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Abstract. The eight-node 3D solid element is one of the most extensively used elements in
computational mechanics. This is due to its simple shape and easy of discretization. However, due to the
parasitic shear locking, it should not be used to simulate the behaviour of structural members in bending
dominant conditions. Previous researches have indicated that the introduction of incompatible mode into
the displacement field of the solid element could significantly reduce the shear locking phenomenon. In
this study, an incompatible mode eight-node solid element, which considers both geometric and material
nonlinearities, is developed for modelling of structural members at elevated temperatures. An algorithm is
developed to extend the state determination procedure at ambient temperature to elevated temperatures
overcoming initially converged stress locking when the external load is kept constant. Numerical studies
show that this incompatible element is superior in terms of convergence, mesh insensitivity and reducing
shear locking. It is also showed that the solid element model developed in this paper can be used to
model structural behaviour at both ambient and elevated temperatures. 

Keywords: incompatible mode; solid 3D element; shear locking; elevated temperature; initially
converged stress locking

1. Introduction

One of the most important weakness of any structural system - in particular, steel structures -is the

dramatic reduction of its mechanical resistance as soon as they are exposed to the action of fire, due

to the rapid degradation of their material properties associated to the development of high gradients

of temperature. The typical numerical analysis of this kind of scenarios does not take care of these

conditions, and it could be relevant if it is necessary to evaluate the real response of the structure.

By the way, in these numerical simulations the structural members subjected to bending loads are

usually analyzed by beam/column elements. It is generally believed that finite beam/column

assembly can achieve reasonable accuracy with relative low computing cost in modelling the global

behaviour of the structural members. The shortcoming of this family of elements lies in the

difficultness in simulating perforated members, laterally confined members, or irregular members

experiencing stress intensity, e.g., localized failure. In these circumstances, solid elements are
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preferable, especially when stress distribution in the structural members is a major concern. In

addition, in order to reduce computing cost in structural analysis, a better choice is to use low order

elements such as 8-node linearly interpolated solid elements. Combined with other types of

elements, an enhanced solid element can be developed for modelling of reinforced concrete

structures (Dominguez et al. 2010). Solid-like shell elements can also be obtained from the solid

element model with some modifications (Abed-Meraim and Combescure 2011).

In the classical finite element method (FEM) theories the displacement compatibility between

finite elements is absolutely mandatory. However, it has been well known that the displacement

compatible four-node quadrilateral and eight-node hexahedral elements suffer from severe shear

locking when they are subjected to bending. This parasitic drawback of the elements can produce

significant errors when these elements are used in practical engineering analysis. A remedy to

eliminate shear locking of the elements is to reduce the stiffness in the integration process. Reduced

or selective integration scheme has a softening effect due to some polynomial terms vanish at Gauss

points with a low-order rule and therefore make no contribution to the strain energy. But this under-

integration approach introduces the defects variously known as spurious mode, instability and

mechanism. A disadvantage of the selective integration scheme is that the shear strain is not frame-

invariant, which is guaranteed by consistent use of the same shape functions for all components of

displacement (Cook et al. 2002). Another disadvantage of the selective integration is that the shear

stresses are evaluated at positions different from those in the full integration scheme. This is a big

problem when material nonlinearity is involved. The first introduction of the incompatible

displacements into rectangular isoparametric finite elements by Wilson et al. (1971) showed the

superior capability in eliminating shear locking and improving numerical convergence. The principle

of the incompatible mode is to enhance linear elements with extra degrees of freedom which count

for internal parabolic deformation in bending, without affecting node positions. This incompatible

mode attracted so much research attention that patch test theories were developed to overcome the

compatible restriction (Irons and Razzaque 1972, Taylor et al. 1986). Lots of works have been done

to achieve high accuracy low-order incompatible elements such as B-bar method (Hughes 1980) and

assumed strain method (Simo and Rafai 1974). A least-squares stress recovery method

(Ibrahimbegovic and Wilson 1991) was introduced to improve the accuracy of stress computation.

In this research, the displacement incompatible 8-node solid element (SOLID8IC, and hereafter) is

developed to perform nonlinear stress analyses in structures at elevated temperatures. In this

element, a unified three dimensional isotropic yielding model (Owen and Hinton 1980) is applied

and an algorithm, which considers material degradation at elevated temperatures, is developed to

extend the material state determination procedure at ambient temperature to elevated temperatures

without being locked by the initially converged stresses attained. 

2. The finite element procedure of SOLID8IC 

The eight-node solid element exhibits shear locking, thus to be excessively stiff due to spurious

shear strain in bending. The basic idea of eliminating shear locking is to add bending modes to the

displacement fields of the classical 8-node hexahedral element. This can be done by appending

arbitrary selected displacement interpolation functions to the classical interpolations as shown in

Eq. (1). 
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 (1)

where: u, v and w are the translational displacements related to the global coordinates, x, y and z,

respectively and  and  are extra degrees of freedom (DoF, and hereafter) representing the

magnitude of incompatible modes. The N1 to N8 are classical nodal shape functions and the N9 to

N11 are shape functions correspond to the incompatible modes enhancement. The complete shape

functions in local coordinate system, r-s-t, are given in Eq. (2), while the positions of the integration

points (2 × 2 × 2) is shown in Fig. 1.
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Fig. 1 The master cube of the eight-node solid element and its integration points
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2.1 Strain-displacement relationship

From Eq. (1), the enhanced strain-displacement relationship can be written as 

 (3)

where 

 (4a)

where  and εz are axial strains, and γxy, γyz and γzx are shear strains; and

 (4b)

where εT and εp are thermal strains and permanent (plastic) strains, respectively

  (4c)

  (4d)

The slightly different orders of the terms in α and u ensure the compatible  and the

incompatible  have a similar form. It can be easily derived that  is

 (5)

For total Lagrangian description of large displacements, when incremental algorithm is used, the

 is composed of small-linear displacement related  and linearized initial displacement effect

related  (Bathe 1996). Therefore

 (6)
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 (7)

where  and , with  and . x, y and z

are undeformed configuration coordinates.

2.2 Correction matrix 

A general approach to ensure the incompatible mode to pass the patch test is to make the strain

energy associated with the incompatible modes, α, to be zero (Wilson 2002). That is, for a state of

constant stress 

 (8)

where  is the stress vector. 

This can be satisfied by adding a constant correction matrix, BIC, to the BI to form a corrected

strain-displacement relationship matrix, 

 (9)

The correction matrix can be interpreted as that the work done by the incompatible displacement

on the element boundary should vanish when a constant stress field is considered (Wu et al. 2001).

It is evaluated every time before forming element stiffness matrix. Taking into account that BIC is a

constant matrix, it can be derived that

 (10)

2.3 Element stiffness matrix

The complete set of element equilibrium equations are given by

 (11)

where D is the constitutive matrix and df, du and dα are the incremental force, nodal displacement

and extra DoF vectors, respectively. In elasto-plastic state, the D should be replaced by Dep given in

Section 3.
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The extra DoF, dα, can be statically condensed out, so the element stiffness matrix has the same

size as the matrix without incompatible enhancement. Finally, the element stiffness matrix with

incompatible modes, K, is

 (12)

2.4 Incremental strains and internal nodal forces

From Eq. (11), the incremental extra DoF can be expressed as

 (13)

Accordingly, the incremental Green-Lagrange strains are

  (14)

This incremental strain will be used for calculating the internal nodal forces, Fint. It is assumed

that the displacement can be large, but the strain is small. In the minimization of the potential

energy the forces associated with the incompatible displacement modes are zero (Wilson 2002),

therefore

 (15)

where σ is the Cauchy stress vector calculated according to the constitutive algorithm given below.

3. Constitutive algorithm at elevated temperatures

3.1 The unified 3D elasto-plastic constitutive relationship

When the deformation is large, material properties tend to be non-linear. Therefore, an incremental

stress-strain constitutive relationship should be used, especially when the plastic flow may occur. A

general approach is to use the flow rule, which assumes

and  (16)

 (17)

where Q is the plastic potential, and the superscripts e and p denote elastic and plastic, respectively.

λ is the plastic multiplier. In this study, the flow rule is assumed to be associated (i.e., the plastic

potential is taken the same as the yield function) and only isotropic hardening is considered. Perfect

plastic flow can be treated as a special instance of isotropic hardening which has a zero hardening

parameter, H. Thus, the yield function is
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where wp is a scalar denoting the plastic work done. Noting that the stress increment is produced by

the elastic strain increment only and the plastic work increment is the work done by the stress

through plastic strain increment, we have

 (19)

and 

   (20)

where D is the elastic constitutive matrix. 

Substituting Eqs. (19) and (20) into the differentiation of Eq. (18), then

 (21)

where

 (22)

For isotropic hardening material with von-Mises yield criterion, it can be derived (Bhatti 2006)

that a = 3G + H, where G is the shear modulus. Finally, substituting Eq. (21) into Eq. (19), the

plastic constitutive relationship can be obtained as

 (23)

where the elasto-plastic constitutive matrix, Dep is

 (24)

A unified form of  has been given in (Owen and Hinton 1980) as

 (25)

where C1, C2, C3, a1, a2 and a3 can be found in Appendix (Owen and Hinton 1980).

3.2 State determination procedure at ambient temperature 

In nonlinear analysis, the element stiffness and the nodal internal forces change with material state
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may eventually ends outside of the yield function (Bhatti 2006), in static incremental analysis, this

rarely happens. Otherwise, further treatment is required as follows. 

(3) If the previous state is elastic, then calculate the proportion of the stress outside of the yield

surface, R. The trial stress is then adjusted by . The state changes to plastic. The remaining

incremental strain  is related to plastic flow moving along the yield surface. If the previous

state is plastic then R = 1. 

(4) To avoid the stress calculated drifting away too much from the yield surface, forward Euler

integration method can be used. This is done by subdividing the  into a number of sub-steps,

then increase the incremental plastic strains step by step. A suggested number of steps (Owen and

Hinton 1980) is

 (26)

where σeff, σy and  are the effective, yield and initial yield stresses, respectively. This explicit

method has no error control; however, it is the simplest and an effective way.

It is clear that the stress-strain relationship is influenced by its past history according to the state

determination procedure provided above. During a Newton-Raphson iteration, an element may

inaccurately enter plastic state and causes underestimated stresses for internal force calculation and

accumulated plastic strain. This is a potential source of inaccuracy. A simple way to avoid this

problem (Bhatti 2006) is to use the accumulated displacement from the beginning of the current

load step instead of the increment from the current iteration. Only after the solution has converged

then the element state can be updated. But the new tangent stiffness matrix must use the current

state of the element.

3.3 Moving beyond the initially converged stress locking at elevated temperatures

A general procedure in structural fire engineering analysis is to apply all the mechanical loads at

ambient temperature, then increase the temperature step by step: 

(1) Performing thermal analysis to obtain the history of temperature distribution in the structure at

specified time intervals.

(2) Carrying out structural analysis at ambient temperature by applying the total mechanical loads

in a number of steps. 

(3) With the loads kept constant, updating the elemental temperatures step by step using the

temperature data obtained in (1). 

(4) The structural analysis continues until the structure run away (numerical failure) or the end of

the fire scenario. 

Materials exhibit mechanical property degradation and thermal expansion at elevated

temperatures. Figs. 2(a) and (b) show this transformation of the Young’s modulus, E, and the yield

strength, σy given in Eurocode 3 (BS EN 1993-1-2 2005), in which the effects of transient thermal

creep have been included implicitly. Therefore, the yield surface shrinks (Fig. 3) with increase of

temperature, which triggers an alternative loading event should the stress go beyond this surface

boundary. On the contrary, cooling leads to the expansion of yield surface and consequently triggers

unloading from yield state to elastic state. 
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temperature. However, while the external load is kept constant in the stage of elevating temperature,

it is found that the material degradation has no influence on the increasing displacements. This can

be illustrated as follows:

Supposing σ0 is the stress attained at step n and is used as the initially converged stress in step

n + 1. In step n + 1 the external load is kept constant and undergoes a temperature increment, ∆T.

Material property degradation leads to an incremental displacement ∆d in the first iteration of step

n + 1. Subsequently, an incremental strain ∆ε can be calculated and used in the material state

determination. That is,  is used as the trial stress (see (1) in Section 3.2). Supposing the

material state stays linear elastic, this trial stress is regarded as the new stress and used to evaluate

σ0 D ε∆+

Fig. 2(a) Mechanical property degradation of structural
steel at elevated temperatures (BS EN 1993-
1-2 2005)

Fig. 2(b) Thermal expansion of structural steel at
elevated temperatures (BS EN 1993-1-2
2005)

Fig. 3 Von-Mises yield surface, F(T), of steel subject to elevated temperatures 
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the internal nodal force which is definitely unequal to the external load applied. Then a

counteracting displacement increment is required in the subsequent iterations to balance the internal

and external forces. Finally, the displacement seems as if being locked although material

degradation undergoes. An example of locking is given in Section 4.2.1.

As this locking phenomenon has never been reported before, a simple solution is developed to

break this locking by re-determinating and updating the material state at the beginning of each step

of temperature increment, with all the elastic strain taken as the incremental strain. Assuming

Young’s modulus E and yield stress σy are positively associated then the algorithm chart can be

drawn as shown in Fig. 4. This can be used as a supplement to the step (4) in the general structural

fire analysis procedure illustrated above. 

Fig. 4 Flow chart of material state determination at elevated temperatures 
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4. Numerical studies

Several numerical studies carried out in this research are based on a structural steel cantilever

beam as shown in Fig. 5. If not specified, the Young’s modulus is assumed to be 2 × 105 MPa and

the Poisson’s ratio is assumed to be 0.3.

4.1 Computational efficiency of SOLID8IC

In order to show the effectiveness of eliminating shear locking, numerical studies on the steel

cantilever beam (Fig. 5) are analyzed using compatible (SOLID8C) and the current incompatible

models. It is hereby assumed that the material is perfectly linear, and the end point load P is 1600 N

applied gradually in 20 steps. The cross section dimension is b = d = 20 mm, the length L is

1000 mm. The cantilever beam is equally discretized into 25, 50 and 500 elements. The comparison

of the end point displacements and the maximum shear stresses at the Gaussian integration point in

the element next to support are shown in Table 1. It is obvious from the table that SOLID8IC can

effectively eliminate the parasitic shear stresses in SOLID8C elements. The end displacements and

maximum shear stresses modelled by the SOLID8IC with various numbers of elements are stable.

Although accurate results can be achieved by very fine mesh of compatible elements, the

inefficiency is apparent. The geometric nonlinear behaviour can be seen from the end displacement

of the cantilever modelled by 25 SOLID8IC elements shown in Fig. 6.

Fig. 5 Steel cantilever beam subjected to concentrated load, P

Table 1 Comparison the performance of the SOLID8IC and SOLID8C

Discretization
End Point Displacement (mm) Maximum τyz (MPa)

SOLID8IC SOLID8C SOLID8IC SOLID8C

25E 191.7175 72.9512 5.6406 209.0871

50E 192.1281 132.9855 4.8399 193.1995

500E 192.3795 181.5735 4.0696 30.5179

Exact 192.0*

*Timoshenko beam solution (Gere and Timoshenko 1990)
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4.2 Thermally induced effects in structural analysis

The steel properties at elevated temperatures given in Figs. 2(a) and (b) are adopted in this study.

The degradation of the E starts from 100ºC and the σy starts from 400ºC.

4.2.1 Mechanisms due to thermally induced material nonlinearity 

Analysis is conducted on the steel cantilever beam used previously in Section 4.1 but the vertical

point load is reduced to 400 N. This load is applied at ambient temperature and then kept constant

when the temperature is raised step by step at 20ºC intervals. The relationship between the

temperature and the vertical tip displacement modelled is shown in Fig. 7. The result shows a trivial

vertical displacement reduction when the temperature is increased to 100ºC. This is because there is

almost no material degradation before 100ºC. After the temperature of the beam exceeds 100ºC, the

Young’s modulus, E, starts to degrade. The degradation of the yield strength initiates when

temperature reaches 400ºC. It is also shown in this figure that the initially converged stress locking

suppresses the beam from further deformation at elevated temperatures.

Fig. 6 The end displacement of the cantilever modelled by 25 SOLID8IC elements 

Fig. 7 Mechanisms of thermally induced effects on the behaviour of a steel cantilever beam 
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4.2.2 Thermally induced stresses due to non-uniform cross-sectional temperature distri-
bution

A numerical study on gradient temperature distribution in the cross section is carried out on a

steel cantilever beam. The schema in Section 4.1 is reused, except the depth of the cross-section of

the beam (d), which is reduced to 10 mm. No external load is applied. The beam is equally

discretized into 5 elements in the depth direction of the cross-section and 50 elements in the

longitudinal direction. Linear temperature distribution from the bottom to top is assumed. The

bottom layer element temperature is increased by 20oC in each step. Whereas the top layer element

temperature is kept as 20oC. The main purpose of this assumption is to generate a very extreme

temperature gradient case in order to see the impact of thermal stress on the structural behaviour of

the beam. The yield stress at ambient temperature is assumed to be 460 MPa. In order to compare

with the beam-column line element model, the beam cross section is allowed to expand freely

avoiding thermal expansion induced lateral constrain at the fixed support. Apparently, the beam is to

bow upwards due to non-uniform thermal expansion. At the same time, the material strength and

stiffness degrade with increase of temperature. The comparison of the end-displacements predicted

by current element and the fibre-section beam element in structural fire engineering software Vulcan

(Huang et al. 2009) developed at the University of Sheffield is given in Fig. 8. It can be seen that

the results agree very well with each other. The stresses at the Gaussian integration points in the fix-

end bottom element are plotted in Fig. 9. However, this stress pattern cannot be modelled by beam

elements. 

In Fig. 9, the normal stresses of sx, sy and sz are referenced to global coordinate, x, y, z,

respectively (see Fig. 5). It is clear that sx, sy exhibit increasing in tension then gradually

descending at high temperature. This is because of the thermal expansion mismatch between the

elements. According to the Eurocode 3, the thermal expansion coefficient (see Fig. 2(b)) of steel

increases from less than 1.0 × 10−5/C at 20C to more than 4.2 × 10−5/C at 700oC. The expansion

suspends between 750oC and 860oC due to crystal phase transformation. When the temperature is

not too high, the expansion in the bottom layer elements is not big enough to match that in mid-

layer elements (i.e., the bottom layer has a longer lever arm to the neutral axis). Further heating

Fig. 8 Comparison of the end displacements of a cantilever beam subjected to gradient temperature, modelled
by current model and the Vulcan (Huang et al. 2009) beam model
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gradually reduces this difference, and the Young’s modulus at the bottom layer elements degrades

faster than that in mid-layer elements. In the phase of transformation, thermal expansion stops,

which can be reflected by the second ascending in the curve of sy in Fig. 9. Nevertheless, the

magnitude of the stresses is small. 

4.2.3 Modelling of simply supported beam with gradient longitudinal temperature

A beam fire test (Chen et al. 2005) was carried out at State Key Laboratory of Fire Science,

USTC, China. The simply supported specimen was a thin-wall hollow section beam fabricated by

Q215 steel (fy ≥ 215 MPa, fu = 315 − 410 MPa). Two point loads were applied as shown in Fig. 10.

The beam was non-uniformly heated so that the left of the beam was hotter than the right. Five

equally distributed thermal gauges (TS1-TS5 in Fig. 10) were used to measure the surface

temperature distribution along the beam. Because the wall thickness of the beam is only 2 mm, the

surface temperatures measured (see Fig. 11) are used as longitudinal sampling temperatures of the

beam for numerical modelling. The temperature distribution in the cross section is assumed to be

uniform. It can be seen from Fig. 11 that the maximum temperature difference between both ends of

Fig. 9 Stresses at the Gaussian integration point in the element adjacent to the fix-end free of lateral
expansion (sx, sy and sz are stresses in the x, y and z directions, see Fig. 5)

Fig. 10 Plan of the USTC hollow section steel beam subjected to non-uniform heating
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the beam exceeds 300oC. The specimen is divided into 1800 SOLID8IC elements with temperatures

linearly interpolated from the temperatures at the sampling positions. The Young’s modulus and

Poisson’s ratio are assumed to be 206000 MPa and 0.3, respectively. Other material properties are

assumed to follow those given in Eurocode 3. The comparison of the results measured and

predicted is shown in Fig. 12. The temperature on the left is higher than that on the right,

consequently, the deflection is larger at 1/3 span than at 2/3 span counting from the left hand

support of the beam. It can be seen from Fig. 12 that the deflections modelled agree very well with

test results before 1000 seconds of fire. The discrepancy increases later on. This might come from

the temperature distribution and the material properties used in the modelling. Another reason may

stem from the viscous creep when the temperatures approaching to critical ones. The stress-strain

relationships at 1/3 span and mid-span are shown in Fig. 13. It can be seen that at elevated

temperatures, the stress has very little increase while the strain increases due to softening and

Fig. 11 Surface temperature distribution along the USTC beam in fire test

Fig. 12 Comparison of predicted and measured displacements at different positions of the USTC beam in fire
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increased ductility in fire as illustrated previously (see Fig. 2(a)). 

5. Conclusions

An 8-node 3D solid element enhanced with incompatible bending mode incorporated with a

unified 3D constitutive model is developed for modelling structural members subject to bending at

elevated temperatures. However, it is found that the traditional incremental material state

determination algorithm can not handle material degradation properly due to initial converged stress

locking at elevated temperatures. Therefore, an algorithm is proposed to overcome this problem. A

cantilever beam with various temperature distribution schemes and a simply supported beam with a

non-uniform longitudinal temperature distribution are modelled. It is shown from these numerical

studies that this SOLID8IC element can effectively eliminate shear locking. And the comparison of

the numerical results with other structural fire engineering software modelling and experiment data

shows that the model and algorithm developed in this study are robust and can be used for 3D

structural analysis of steel members at elevated temperatures. 
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Appendix 

Constants defining the unified yield surface for numerical analysis (Owen and Hinton 1980)

Yield Criterion C1 C2 C3

Tresca 0

Von Mises 0 0

Coulomb-Mohr

Drucker-Prager α 1.0 0

Note: φ is the internal friction angle of material, e.g., concrete
θ is the similarity angle
J2 is the second deviatoric stress invariant

 and  are axial deviatoric stresses
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