulus;
δFcr : errors of critical buckling load.




