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Abstract. A solution of space curved bars with generalized Winkler soil found by means of Transfer
Matrix Method is presented. Distributed, concentrated loads and imposed strains are applied to the beam
as well as rigid or elastic boundaries are considered at the ends. The proposed approach gives the
analytical and numerical exact solution for circular beams and rings, loaded in the plane or perpendicular
to it. A well-approximated solution can be found for general space curved bars with complex geometry.
Elastic foundation is characterized by six parameters of stiffness in different directions: three for
rectilinear springs and three for rotational springs. The beam has axial, shear, bending and torsional
stiffness. Numerical examples are given in order to solve practical cases of straight and curved
foundations. The presented method can be applied to a wide range of problems, including the study of
tanks, shells and complex foundation systems. The particular case of box girder distortion can also be
studied through the beam on elastic foundation (BEF) analogy.
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1. Introduction 

Winkler model of the beam on elastic foundation consists of a beam lying on an indefinite layer

of springs, one independent from each other and characterized by a finite value of stiffness in

settlement direction (Hetenyi 1946). Winkler soil has only one parameter of stiffness but other soil

models have been introduced (Selvadurai 1979), by taking into account interaction between spring

displacements, through tension in elastic membrane (Filonenko-Borodich model) or shear layer

(Pasternak model): in these cases two-parameter models have been developed. 

A generalized Winkler soil can be seen as a model in which every segment of the beam is

connected to adjacent segments by “serial” springs and to soil by “parallel” springs. Serial springs

between beam segments represent axial, bending, shear and torsional stiffness, while parallel springs

are related to soil and its stiffness in every direction. A restricted concept of generalized Winkler

soil has been defined by Kerr (1964) for rectilinear beams, in which elastic springs are considered

in the translational and rotational directions with their own values of stiffness. In the present study

the generalized Winkler model is seen as a one-dimensional beam curved in space, treated with its
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three components of displacement and three components of rotation, surrounded by a Winkler soil

with three translational and three rotational springs.

The classical problem of a Bernoulli rectilinear beam on elastic foundation (BEF) leads to a 4th

order differential equation or to an equivalent system of four 1st order differential equations. It can

be solved by different ways and analytical solutions can be found for the most common cases of

boundaries, distributed and concentrated loads (Hetenyi 1946). All efforts of recent works in

literature are finalized to find finite elements formulation of this problem, by increasing as much as

possible the accuracy of solution; generally the beam has to be divided into a great number of

elements in order to achieve the requested precision. Eisenberger et al. (1985) found an exact

stiffness matrix for the beam on elastic foundation, based on the 4th order differential equation. 

Classical solutions does not take into account shear deformation and different approaches have

been proposed for Timoshenko beam models (Aydo an 1995, Gelu Onu 2008, Ergüven and Gedikli

2003). 

Other authors focalized their attention on curved beams on elastic foundation. From the early

works of Volterra (1952), who considers an elastic curved beam on a Winkler soil with stiffness in

the only direction of settlements, solved by a system of two differential equations (one of 2nd order

for bending moment and one of 1st order for twisting moment), different researchers take inspiration

for analytical and finite element procedures in order to solve the problem of curved beams on

Winkler soil. Rodriguez (1961) proposed an analytical solution of rings on elastic foundation, in

which the elastic beam lies on a soil with translational and torsional springs. He solves this problem

through the statement of a 6th order differential equation; it is equivalent to a system of a classical

4th order differential equation with a 2nd order equation. The same problem of circular beams with

translational and rotational springs, have been faced by Aköz et al. (1996) with a mixed FE solution

for elements in plane. Another FE formulation for curved beams on Winkler soil with translational

and rotational springs is given by Dasgupta and Sengupta (1988) for in-plane elements in which

bending, shear and torsional stiffness are considered. Banan et al. (1989) proposed a comprehensive

study with FE analyses of some examples, based on a particular approach in which all components

of displacement and rotation are taken into account both for the curved beam and for stiffness of

Winkler soil. They found two solving systems of 1st order differential equations by writing

equilibrium, constitutive and compatibility relations and then solution is given by two exponential

matrices in order to find the stiffness matrix of the element. Haktanir and Kiral (1993) solved the

more general problem of circular and helicoidal structures on the generalized elastic foundation,

deriving transfer and stiffness matrices. This last approach is similar to that of Banan et al. (1989).

It considers rings on Winkler soil with loads in the plane and perpendicular to it (ring foundations)

and the problem of pipes longitudinally loaded is presented with numerical examples; helicoidal

structures are also studied as 3D Timoshenko beams. 

A number of studies addressed instead the problem of force and displacement discontinuities on

rectilinear beams (Yavari 2001). Chen (1998) solved BEF with concentrated discontinuities by the

Differential Quadrature method while Colajanni et al. (2009) solved it by generalized functions.

This last study gives an exact closed form solution for Bernoulli rectilinear BEF with all kinds of

discontinuities due to loads or constraints. Kim et al. (2005) derived the exact static element

stiffness matrices of thin-walled beam-columns on elastic foundations while Kim and Shin (2009)

gave a series solution for the deflection of thin-walled Timoshenko curved beams on elastic

foundation. Guo et al. (2002) gave a solution method for beams on non-uniform elastic foundations,

by using Green’s function formulation.

g
o
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Arici (1985) established the reciprocal conjugate method for rectilinear beams, as a generalization

of Mohr analogy, on generalized Winkler soil by considering static loads and inelastic imposed

actions (distortions). He also solved analytically the problem of space curved bars and established a

conjugate method in which soil parameters are related to those of conjugate beam and vice-versa. In

this way Winkler parameters are related to axial, shear, bending and torsional stiffness of conjugate

beam while beam stiffness is related to conjugate soil parameters. Moreover the complete six-order

vectorial character of conjugate method has been underlined (Arici 1989).

Besides finite element formulations some authors gave transfer matrices of beams on elastic

foundation. Although these authors derive Transfer Matrix Method (TMM) on the base of Pestel

and Leckie (1963) studies, this method has been widely applied by French authors as Courbon

(1972) and Lacroix (1967). Straight beams on Winkler soil have been solved through this approach

by Géry and Calgaro (1973). They consider a rectilinear beam with a one-parameter elastic soil,

giving the exact expressions of transfer matrices in order to solve the classical Winkler problem.

Transfer matrices are derived directly from the system of four 1st order differential equations of the

beam and the problem is solved for in-plane beams.

Arici and Granata (2005) expanded the Transfer Matrix Method to general space curved bars, not

resting on a soil, and applied the method to curved bridges (Arici and Granata 2007), by

considering axial, shear and torsional deformations. They derived transfer matrices from an

energetic approach, based on the principle of stationary total potential energy with the statement of

an Hamiltonian functional, deriving a mixed system of twelve 1st order differential equations. This

last approach is quite different from that of Pestel and Leckie, which is only a matrix form of the

4th order differential equation of elastic straight beams; in fact it is based on an energetic functional

for general 3D curved elastic beams and each quantity has its own physical and mechanical

meaning.

The classical generalized Winkler soil presented only two values of stiffness: one concerning

vertical settlements and one concerning bending rotations. In the present study a complete solution

is presented for space curved bars surrounded by a generalized Winkler soil with six parameters of

spring stiffness: three concerning displacements and three concerning rotations. The complete

solution system is given and the transfer matrix of the beam is derived together with load vectors

for every kind of static and geometric action. Rigid and elastic concentrated boundary conditions at

the ends of bar can be applied. The followed approach permits to find the exact solution of circular

beam on elastic foundation and a very good approximation for generally space curved bars on

elastic soil. The advantage of this approach with respect to other numerical solutions and

particularly to FEM, consists of a reduced number of equations to be solved. In fact, when the

entire spatial structure is divided into segments, transfer matrices of segments can be multiplied

each other; so the solution system is given by a maximum of 12 equations and it does not increase

its dimension, as it occurs for finite elements. The solution of Timoshenko circular beams and rings

with the generalized Winkler soil is explained through numerical examples. A generalized ring

foundation of a tank is discussed and comparisons with literature data are given. The presented

methodology can be used to solve problems related to tanks, shells or practical cases of foundations

with complex geometry. Moreover related problems to Winkler foundations, as for example, box

girder distortion of bridges, can be solved through the so-called BEF analogy (Arici et al. 2010). 
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2. Transfer matrix method for space curved bars with generalized Winkler soil 

With reference to a space curved bar of total axial length L, having low initial curvature and

consisting of homogeneous isotropic material with linearly elastic behaviour, let s be the curvilinear

coordinate joining the centroids of cross-sections, with respect to a fixed origin s = 0 (Fig. 1). 

Consider the Frenet local coordinate system formed by the unit vectors n(s) = i1, b(s) = i2,

t(s) = i3, being respectively the normal, binormal and tangent to the bar axis at the general

coordinate s. Principal axes of inertia of cross section are always assumed coincident with i1 and i2.

Warping due to torsion and cross-section distortion are neglected. In these hypotheses the

configuration of the deformed bar is fully described by the generalized displacement column array

u(s) having six components (three displacements ui(s) and three rotations ϕi(s), with i = 1, 2, 3)

u(s) = [u1(s), u2(s), u3(s), ϕ1(s), ϕ2(s), ϕ3(s)]T  (1)

The bar is subjected to applied distributed external static actions (loads pi(s) and moments mi(s))

collected in the column array

fe(s) = [p1(s), p2(s), p3(s), m1(s), m2(s), m3(s)]T   (2)

Moreover the generalized strain array, composed of uni-axial strains and curvatures, is

q(s) = [ε1(s), ε2(s), ε3(s), κ1(s), κ2(s), κ3(s)]T   (3)

In the same way stress resultant array Q(s) is defined 

Q(s) = [V1(s), V2(s), V3(s), M1(s), M2(s), M3(s)]T   (4)

in which V1 and V2 are shear forces in direction i1 and i2 while V3 is axial force; M1 and M2 are

bending moments while M3 is twisting moment referred to centroid. The total strain array (3) can be

divided into two parts, one containing elastic internal strains qi(s) and one containing external

inelastic imposed strains qe(s) (i.e., thermal strains) 

q(s) = qi(s) + qe(s)    (5)

Fig. 1 Space curved bar
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Morever let Φ(s) be the non singular and symmetric flexibility matrix of the elastic bar, inverse of

elastic stiffness matrix E(s)

  (6)

in which χ1, χ2, χ12 are shear factors; ξ1
C, ξ2

C are shear centre coordinates with respect to cross

section centroid; G and E are shear and Young moduli; A the cross-section area; Ji (for i = 1, 2) the

principal inertia moments and J the torsional constant. Displacements and internal forces at

coordinate s are always related to the centroid. If cross section has one axis of symmetry, it results

χ12 = 0 and one of the distances ξi
C between shear centre and centroid is zero. When cross section

has two axes of symmetry, shear centre coincides with centroid and Φ(s) becomes a diagonal

matrix. Elastic constitutive equations can be written

qi(s) = E−1(s) Q(s)    (7)

If the space curved bar is surrounded by an elastic Winkler medium, let R(s) be the matrix

characterizing the generalized Winkler spring stiffnesses

     (8)

in which k1, k2, k3, j1, j2, j3 are translational and rotational Winkler coefficients at coordinate s

(Fig. 1). Constitutive equations of Winkler generalized soil are

fi(s) = –R(s) u(s)     (9)

being fi(s) the reactive forces acting on the bar. They can be collected in a unique array together

with external forces applied to the bar, obtaining array f(s) of total distributed forces 
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f(s) = fi(s) + fe(s)   (10)

By introducing the square gradient matrix B(s) of displacements 

 

 (11)

and by naming τ0 and k0 the initial tortuosity and the initial curvature (1/R) of the bar axis (Arici

1989), the sub-matrices of B(s) can be written as follows

   (12a,b)

For straight bars τ0 = k0 = 0 and B0(s) is a null matrix, while for bars with in-plane curvature,

k0 = 1/R and τ0 = 0. A finite value of tortuosity τ0≠ 0 can be considered for the study of helix or

complex curved bars with helicoidal shape (Haktanir et al. 1996, Arici and Granata 2005). 

Field compatibility equations of the bar are 

u'(s) = –Bu(s) + E−1(s) Q(s) + qe(s)    (13)

where symbol ( )' represents the total derivative with respect to the curvilinear coordinate s.

Equilibrium equations instead can be written through the transpose of matrix B(s), obtaining the

relation

Q'(s) = BT(s) Q(s) – R(s) u(s) – fe(s)    (14)

In this way the classical problem of an elastic beam lying on a generalized Winkler soil has been

stated by considering 3-D curved bars and different elastic soil properties in each direction. 

Let J be now the symplectic operator and A(s) the symmetric matrix collecting material, soil and

gradient matrices E−1(s), R(s) and B(s) of the bar 

   (15a,b)

in which I6 is the 6 × 6 diagonal unitary matrix. Generally, along abscissa s, matrix A(s) has

variable values. By defining the mixed state array

z(s) = [uT(s), QT(s)]T (16)

which collects generalized displacements and internal forces, and the external action array

 de(s) = [fe
T(s), qe

T(s)]T (17)

which collects all external distributed actions (loads and imposed strains), the governing system of

the elasto-static problem, containing compatibility and equilibrium equations, can be written as a

canonical Hamiltonian system of twelve 1st order differential equations

   (18)
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Eq. (18) is equivalent to Eqs. (13) and (14), but in order to solve a linear differential equation

system with constant coefficients, matrix A has to be with constant values in the circular or straight

segment 0-s. When geometric, material and soil properties vary along the bar, it is possible to divide

the entire structure of length L in different segments, each one with constant properties. In this way

matrices B(s), E−1(s) and R(s) become constant and independent from s, i.e., contains constant

geometric, material and soil properties in the considered segment. 

The derivation of the Hamiltonian system from energetic considerations and the integration of

solving system are not reported here but they can be found in Arici and Granata (2005). Solution of

system (18) is given by the following relation 

 

  (19)

in which C(s) is the fundamental matrix of the homogeneous system of differential equations. It

also can be seen as the Transfer Matrix of the elastic structure at coordinate s and it can be found as

an exponential matrix, through the following relation

C(s) = exp(JA s) (20)

in which A has constant values. 

Transfer matrix has the following properties: C(0) = I12, C(−s) = C−1(s), C(s−η) = C(s)C(−η).

In Eq. (19) the column array N(s) contains all terms directly related to external actions 

(21)

Transfer matrix C can be found in closed form by relation (20) with a common software package

of mathematical computation with symbolic calculus. It can be found also as a numerical matrix

when values are given to all terms of A. 

In the case of a curved bar which lies on a plane and is loaded in the same plane (arches), the

active degrees of freedom and the related internal forces are only the six odd components of state

array z(s). When loads are applied instead perpendicularly to the plane (curved beams), only the six

even components are activated. Transfer matrices and state arrays of 2-D problems can be obtained

by deleting even or odd rows and columns of the general ones, defined above.

Through this approach, by combining transfer matrix terms, it is also possible to obtain the

stiffness matrix of a 3-D curved bar for a more traditional analysis (Arici and Granata 2005), useful

for the statement of a finite element procedure. 

3. Analysis of complex structures with TMM

When the space curved bar (total axial length L) is made up of several elements of length li
(li < L), each of them having different but constant geometric and elastic properties, the structure can

be divided into <n> segments (for i = 1..n). For the i-th segment it is possible, through Eq. (19), to

obtain the state array zi(s) in the generic section of coordinate s, with reference to array zi(0) in the

initial section of the segment (Fig. 2).

Moreover, when a node I, between segments <i> and <i + 1>, presents imposed kinematical
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discontinuities ∆uI (concentrated strains) or static discontinuities ∆QI (concentrated forces), they can

be taken into account by considering compatibility and equilibrium on the left and right hands of

node I. We must have 

,   (22)

which is of course valid when ∆zI = 0. 

In order to compact solution (19), it can be convenient to add a unitary component to the state

array zi(s) and one row and one column to transfer matrices, bringing their dimension to 12 + 1. It is

thus possible to define the new expanded state array Si(s), obtaining the compact form of Eq. (19) 

Si(s) = Fi(s) Si(0)   (23)

in which new expanded state array Si(s) and field transfer matrix Fi of the i-th segment are defined 

,   (24a,b)

It is also convenient to introduce a nodal point matrix PI for the imposed discontinuities in node I

 (25)

being I12 the 12 × 12 unitary diagonal matrix. In this way, for the element <i> the state array Si(s)

can be expressed by the recursive formula

Si(s) = Fi(s) · PI − 1 · Fi − 1(li − 1) · .......... · P1 · F1(l1) · S1(0) (26)

Proceeding up to the final right node N, coinciding with the end of the bar, the linear system of

equations on the six unknown quantities is finally obtained

Sn(ln) = Fn(ln) · PN − 1 · Fn − 1(ln − 1) · PI · Fi(li) .......... · P1 · F1(l1) · S1(0) = Ftot S1(0) (27)

and it can be solved by imposing the six known boundary conditions.
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Fig. 2 Complex structure divided into segments with general boundaries and actions applied
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Note that in system (27), some terms of the end state array Sn(ln) are known and other unknown

as well as for the beginning state array S1(0), depending on the boundary conditions at the ends. So,

a partition of state arrays needs to separate known elements from unknowns and total matrix Ftot has

to be reorganized by changing rows and columns. When unknown quantities at the beginning and at

the end of the bar have been found, the system stated by relation (27) is solved. In this way state

array S1(0) is completely known and by means of Eq. (26) it is possible to calculate the column

state array in each element, i.e. arrays of displacements ui(s) and forces Qi(s) for the whole

structure. Any kind of space curved bar can be subdivided into an appropriate number of small

straight or curved elements having constant geometric and mechanical properties.

As it can be seen from Eq. (27), by increasing the number of segments, the solving system does

not increase its dimension, because the total transfer matrix Ftot of the entire structure is always

given by multiplication of matrices of the same order. As a consequence, computational burden is

limited to simple matrices multiplication, unlike Finite Element Method in which the dimension of

solving stiffness matrix depends on the number of elements used to subdivide the structure,

increasing with them. Although transfer matrices for circular elements can be defined, it is possible

to approximate a general complex curve in space by a sequence of a great number of straight

segments, whose transfer matrix definition is very simple. The simple multiplication of transfer

matrices in Eq. (27) maintains the 12th order of the linear system, without excessive increasing in

computational complexity. Moreover point rotation matrices for sudden changes in structure axis

direction can be introduced apart from nodal point matrices, when straight segments present relative

rotations between their axes for geometrical reasons. 

4. Numerical examples

In this section numerical examples are given and discussed for different practical cases of beams

on elastic foundation, by comparing them with literature data, in order to demonstrate the efficiency

of the proposed method.

Example 1

The first example is derived from Colajanni et al. (2009); it consists of a classical rectilinear

beam on Winkler soil which represents a foundation subjected to distributed and concentrated loads. 

Geometric characteristics and load data are shown in Fig. 3. The elastic modulus is E = 30 GPa

while the Winkler constant is k = 150 MPa. Calculus was repeated two times: without and with

shear deformability (Bernoulli and Timoshenko beams) and results are shown in Figs. 4 and 5. 

Fig. 3 Geometric characteristics of rectilinear beam of example 1
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Solution has been found through the proposed method, by dividing the total length of the beam

into five segments, each characterized by the same cross section properties, with different lengths

and distributed load values. Four nodal point matrices have been introduced in order to consider

concentrated loads FI and MI. 

Graphs of Fig. 4 show results in terms of vertical displacements, shear force and bending moment

Fig. 4 Displacement [m], Shear force [kN] and
bending moment [kNm] diagrams of example
1. Bernoulli beam 

Fig. 5 Comparison between TMM with and without
shear stiffness. Displacements [m], shear [kN]
and bending moment [kNm] diagrams of
example 1 
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diagrams. They reveal the very good agreement with results obtained by Colajanni et al. (2009) for

the solution of Bernoulli beam.

About shear deformability, the calculus of Timoshenko beam (Fig. 5) shows that differences can

be appreciated in displacements with respect to Bernoulli solution, but no significant effects can be

seen in internal force diagrams.

Example 2

The second example is derived from Volterra (1952). Aköz et al. (1996), Haktanir and Kiral

(1993), Dasgupta and Sengupta (1988), solved the same problem with different methods. It consists

of a whole ring on Winkler soil subjected to four vertical loads, related to four columns of an upper

tank. A comparison is given with literature data and with solutions obtained by a SAP2000 model

in which the ring is divided into 64 and 360 straight elements. Solution found by SAP2000 has

been chosen as an example of a common software package which could be used by an engineer in

his analysis, even if this solution presents a less numerical precision when only 64 elements are

used. In order to converge to the exact solution, the number of finite elements has to be increased

much more, so the model with 360 elements (one for each degree) gives results with a better

precision.

Aköz et al. (1996) solved the problem by using a mixed finite element solution with 20 circular

elements. Haktanir and Kiral (1993) solved instead the same example with a stiffness matrix

method on a curved beam, including axial and shear deformation. Dasgupta and Sengupta (1988)

divided the ring into 20 and 40 horizontally curved isoparametric finite elements, including shear

deformation. Results obtained in this study by TMM have been compared with these literature data

by considering the equivalence between SI units and British ones: R = 7.62 m, rectangular cross

Table 1 Comparison of numerical results for example 2. Vertical displacement and shear force 

θ [°]

u2 [m] V2 [kN]

TMM Haktanir Dasgupta Aköz
SAP2000 
(64 el.)

SAP2000 
(360 el.)

TMM Haktanir Dasgupta Aköz
SAP2000 
(64 el.)

SAP2000 
(360 el.)

0 0.008148 0.008150 0.008077 0.008060 0.008156 0.008150 333.6 333.6 - 333.6 302.1 328.0

11.25 0.007092 0.007096 0.007071 - 0.007103 0.007020 213.4 213.5 - - 186.6 211.2

22.5 0.005208 0.005208 0.005212 0.005198 0.005217 0.005210 117.8 117.9 - 119.4 98.5 118.1

33.75 0.003650 0.003642 0.003658 - 0.003653 0.003652 50.3 50.3 - - 36.7 51.7

45 0.003070 0.003050 0.003109 0.003116 0.003062 0.003063 0.0 0.0 - 0.0 0.0 0.0

Table 2 Comparison of numerical results for example 2. Bending moment and torsion

θ [°]

M1 [kNm] M3 [kNm]

TMM Haktanir Dasgupta Aköz
SAP2000 
(64 el.)

SAP2000 
(360 el.)

TMM Haktanir Dasgupta Aköz
SAP2000 
(64 el.)

SAP2000 
(360 el.)

0 -592.80 -593.48 -589.73 -596.49 -588.32 -592.99 0.00 0.00 0.00 0.00 0.00 0.00

11.25 -176.20 -177.33 -169.46 - -170.07 -177.07 72.46 72.95 71.85 - 75.56 73.75

22.5 84.17 83.04 88.12 84.21 89.27 82.91 79.20 79.89 81.34 80.30 81.34 79.92

33.75 218.70 219.08 216.91 - 222.86 218.86 48.20 48.40 48.81 - 37.56 49.44

45 260.51 260.53 264.36 264.86 261.61 260.62 0.00 0.00 0.00 0.00 0.00 0.00
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section of foundation with b = h = 0.762 m, elastic moduli E = 20,683 MPa, G = 8,618 MPa, soil

parameters k2 = 10.34 MPa, j3 = 5.00 kNm/m. Geometric characteristics are shown in Fig. 6;

vertical load is P = 667.2 kN. Tables 1 and 2 show results of this study in comparison with those

given by the above mentioned authors. The θ angle is in the anticlockwise direction and it is

depicted in Fig. 6. 

TMM solution has been found by dividing the ring into four circular segments, each of 90o (four

equal transfer matrices), and by introducing four nodal point matrices. This division is made only in

order to apply concentrated loads through point matrices. It is possible to use only one segment for

the whole ring if the array N(s) of Eq. (21) is calculated for concentrated loads by introducing the

delta of Dirac function in the integration of load terms de(s). On a mathematical point of view, in

order to take into account discontinuities, the introduction of the generalized functions, as the unit

step function and the delta of Dirac, could be considered a more elegant solution, but on a

computational point of view it is more convenient to divide the entire length into segments and to

introduce the nodal point matrices with the values of discontinuities due to concentrated loads. 

Results of TMM model are in perfect agreement with those given by the other authors. It is

evident that, with respect to FEM models, the same numerical precision can be achieved through

TMM without the computational complexity needed by FEM meshes and without increasing the

number of elements, being necessary only a few TMM elements in order to insert nodal point

matrices for concentrated loads. 

Example 3

The third example is derived from the previous one, when the upper tank is subjected to

horizontal actions (wind, earthquakes, etc..). It is a generalization of the ring foundation which can

Fig. 6 Characteristics of tank and ring foundation 
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Fig. 7 Loads on the ring for horizontal actions on the tank

Fig. 8(a) Displacements [m] and rotations [rad] of example 3
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take into account horizontal forces and bending moments at the base of columns. Moreover a

generalized Winkler soil is considered, by introducing different soil stiffness along the three

directions k1, k2, k3 and with respect to twisting moment j3. 

The new load condition is shown in Fig. 7, while results are shown in Figs. 8(a) and 8(b) in form

of complete displacement and internal force diagrams. A comparison of TMM solution with

SAP2000 model (360 elements) is reported in order to evaluate the goodness and efficiency of the

proposed method. New data are: Ph = 66.72 kN; M = 500.40 kNm; k1 = 10.34 MPa; k3 = 6.89 MPa.

Note that vertical displacement u1, axial force V3 and bending moment M2 are anti-symmetric

diagrams, while axial displacement u3, rotation ϕ2 and shear V1 are symmetric diagrams. The other

displacements and internal forces instead have not symmetries in their diagrams. This situation is

due to the particular load configuration in which, for the ring, the horizontal forces are two in the

tangential direction and two in the radial one, while concentrated couples give discontinuities

alternatively in bending moment or in torsion diagrams. So, the entire 0-360o range is significant

and it is shown in figures.

Fig. 8(b) Internal forces [kN] and moments [kNm] of example 3
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5. Conclusions

In this paper a study which gives the solution of space curved bars surrounded by a generalized

Winkler medium has been presented through the Transfer Matrix Method. Numerical examples have

been explained in order to solve practical cases of straight and curved foundations. The presented

method can be applied to a wide range of problems, including the study of tanks, shells and

complex foundation systems or applied to physical problems treated by the BEF analogy.

The problem presented by Rodriguez (1961), consisting of a ring with sinusoidal load and

torsional spring stiffness and related to certain types of interconnect structures for rocket vehicles,

can be seen as a particular case of the ring on generalized Winkler medium, solved herein. 

The problem presented by Aydo an (1995) and Ergüven and Gedikli (2003), consisting of a long

beam with free ends on elastic foundation and solved by these authors with and without shear

effect, can be treated in the same way by TMM in order to compare solutions of Bernoulli and

Timoshenko beams and the accuracy of methods proposed by different researchers. 

The problem presented by Banan et al. (1989), consisting of a pipe longitudinally loaded and

surrounded by a Winkler medium, is a classical example which is of interest for loaded

underground pipes. It can be solved and reproduced through the TMM approach presented here.

 The proposed procedure has been used by the authors to solve also the problem of box girder

sectional distortion in concrete bridges, by implementing the so-called BEF analogy (Arici et al.

2010). Besides this last application, note that general solution obtained by TMM can be always

applied to particular cases of Winkler beams derived by BEF analogy, in which a physical problem

is represented by a classical 4th order differential equation in analogy with the beam on Winkler soil

(Kristek 1979). The solution presented here is valid for each of these physical problems

independently from the meaning of differential equation coefficients. 

The advantage of the proposed approach with respect to other numerical solutions and particularly

to FEM, consists of a reduced number of equations to be solved and of a reduced computational

complexity. In fact, when the entire structure is divided into a number of segments, transfer matrices

of these segments can be multiplied each other; so the solution of a 3D system is always given by a

maximum of 12 equations and it does not increase its dimension with the number of segments, as it

occurs for finite elements. Moreover the solution of Timoshenko beams on Winkler soil can be

simply found. The presented examples show the efficiency of the proposed method and the high

level of accuracy of the solution. The formulation of Transfer Matrix Method for curved beams on

generalized Winkler soil, has been already developed by the authors through the energetic

Hamiltonian principle and the construction of transfer matrices made by simple exponential matrix

operations. This advancement in the definition and use of TMM allows researchers and engineers to

have a suitable tool in order to solve complex structures without the high computational complexity

of other methods.
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Notations

A : cross section area;
A(s) : matrix collecting material and gradient matrices;
B, B0, B1 : gradient matrix of displacements and its sub-matrices;
C(s) : Transfer Matrix at abscissa s;
E : Young modulus;
E(s) : stiffness matrix of beam;
f(s) : static action array;
fe(s) : external static actions;
Fi(s) : expanded transfer matrix which contains distributed load terms;
G : shear modulus;
s : curvilinear coordinate;
ij : j-th unit vector of Frenet system;
Ih : diagonal unitary matrix of order h;
ji : i-th rotational Winkler coefficient;
J1,J2 : principal inertia moments;
J3 : torsional constant;
J : symplectic operator;
ki : i-th translactional Winkler coefficient;
k0 : geometric curvature of the bar;
mi(s) : i-th distributed moment component of fe(s);
Mi(s) : i-th moment component of Q(s);
N(s) : load vector at abscissa s;
pi(s) : i-th distributed load component of fe(s);
PI : nodal point matrix containing discontinuities.
q(s) : total strain array;
qi(s) : internal strains;
qe(s) : inelastic imposed strains (external geometric actions);
Q(s) : stress resultant array;
R : radius of curvature;
R(s) : constitutive matrix of Winkler soil;
Si(s) : expanded state array;
ui(s) : i-th displacement component of u(s);
u(s) : generalized displacement array;
Vi(s) : i-th force component of Q(s);
z(s) : mixed state array;
∆QI : imposed static discontinuities at node I;
∆uI : imposed kinematical discontinuities at node I;
∆zI : mixed array of imposed discontinuities at node I;
εi(s) : i-th uni-axial strain component of q(s);
κi(s) : i-th curvature component of q(s);
ξ1

C, ξ2
C : shear centre coordinates with respect to cross section centroid;

τ0 : geometrical tortuosity of the bar;
χ1, χ2, χ12 : shear factors;
ϕi(s) : i-th rotation component of u(s);
Φ(s) : flexibility matrix of beam.




