
Structural Engineering and Mechanics, Vol. 40, No. 1 (2011) 85-103 85

Integrating OpenSees with other software - with
application to coupling problems in civil engineering

Quan Gu1a and Ozgur Ozcelik*2

1Department of Civil Engineering, School of Architecture and Civil Engineering,

Xiamen University, Xiamen, Fujian, 361005, P.R. China
2Department of Civil Engineering, School of Engineering, Dokuz Eylul University,

Buca/Izmir, 35160, Turkey

(Received October 17, 2010, Revised May 23, 2011, Accepted June 24, 2011)

Abstract. Integration of finite element analysis (FEA) software into various software platforms is
commonly used in coupling systems such as systems involving structural control, fluid-structure, wind-
structure, soil-structure interactions and substructure method in which FEA is used for simulating the
structural responses. Integrating an FEA program into various other software platforms in an efficient and
simple way is crucial for the development and performance of the entire coupling system. The lack of
simplicity of the existing integration methods makes this integration difficult and therefore entails the
motivation of this study. In this paper, a novel practical technique, namely CS technique, is presented for
integrating a general FEA software framework OpenSees into other software platforms, e.g., Matlab-
Simulink® and a soil-structure interaction (SSI) system. The advantage of this integration technique is that
it is efficient and relatively easy to implement. Instead of OpenSees, a cheap client handling TCL is
integrated into the other software. The integration is achieved by extending the concept of internet based
client-server concept, taking advantage of the parameterization framework of OpenSees, and using a
command-driven scripting language called tool command language (TCL) on which the OpenSees’
interface is based. There is no need for any programming inside OpenSees. The presented CS technique
proves as an excellent solution for the coupling problems mentioned above (for both linear and nonlinear
problems). Application examples are provided to validate the integration method and illustrate the various
uses of the method in the civil engineering.

Keywords: coupling systems; OpenSees – Simulink; software integration; client-server techniques; soil-
structure interaction; shake table modeling

1. Introduction

Finite Element Analysis (FEA) has been widely used in coupling systems as a powerful tool for

predicting or simulating the behavior of structures subjected to static and/or dynamic loading

conditions. Coupling systems usually include a FEA software and another software platform (e.g.,

Matlab, Optimization software, etc.), and can be used for problems in structural control, fluid-

structure, wind-structure, soil-structure interactions and substructure method (Gawronski 1998, Cook

*Corresponding author, Assistant Professor, E-mail: ozgur.ozcelik@deu.edu.tr
aAssociate Professor

DOI: http://dx.doi.org/10.12989/sem.2011.40.1.085

86 Quan Gu and Ozgur Ozcelik

et al. 2001, Paidoussis 2004). In these problems, the structural properties (e.g., geometric and

material parameters) or the structural external load may depend on the structural responses which

are the outputs of FEA (e.g., deformations or internal resisting forces of the structure). In an explicit

method in which the state of the coupling system at a later time step is calculated from the state of

the system at the current time step, the other software platform needs to call the FEA software at

each time step, and incorporates the FEA results to determine and update the properties and/or loads

of the FE model for performing the next-step analysis. Therefore, an efficient communication

between FEA software and the other software platform is crucial for the performance of the entire

coupling system.

In general, directly linking and compiling FEA software and another software platform together is

extremely difficult, if not impossible. An intuitive way to achieve this coupling is to make the

software platform the main program and enable it to run the FEA software whenever an FE analysis

is needed. In this case, the FE model does not persist in the memory, and thus the model has to be

reloaded/released before/after each call to perform FEA. After each call (usually at each time step),

all state variables (e.g., the displacement, velocity, and acceleration of each node, stress, strain, and

other stress states in each material) of the FE model need to be exported to a database or a file

before the model is released from the computer’s memory. Then at the beginning of the next call

from the software platform, a restart process in FEA must be performed, and the model has to be

reloaded into the memory with all the state variables imported from the database or the file. This

method is obviously not efficient since it spends large amount of time in loading and releasing the

FE model.

In the literature, alternative methods are used to achieve the coupling of FEA software and other

software platforms. For example, in UI-SimCor hybrid simulation framework developed at the

University of Illinois at Urbana-Champaign (Kwon et al. 2005), a simulation coordinator is

employed to control and organize models associated with various platforms and/or actual

experimental specimens, including an FEA software (e.g., ZeusNL, FEDEASLab, ANSYS,

OpenSees, and Abacus), which are considered as super-elements with many DOFs (Elnashai et al.

2004). There are other alternative methods to integrate FEA software into various software

platforms. One integration method is to compile a part or the entire FEA software into dynamic link

library (DLL) or shared library as described in (Peng and Law 2002), so that the DLL may be

integrated into other software platforms directly, or can be used as a web service program offering

the FEA service for clients through internet. Another integration method is used in OpenFresco, in

which the FEA software is coupled with the other software by making a special experiment element

in FEA software as client and the other software platform as server and the communication is

enabled by using a network socket (Yoshikazu and Fenves 2006, Schellenberg et al. 2006). In the

internet online hybrid test system, a peer-to-peer (p2p) system is invented where a “coordinator” is

required to achieve compatibility and equilibrium at boundaries among substructures (Pan et al.

2006). All these methods require either further programming work for FEA software (e.g., changing

existing source code, or adding new experimental element, or recompiling FEA system, etc), or

employing a heavy and complicated third party integration software platform to achieve the

integration.

The integration could also be achieved by using a hand-shake mechanism to govern data

exchange between FEA software and the other software as described in Cattarius (1999). This

method takes advantage of the user subroutines in FEA software (e.g., Abaqus) and uses flag shared

files for communication between the FEA software and the other software. This procedure involves

Integrating OpenSees with other software - with application to coupling problems 87

a large amount of alternate idle time between the two codes and thus is not efficient (Cattarius

1999). The desire of engineers and researchers for seeking a practical and simple method to

integrate FEA software into other platforms entails the motivations of this study.

In this paper, a new integration method/technique is presented for integrating FEA software

OpenSees into various platforms. OpenSees (Open System for Earthquake Engineering Simulation)

is an open source FEA software used to model structural systems and simulates their earthquake

responses (McKenna 1997, McKenna et al. 2004, http://opensees.berkeley.edu, http://archt.xmu.

edu.cn/opensees/opensees.html). It is the main simulation platform for NEESGrid (http://

www.nees.org) and also widely used in the academic world (McKenna et al. 2010). OpenSees’ user

interface is based on a command-driven scripting language called tool command language (TCL)

which enables users to create versatile input files (Welch 2000). An advanced parameterization

framework is recently implemented in OpenSees which allows users to visit or update the

parameters of FE model easily by using TCL commands (Scott and Haukass 2008). The new

integration method presented herein does not require any programming work within OpenSees’s

source code. Instead users are required to write simple TCL scripts to achieve the communication

between OpenSees and another software platform which will be explained in detail later.

In order to describe this integration method, the concept of the internet based client-server model

is borrowed and extended. The client, instead of internet users, is a cheap/tiny piece of code

plugged into another software platform. OpenSees acts like a server program by making the finite

element (FE) model persistent in the memory, receiving, and executing commands from the client.

The client is usually a component of other software platforms such as a C++ object or a global

variable which can be created by using the API of the other software platforms. By using TCL

scripts, the client creates and holds a connection with OpenSees and thus the communication

between OpenSees and the other software platform is established. A simple way to achieve this

connection is by using a simple TCL network communication channel (or socket) based on TCP or

other network protocols (e.g., UDP). The new integration method/technique is named CS (client-

server) technique for naming convenience, however it is significantly different from the classical

concept of the Internet based client-server model in the sense that it is used for integration purpose

and thus is limited to one-client-one-server mode and usually both client and server are on the same

computer.

2. Integration of OpenSees into other software platforms by using CS technique

In this section, coupling OpenSees with Simulink is presented as an illustration example showing

the use of the CS technique. However, OpenSees may be integrated into other software platforms

using the same technique as described herein. In general cases, the TCL-based cheap client needs to

be integrated into the software platform using a similar method described here. Simulink is a

platform for multi-domain simulation and model-based design for dynamic systems. The interactive

graphical environment and a customizable set of block libraries in Simulink enable it to be extended

for various applications. For this application example, the client is a persistent C++ object created

by and stored in a user-defined S-function in Simulink.

The integration of OpenSees with Simulink is described in Fig. 1. Both OpenSees and Simulink

are running in parallel on the same computer. Following steps are performed (refer to Appendix A

for programming details):

88 Quan Gu and Ozgur Ozcelik

Step I: At the very beginning, on the server side, OpenSees creates a finite element model and

performs necessary initial analysis (e.g., gravity load analysis). Then, it stops and waits

for commands from Simulink for further actions.

Step II: After OpenSees is set up as shown in Step I, Simulink sets up the connection to

OpenSees server through its plugged-in client and holds the connection in its S-function.

Currently, this connection is achieved by using a network socket. Simulink then begins to

solve a mathematical model of a physical problem (e.g., shake table model) programmed

within Simulink by block diagrams.

Step III: When Simulink needs to perform FEA, it sends an analysis request to OpenSees together

with a set of FE model parameters and/or input loads (e.g., earthquake acceleration) by

calling the S-function. Note that within S-function, the client forms and sends the

associated command to OpenSees using the established connection. It will then wait for

OpenSees to run the requested analysis and send back the structural response needed to

advance the entire model.

Step IV: On the server side, once OpenSees receives commands from the client for a specific

action with new model parameters and/or loads, it performs the following actions: (1)

updates the model by using the parameterization framework of OpenSees, performs the

requested analysis, gets the required structural responses (e.g., resisting force), and (2)

sends them back to the client through the same connection (and thus to Simulink). These

actions are achieved by using TCL commands and taking advantage of the existing

parameterization framework in OpenSees. After these actions are completed, OpenSees

stops and waits for further commands from the client.

Step V: After Simulink receives these responses, it incorporates these FEA results into the

Simulink simulation, and continues to advance the mathematical model. When Simulink

needs to perform FEA with a new set of parameters and/or input loads, the steps (III) to

(V) are repeated.

 The implementation details of above outlined procedure are given in Appendix A.

Fig. 1 Simulink – OpenSees integration by using CS technique

Integrating OpenSees with other software - with application to coupling problems 89

3. Advantages and disadvantages of CS technique

Advantages of integrating OpenSees into various software platforms by using the CS integration

are summarized below:

(i) It is very easy to program and maintain. Both software platforms keep their main flowchart

unchanged. On the OpenSees server side, a very limited amount of programming work using

TCL is required and there is no need to interfere with the OpenSees’ source code. On the

client side, instead of integrating OpenSees software, a cheap/tiny client is integrated into the

other software platform by using their application programming interface (API), therefore not

increasing the complexity of the entire coupling system. The maintenance (e.g., debugging,

further development, or improvement) of the TCL code and the client side code is usually

very easy. Compared with other general integration framework like UI-SimCor hybrid

simulation framework, the presented CS technique is much easier for users to implement and

maintain considering that UI-SimCor needs a heavy third-party software to deal with various

platforms (Kwon et al. 2005).

(ii) It is efficient. The OpenSees model is persistent in the memory and thus there is no need to

release or reload the model during the entire analysis process. The connection between client

and OpenSees server is established through a fast speed socket channel. Furthermore, a small

amount of data needs to be transferred between client and server. Only necessary data

requested by the software platform (e.g., specified nodal displacements which are a set of real

numbers) and those sent back to FEA software (e.g., an updated acceleration at one time step

which is a real number) are transferred. The demonstration examples below show that the extra

time due to the communication and transferring data between OpenSees and other platforms is

almost negligible. Further study of which the details are not documented here shows that for

more complex coupling systems where moderate amount of data (e.g., 1~5 Mb) is transferred

between the client and server, extra time needed for communication and data transfer between

the two platforms is much less than the computational time and thus is negligible.

(iii) It is flexible. Users are allowed to update the properties of the FE model or loading

parameters at any time step by using the parameterization framework in OpenSees. And the

cheap/tiny client can be flexibly integrated into various software platforms by using their API.

Furthermore, although not necessary for the CS technique to work, by enhancing the

OpenSees software with new commands such as “tryOneStep” (i.e., getting converged solution

but not updating the variables of previous step by those of the current step),

“revertToLastStep”, and “commit” (i.e., updating the variables of previous step by those of

current step), the CS technique is able to work together with implicit algorithms (e.g., Newton

iterative algorithm) inside the other software platform.

(iv) It is robust. Connection between the client and server is set up only once by the network

socket using TCP/IP or other protocol (e.g., UDP) at the beginning of the analysis and is held

at all time (refer to step II in section 2). Once the connection is set up, it provides a reliable

communication method due to the robustness of the internet protocol (note that both the client

and the server are on the same computer).

(v) It has a broad application area. OpenSees is a powerful FEA software framework and widely

used in the academic and engineering disciplines. The CS technique allows OpenSees to be

integrated in a wide range of coupling problems where FEA software is required to simulate

structural responses.

90 Quan Gu and Ozgur Ozcelik

When compared with OpenFresco (Schellenberg et al. 2006) in which FEA is a client instead of a

server, the presented integration method has different application areas: when OpenSees analysis

engine is used as a server, it allows the client (thus the other software platform) to be the main

program, controlling the flowchart of the entire coupling system. On the contrary, if OpenSees is set

as a client (as in OpenFresco), it will always be the main program, with its rigidly structured FEA

software framework being the main flowchart of the entire system. This may limit the range of

application of the coupling system; in other words, it may not be able to accommodate the case that

the other software’s flowchart is the main program flowchart of the entire coupling system.

Disadvantages of integrating OpenSees into various software platforms by using the CS

integration are summarized below:

(i) Users need to learn basic programming skills using TCL. The cheap/tiny client on the other

software platform needs to handle TCL commands, thus usually the client needs to be linked

and compiled with the TCL library.

(ii) The cheap/tiny client needs to be integrated into other software platforms by using their API.

This could be a limitation if the other software does not have suitable API for this integration.

(iii)Although both OpenSees and the other software are in the same machine, an internet protocol

(e.g., TCP/IP) is required due to the fact that the communication between them is achieved by

using a network socket.

(iv) The data transferred between OpenSees and the other software is a string stream in ASCII

format and usually very small (much less than 1 Kb). However for some very special cases in

which the amount of transferred data is large (e.g., the client asked for the entire stiffness

matrix of structure, which may be larger than 10 MB), the current communication method

needs to be improved. One solution to overcome this difficulty is to develop or use new

protocols and using formatted binary data for the data exchange between OpenSees and other

platform (e.g., NHCP protocol) (Cowart et al. 2007).

It is worth mentioning that the presented CS integration technique should be understood as a

modification/extension of the concept of the Internet-enabled distributed services framework based

on web services model developed (Peng and Law 2004). However in the presented integration

method, OpenSees provides services to another software instead of computer users. More

importantly, it takes advantage of the powerful existing TCL functions and the parameterization

framework of OpenSees to change OpenSees into a service program without interfering with its

source code. Furthermore, the CS technique is focused on the integration, and thus uses one-server-

one-client in local communication mode (i.e., both OpenSees and the other platforms are on the

same machine, and thus poses no risk of communication loss due to possible internet failure).

It should be noted that the presented integration method can be potentially extended to intranet or

internet with the same programming method except that in the “socket” command, the remote

machine’s IP address needs to be provided (refer to Appendix A). This technique as well as other

techniques (e.g., OpenFresco) can potentially be used in hybrid physical testing, where part of the

model is physically tested, and part is numerically modeled. In this case, the OpenSees will be the

server and the client will be the physical model. However, the communication between OpenSees

and the other software platform may be disconnected due to the fact that the internet connection

may be lost. Thus the CS technique used in distributed systems needs further development. As

mentioned earlier, one possible solution is to develop special protocols to handle the case of internet

failure, such as the one used in NHCP (Cowart et al. 2007).

Integrating OpenSees with other software - with application to coupling problems 91

4. Application examples

In this section, three application examples are presented to illustrate the various applications of the

CS technique.

4.1 Example 1. Linear shake table - linear structure interaction

The first example is used to verify the coupling system, by comparing the results obtained based

on CS technique with those obtained analytically (i.e., closed form solution). A shake table with a

specimen mounted on its rigid platen is modeled by a coupling system composed of Simulink and

OpenSees where a simple model of a shake table (servo-hydraulic system) is programmed in

Simulink and a finite element model of a linear single-degree-of-freedom (SDOF) specimen is built

using OpenSees. The integration of OpenSees and Simulink is achieved by using the CS technique.

The transfer function estimated using the coupling system is compared with its counterpart obtained

analytically using Simulink-only in which both shake table and specimen are modeled (note that in

this example, the linear elastic specimen model is simple enough to model in Simulink).

Considering that the main focus of this paper is about the integration of two software platforms, the

details regarding the modeling of the shake table and a SDOF specimen are not fully presented

here; however interested readers can refer to the related literatures (Ozcelik 2008, Williams et al.

2001, Shortreed et al. 2001, Crewe and Severn 2001, Conte and Trombetti 2000, Thoen and

Laplace 2004).

The block diagram for a linear servo-hydraulic shake table system with a proportional-integral-

derivative (PID) controller and a force feedback stabilizing term is given in Fig. 2 (Ozcelik 2008).

The closed-form formulation of the closed-loop table transfer function between the actuator force

and the reference displacement signal can be obtained from Fig. 2 by algebraic manipulations. In

Fig. 2, Gh(s) is the transfer function between flow into the actuator and actuator force, where s is

the Laplace variable, and Gxf (s) is the transfer function between actuator force f and table

displacement x, which includes the dynamics of the SDOF specimen mounted on the rigid platen

Fig. 2 A linear table with controller - linear specimen interaction model in Simulink (Simulink only model)

92 Quan Gu and Ozgur Ozcelik

(thus including the interaction between specimen and shake table). The remaining model parameters

shown in Fig. 2 are: A = effective actuator piston area, kq = linearized flow gain, kP = proportional,

kD = derivative, kI = integral, and kDP = force-feedback control gains (Ozcelik 2008).

Magnitude-phase responses of the transfer function of the closed-loop system shown in Fig. 2 can

be obtained analytically (i.e., in closed-form). The following model parameters are used in this

example A = 0.3324 m2, kq = 3600 lit/min/Volts, mpl = 144 ton, kP = 1.50 V/V, kDP = −0.15 V/V,

kD = 0.0 V/V and kI = 0.0 V/V. The dynamic parameters of the SDOF system are ms = 65 ton, ξs =

3%, ωs = 12.5664 rad/s.

Using the CS technique, SDOF specimen can be modeled with OpenSees instead of Simulink so

that the powerful analysis and modeling capabilities of OpenSees can be taken advantage of, which

greatly improves the modeling capability of the coupling system (i.e., in order to potentially model

the complicated nonlinear structural system). The block diagram of the coupling system (a linear

shake table modeled with Simulink and SDOF linear specimen modeled with OpenSees) is shown

in Fig. 3. Inside the block of Gxf (s) in Fig. 3 (i.e., block in dashed-line), a client is created by

OpenSim.dll, and then used in the coupling system to replace the part of specimen model in

Simulink. Once the platen acceleration is known, inertial forces can be calculated and the

specimen resisting force fs can be computed by OpenSees. By using OpenSees’ capacity of

modeling nonlinear systems, real complicated RC buildings on shake table can be modeled using

the method presented herein.

Fig. 4(a) and 4(b) show the magnitude and phase response plots, respectively, of the model

obtained by running the simulation under a band-limited white noise (WN) input (i.e., [0.25-20] Hz),

with root-mean-square (RMS) amplitude equal to 0.13 g. The actuator force f obtained by analyzing

the Simulink-OpenSees model (i.e., coupling system) was combined with the input u to estimate a

transfer function between u and f. The magnitude and phase plots of the transfer function as a

function of input frequency are compared with those obtained analytically.

x··

Fig. 3 A linear table with controller - linear specimen interaction model in OpenSees -Simulink coupling
system achieved by using the CS technique

Integrating OpenSees with other software - with application to coupling problems 93

As shown in Fig. 4, the analytically and numerically obtained transfer functions match almost

perfectly, implying that the CS technique used in the coupling system is trustable. Discrepancies

observed at very low frequencies are due to estimation errors. WN acceleration input is band-

limited, and therefore the system is not excited at very low frequency range (i.e., <0.25 Hz). Also,

the peak and notch pair observed around the natural vibration frequency of the SDOF specimen at

2 Hz is slightly missed in the estimated results, which can be attributed to the resolution problem in

the estimation procedure due to the length of the recorded shake table response in time domain.

In order to study the efficiency of the communication between OpenSees and Simulink, the

accelerations imposed on the OpenSees model as well as the responses (i.e., resisting force of the

structure) of the structure are recorded while solving the coupling system. These recorded platen

accelerations are then imposed on the same specimen model in OpenSees-only model (i.e., no

Simulink model of the shake table), the resisting forces from the OpenSees-only model are

compared with the recorded resisting forces from the coupling system. It is observed that the two

forces are in perfect agreement. The computational time of the OpenSees-only analysis is about

90% of that used in the coupling system. It should be noted here that, the Simulink model of the

shake table is linear and very simple, and thus its computational time is almost negligible when

compared with the total computational time of the coupling system. This shows that communication

between the Simulink and OpenSees using CS technique is very efficient.

4.2 Example 2. Nonlinear shake table - nonlinear structure interaction

The complex dynamics of large shake table systems emanate from multiple dynamic interactions

and nonlinearities among various system components (Conte and Trombetti 2000, Thoen and

Laplace 2004, Ozcelik 2008, Dyke et al. 1995, Trombetti and Conte 2002, Ozcelik et al. 2008,

Fig. 4 Comparisons of the (a) magnitude and (b) phase responses of the analytical and numerical transfer
functions of the linear shake table model with a linear specimen

94 Quan Gu and Ozgur Ozcelik

Ozcelik et al. 2008, Luco et al. 2010). The platforms of this example are the same as those in the

Example 1 (i.e., Simulink and OpenSees) except that both shake table and the specimen are

modeled as complicated nonlinear systems. The details of the nonlinear shake table model with a

controller composed of feedback as well as feedforward terms can be found in the literature

(Ozcelik 2008, Ozcelik et al. 2008, Ozcelik et al. 2006).

In order to investigate the nonlinear table - nonlinear specimen interaction problem, a two-

dimensional three story shear frame is used as the specimen (Fig. 5) and modeled using OpenSees.

Beams are considered rigid to enforce a typical shear-building behavior and therefore only one

horizontal degree-of-freedom (DOF) is assigned to each floor. Floor masses are assumed to be

lumped at floor levels. Physical characteristics of the shear-frames are summarized in Table 1. The

parameters is the initial story stiffness of each floor. Natural frequencies, natural periods, and

effective modal mass ratios for the undamped structure are given in Table 2. Viscous damping in

the form of Rayleigh damping is assumed with damping ratio ξ = 0.03 for the first and second

modes of vibration.

k3stry

i

Fig. 5 Three-story shear frame mounted on the shake table platen

Table 1 Physical characteristics of the three story shear-frame

Mass [kg] [MN/m] Story height [m]

1st Story 65,000 76.3636 2.75

2nd Story 59,760 61.0909 2.75

3rd Story 49,540 61.0909 2.75

Total 174,300 N/A 8.25

Table 2 Modal analysis results for the linear elastic undamped one-bay 3 story shear-frame

Mode # Natural frequency [Hz] Natural period [sec] Effective modal mass ratio [%]

1 2.51 0.40 89.00

2 6.67 0.15 9.57

3 9.26 0.11 1.43

k3stry

i

Integrating OpenSees with other software - with application to coupling problems 95

The story shear force – interstory drift relation for the columns are modeled using the nonlinear

Menegotto-Pinto (M-P) material constitutive model (Filippou et al. 1983, Barbato and Conte 2006).

The model parameters are: E = 2.1E5 MPa, b = 0.10; R0 = 200, a1 = 18.5, a2 = 0.15, a3 = a4 = 0.0.

Elastic story shear forces obtained using the Downtown Los Angeles area are reduced by a force

reduction factor of R4 = 4.0. Thus, the reduced story initial yield strengths for the shear frame

become: 510.0 kN, 400.6 kN, 211.1 kN for the first, second and third story, respectively.

The total base shear force acting on the shake table platen at point O (Fig. 5) can be calculated

using the absolute specimen acceleration response retrieved from OpenSees at each time step. The

equation of motion of the platen with respect to point O (Fig. 5) can be written as (the specimen’s

dynamic effects are also included)

(1)

where MO is the effective mass of the shake table platen (assumed rigid), nonlinear function f(t) is

the total actuator force acting on the platen, nonlinear function fs(t) is the total specimen shear force,

which is calculated using OpenSees. The Simulink implementation of the nonlinear shake table with

a nonlinear MDOF specimen has the same implementation topology as that of the linear case,

however their implementation details are different since the nonlinear relations and a different

control law are used for modeling the shake table and the specimen system. In this example, the

partial differentiation equation (PDE) solver used in Simulink is the 4th order Runge-Kutta Method

(Ozcelik 2008), which requires function evaluations (call to OpenSees) at intermediate integration

time steps. The seamless integration of OpenSees into Matlab Simulink by using CS technique

achieves this complicated coupling system.

Fig. 6 shows the estimated magnitude response of the transfer function between the actuator force

as input and the platen acceleration as output. Transfer functions with solid and dashed lines are the

coupled models with a linear elastic specimen (R1) and a nonlinear specimen (R4), respectively

(Fig. 6). From Fig. 6, it is observed that three different peak and notch pairs occur at the vicinity of

the natural frequencies of the linear specimen (R1). This example illustrates that the newly

developed CS technique can be used to couple complicated nonlinear systems modeled using two

different simulation platforms.

u··O t() MO

1–
f t() fs t()–{ }=

Fig. 6 Comparison of the magnitude plots of the estimated Gfudd(s) for the nonlinear shake table model with a
linear specimen (R1) and a nonlinear specimen (R4)

96 Quan Gu and Ozgur Ozcelik

4.3 Example 3. Soil structure interaction (SSI) problem

In this application, a new analysis framework is presented which solves SSI problems based on

the substructure method in time domain. In this framework, the analytically obtained frequency

dependent compliance functions of a rigid foundation sitting on a uniform or layered linear elastic

half-space is modeled in time domain using discrete-time recursive filters (Safak 2006) and the

linear or nonlinear superstructure is modeled by the FEA software OpenSees. The substructure

method in block diagram format for soil-structure interaction problems is shown in Fig. 7 (Luco

1980). The total response u of the rigid foundation at the center of the foundation can be written as

(2)

where ug is the recorded free field input motion and us is the additional motion of the foundation

imposed by the generalized forces and moments that the rigid foundation exerts on the soil. The

foundation displacement u excites the foundation and thus the structural system, and the force Fs

from the structure to the soil is obtained by OpenSees analysis as a function of u. The motion us

can be calculated in the frequency domain by

(3)

where is the compliance matrix of the rigid foundation embedded in a soil medium (Luco

1980, Mita and Luco 1989, Luco and Apsel 1983, Luco and Mita 1987, Sieffert and Cevaer 1991).

The frequency dependent impedance functions (i.e., inverse of the compliance matrix) can be

represented in time domain by discrete time recursive filters as described in Safak (2006). In this

method, impedance functions of various soil-foundation assemblies are represented with discrete-

time recursive filters using an estimation procedure in the frequency domain. By taking the inverse

Z-transform of these filters, the frequency dependent impedance functions (or compliance functions,

u us ug+=

us C ω()Fs u()=

C ω()

Fig. 7 A SSI analysis framework based on the substructure method in time domain, (achieved by using the
CS technique)

Integrating OpenSees with other software - with application to coupling problems 97

) can be transformed into time domain as difference equations (difference equations are linear

combinations of the current and past time steps soil responses), which in turn can be used in

standard time history analysis (Safak 2006).

The unknown foundation displacement u and us in Eqs. (2) and (3) can be solved iteratively using

an implicit Newton algorithm (Hildebrand 1974), as shown in Fig. 7. For each iteration, given a

trial input displacement u, OpenSees performs one-step base excitation analysis and obtains Fs, the

force exerted to the soil by the structure. Then in Eq. (3) can be calculated by

the soil filters represented in time domain. Newton algorithm computes the residuals between

and , and gets a new trial displacement u based on its updating rule (Hildebrand 1974). This

iteration process continues until the convergence is reached. As shown in Fig. 7, a cheap client is

integrated into the presented SSI framework for achieving efficient communication between SSI

system and OpenSees at each time step.

As shown in Fig. 8, a SSI system with one-bay one-story frame structure on a surface rigid square

foundation sitting on a uniform elastic half space is taken as an application example. The frame is

modeled with linear elastic beam/column elements with H = 6.3 m, L = 25.2 m, and the equivalent

column section width b = 6.24 m. The lumped mass at floor level is 7,550 tons. Elastic modulus for

columns and beam are Ec = 2.7 × 1010 N/m2, Eb = 2 × 1014 N/m2, respectively. The first and second

natural vibration frequencies of the structure are f1 = 2.33 Hz and f2 = 13.94 Hz, respectively.

Rayleigh damping is used with viscous damping ratio ξ = 1% for the 1st and 2nd modes. For the

soil, the mass density is ρ = 1.874 × 103 kg/m3, the shear wave velocity is β = 400 m/s, and the

hysteretic damping ratios are ξβ = 0.001 and ξα = 0.0005, Poisson’s ratio is υ = 1/3.

Fig. 9 shows the comparison between the analytical and estimated compliance functions where

CHH, CMM, and CHM(=CMH) are horizontal, rocking and coupling compliance functions, respectively.

An implicit method based on Newton’s method is used in the analysis with integration time step of

∆t = 0.0039 seconds (i.e., 1/256 seconds).

C ω()

us

2()
C ω()Fs u()=

us

1()

us

2()

Fig. 8 Frame structure sitting on the rigid surface foundation embedded in half-space soil medium

98 Quan Gu and Ozgur Ozcelik

In Fig. 10, the analytical solutions for the horizontal responses of the foundation-soil system,

normalized by the amplitude of the free-field ground motion, are compared with their numerical

counterparts using the SSI time domain solution framework. The analytical solutions can be found

in literature (Luco 2005).

Fig. 9 Comparison of the magnitude and phase responses of the analytically and numerically estimated
frequency dependent compliance functions

Fig. 10 Comparison of normalized analytical vs. numerical displacement frequency response functions of
various response quantities

Integrating OpenSees with other software - with application to coupling problems 99

The resonance frequency obtained by the two methods agrees perfectly (i.e., 1.76 Hz). Amplitude

errors for the absolute and relative displacement of the structure, and the translational and the

rocking motions of the soil are 8%, 7%, 8%, and 1%, respectively. These differences might be

attributed to the fact that structural model is not an ideal SDOF system, Rayleigh damping can

specify damping ratios for only two different natural frequencies, and there are discrepancies

between the estimated and real compliances due to the accuracy of the estimation procedure.

However, the results are acceptable for practical purposes.

5. Conclusions

Integration of finite element analysis (FEA) software into other software platforms is commonly

used in coupling systems such as structural control, fluid-structure, wind-structure, soil-structure

interactions and substructure method where FE analysis must be used for obtaining structural

responses. In this study, a new integration technique, named CS technique, is presented for

integrating a general purpose FEA software OpenSees into various other software platforms. By

extending the internet based client-server concept, taking advantage of the powerful TCL language

on which the OpenSees’ interface is built, and using the advanced parameterization framework of

OpenSees, the CS technique greatly simplifies the integration problem. With this technique, only a

cheap/tiny client is required to be integrated into the other software platform. There is no need for

any programming work in OpenSees. The integration method presented is efficient, flexible, robust

and very easy to implement, therefore provides an ideal solution for engineers and researchers

seeking a practical and simple method to integrate OpenSees into other platforms. The limitation of

this method is that the cheap client may not be easily integrated into other software if the software

does not have suitable API for this integration. Implementation and uses of the CS technique are

illustrated and verified using three application examples, involving integration of OpenSees into

Matlab Simulink® and a novel soil structure interaction (SSI) system for solving both linear and

nonlinear coupling/interaction problems. The presented CS technique proves as an excellent solution

for these types of coupling problems.

Acknowledgements

The research was partially supported by the Fundamental Research Funds for the Central

Universities of China under Award No. 2010111075. This support is gratefully acknowledged. The

writers would like to thank Professor Joel P. Conte and Professor J. Enrique Luco from University

of California at San Diego for their invaluable discussions and advices during this research work.

References

Barbato, M. and Conte, J.P. (2006), “Finite element structural response sensitivity and reliability analyses using
smooth versus non-smooth material constitutive models”, Int. J. Reliab. Saf., 1, 3-39.

Cattarius, J. (1999), “Numerical wing/store interaction analysis of a parametric F16 wing”, Ph.D. Dissertation,
Virginia Polytechnic Institute and State University.

100 Quan Gu and Ozgur Ozcelik

Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J. (2001), Concepts and Applications of Finite Element
Analysis, 4th Edition, John Wiley & Sons Inc., NY.

Conte, J.P. and Trombetti, T.L. (2000), “Linear dynamic modeling of a uni-axial servo-hydraulic shaking table
system”, Earthq. Eng. Struct. D., 29(9), 1375-1404.

Cowart, C., Hubbard, P., Miller, L. and Crawford, G. (2007), NHCP Reference Implementation and Protocol
Reference Guide, Version 1.0, NEES Cyber-Infrastructure Center, University of California, San Diego.

Crewe, A.J. and Severn, R.T. (2001), “The European collaborative programme on evaluating the performance of
shaking tables”, Phil. Trans. R. Soc. Lond A, 359, 1671-1696.

Dabney, J. and Harman, T.L. (2004), Mastering Simulink, Pearson/Prentice Hall, NJ.
Dyke, S.J., Spencer, B.J., Quast, P. and Sain, M.K. (1995), “Role of control-structure interaction in protective

system design”, J. Eng. Mech., 121(2), 322-338.
Elnashai, A., Spencer, B., Kuchma, D., Ghaboussi, J., Hashash, Y. and Gan, Q. (2004), “Multi-axial full-scale

sub-structured testing and simulation (must-sim) facility at the University of Illinois at Urbana-Champaign”,
Proceeding of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, August.

Filippou, F.C., Popov, E.P. and Bertero, V.V. (1983), Effects of Bond Deterioration on Hysteretic Behavior of
Reinforced Concrete Joints, Report EERC 83-19, Earthquake Engineering Research Center, University of
California, Berkeley.

Gawronski, W.K. (1998), Advanced Structural Dynamics and Active Control of Structures, Springer-Verlag, NY.
Hildebrand, F.B. (1974), Introduction to Numerical Analysis, 2nd Edition, McGraw-Hill, NY.
Kwon, O.S., Nakata, N., Elnashai, A.S. and Spencer, B.A. (2005), “Framework for multi-site distributed

simulation and application to complex structural systems”, J. Earthq. Eng., 9(5), 741-753.
Luco, J.E. (1980), Seismic Safety Margins Research Program, Linear Soil-structure Interaction, Lawrence

Livermore Laboratory, California, UCRL-15272.
Luco, J.E. and Apsel, R.J. (1983), “On the green’s functions for a layered half-space: Part I”, Bull. Seismol. Soc.

Am., 73, 909-929.
Luco, J.E. and Mita, A. (1987), “Responses of the circular foundation on a uniform half-space to elastic waves”,

Earthq. Eng. Struct. Dyn., 15, 105-118.
Luco, J.E. (2005), Soil-Structure Interaction: Class Notes, University of California San Diego.
Luco, J.E., Ozcelik, O. and Conte, J.P. (2010), “Acceleration tracking performance of the NEES-UCSD shake

table”, J. Struct. Eng., 136(5), 481-490.
McKenna, F. (1997), “Object-oriented finite element programming: frameworks for analysis, algorithms and

parallel computing”, Ph.D. Dissertation, University of California, Berkeley.
McKenna, F., Scott, M.H. and Takahashi, Y. (2004), “An object-oriented software environment for collaborative

network simulation”, Proceeding of the 13th World Conference on Earthquake Engineering, Vancouver,
Canada, August.

McKenna, F., Scott, M.H. and Fenves, G.L. (2010), “Nonlinear finite element analysis software architecture using
object composition”, J. Comput. Civil Eng., 24(1), 95-107.

Mita, A. and Luco, J.E. (1989), “Impedance functions and input motions for embedded square foundations”, J
Geotech. Eng., 115(4), 491-503.

Ozcelik, O. (2008), “A mechanics-based virtual model of NEES-UCSD shake table: theoretical development and
experimental validation”, Ph.D. Dissertation, University of California, San Diego.

Ozcelik, O., Luco, J.E., Conte, J.P., Trombetti, T.L. and Restrepo, J.I. (2008), “Experimental characterization,
modeling and identification of the UCSD-NEES shake table mechanical system”, Earthq. Eng. Struct. D., 37,
243-264.

Ozcelik, O., Luco, J.E. and Conte, J.P. (2008), “Identification of the mechanical subsystem of the NEES-UCSD
shake table by a least-square approach”, J. Eng. Mech., 134(1), 23-34.

Ozcelik, O., Conte, J.P. and Luco, E.J. (2006), “Virtual model of the NEES-UCSD high performance outdoor
shake table”, Proceeding of the 4th World Conference on the Structural Control and Monitoring, San Diego,
July.

Paidoussis, M.P. (2004), Fluid-structure Interactions, Slender Structures and Axial Flow, Vol. 2, Elsevier
Academic Press.

Pan, P., Tomofuji, H., Wang, T., Nakashima, M., Ohsaki, M. and Mosalam, K.M. (2006), “Development of peer-

Integrating OpenSees with other software - with application to coupling problems 101

to-peer (p2p) internet online hybrid test system”, Earthq. Eng. Struct. D., 35, 867-890.
Panagiotou, M.P. and Restrepo, J. (2007), Computational Model for the UCSD 7-story Structural Wall Building

Slice, Report SSRP-07/09, University of California, San Diego.
Peng, J. and Law, K.H. (2002), “A prototype software framework for internet-enabled collaborative development

of a structural analysis program”, Eng. Comput., 18, 38-49.
Peng, J. and Law, K.H. (2004), “Building finite element analysis programs in distributed services environment”,

Comput. Struct., 82, 1813-1833.
Safak, E. (2006), “Time-domain representation of frequency-dependent foundation impedance functions”, Soil

Dyn. Earthq. Eng., 26, 65-70.
Schellenberg, A., Mahin, S. and Fenves, G.L. (2006), “Software framework for hybrid simulation of large

structural systems”, Proceedings Structures Congress, ASCE, Long Beach.
Scott, M.H. and Haukaas, T. (2008), “Software framework for parameter updating and finite element response

sensitivity analysis”, J. Comput. Civil Eng., 22(5), 281-291.
Shortreed, J.S., Seible, F., Filiatrault, A. and Benzoni, G. (2001), “Characterization and testing of the caltrans

seismic response modification device test system”, Phil. Trans. R. Soc. Lond. A, 359, 1829-1850.
Sieffert, J.G. and Cevaer, F. (1991), Handbook of Impedance Functions, France Quest Editions, Presses

Academiques, Paris.
Thoen, B.K. and Laplace, P.N. (2004), “Offline tuning of shaking table”, Proceeding of the 13th World

Conference on Earthquake Engineering, Vancouver, Canada, August.
Thoen, B.K. (2004), 469D Seismic Digital Control Software, MTS Corporation, MN.
Trombetti, T.L. and Conte, J.P. (2002), “Shaking table dynamics: results from a test analysis comparison study”,

J. Earthq. Eng., 6(4), 513-551.
Welch, B.B. (2000), Practical Programming in Tcl and Tk, 3rd Edition, Prentice-Hall Inc., NJ.
Williams, D.M., Williams, M.S. and Blakeborough, A. (2001), “Numerical modeling of a servohydraulic testing

system for structures”, J. Eng. Mech., 127(8), 816-827.
Yoshikazu, T. and Fenves, G.L. (2006), “Software framework for distributed experimental-computational

simulation of structural systems”, Earthq. Eng. Struct. Dyn., 35, 267-291.

102 Quan Gu and Ozgur Ozcelik

Appendix A

In this section, the program implementation of the presented CS technique is illustrated by an example,
coupling OpenSees with Matlab-Simulink® (denoted as Simulink herein).

Server side: At the very beginning of the analysis of the entire coupling system (refer to step I of the
section 2 and Fig. 1), the following TCL scripts in OpenSees are run to set up OpenSees as a server:

source model.tcl
socket -server accept 7200
vwait forever

where “model.tcl” is the TCL input file that defines an FE model (refer to step I in Fig. 1. The TCL com-
mand “source” will run the “model.tcl” to set up the model. “model.tcl” may also include extra TCL
commands that perform analysis for initial loads (e.g., gravity loads). The second command “socket” creates a
server socket with port number 7200 (it can also be set to other port numbers) and a callback procedure
“accept” to execute the requested commands whenever the client connects to this server socket and send TCL
commands. The third command “vwait” sets the server to wait for requests from the client. A simple user-
defined TCL function “accept” may be defined in server side as

proc accept {sock ip port} {
fconfigure $sock -blocking 1 -buffering none
fileevent $sock readable [list respond $sock]

 }

fconfigure command sets and queries properties of the socket (Welch 2000). The command “fileevent” regis-
ters a procedure response that is called to provide the real service when the socket is ready for a reading, i.e.,
after the client finishes sending command to the socket. The user defined procedure “response” will provide
the service for the client (refer to step IV of the section 2). One example of this “response” procedure is

proc respond {sock} {
 if {[eof $sock] || [catch {gets $sock data}]} {

close $sock
 } else {

eval $data
global Fx, My

 getTotalResistingForce ; # into Fx, Mx
 puts $sock "$Fx, $My"

return
 }
 }

The command “gets $sock data” will get the data from the client via the socket $sock (which is usually a
string stream including an OpenSees analysis TCL command with parameters) and saves it to the variable
$data. Then “eval $data” will run the command (e.g., run OpenSees one step). The user defined TCL proce-
dure “getTotalResistingForce” calculates the total resisting forces (e.g., shear force $Fx, and moment $My) at
the end of the current run, by using the analysis output of OpenSees (e.g., nodal accelerations) which can be
accessed by TCL commands (e.g., nodeAccel). The above actions are referred to as step IV (1) of the section
2. The command “puts” will write these forces to the socket (and thus sends them back to the client, refer to
step IV (2) of the section 2).

Client side: The client is a C++ object called “OpenSeesHandler” that holds the socket connection from the
OpenSees server (see Fig. 1), and is in charge of sending command to OpenSees and getting requested
responses back from OpenSees via the socket connection. In the illustration example, Simulink is the other
software platform coupled with Opensees. The client (“OpenSeesHandler” object) is created as a persistent

Integrating OpenSees with other software - with application to coupling problems 103

object inside a user defined S-function of Simulink at the initialization stage of the Simulink analysis (refer to
step II of the section 2). In order to be able to use the TCL library, the user-defined C++ based S-function is
compiled and linked together with the TCL library. Thus in the C++ code, it is possible to handle TCL
commands. For example, a function Tcl_Eval() can be called to run TCL commands in the C++ code. Follow-
ing TCL scripts are performed to set the connection with OpenSees at the beginning of the process of creating
the “OpenSeesHandler” object (i.e., in the constructor of the class), which is referred to as step II of the
section 2:

set s [socket localhost 7200] ;
fconFig.$s -buffering none ;

By running this TCL code, OpenSeesHandler sets up and holds connection to OpenSees by TCL socket
“$s” (Note that the same port number 7200 is used in the server side). Then at every analysis step, when it
receives a command from Simulink requesting a one-step analysis with parameters such as new acceleration
accel and the time step dt, it will form and run the following TCL commands through socket “$s”

puts $s "runOpenSeesOneStep 1 $dt $accel "
gets $s

The first client side command “puts $s” sends the command “runOpenSeesOneStep 1 $dt $accel” to the
OpenSees server (referred to as step III of the section 2) and wait the response from OpenSees. As already
described above, when the OpenSees server receives this command, it calls the server side procedure
“respond” which performs the following server side TCL codes (refer to step IV of the section 2).

eval $data
global Fx, My
getTotalResistingForce ; # into Fx, Mx
puts $sock "$Fx, $My"

Note that at the beginning of procedure “respond”, the command “gets $sock data” gets the command
“runOpenSeesOneStep 1 $dt $accel” and saves it to the variable “$data”. After OpenSees finishes the above
requested service, it send back the requested responses (i.e., “$Fx, $My”), then stops and waits for next call
from Simulink. The client side command “gets $s” gets “$Fx, $My” through the socket $s (referred to as part
(2) of step IV). The OpenSeesHandler thus obtains the responses ($Fx and $My) which will in turn be used
by Simulink to advance the simulation (referred to as step V). The data amount transferred between the client
and the OpenSees server is very small for this example (i.e., two strings: “runOpenSeesOneStep 1 $dt $accel”
and “$Fx, $My”).

Following is a brief summary of the detailed client side programming work in Simulink (i.e., how to write
the user-defined S-function and OpenSeesHandler in client side): the persistent object OpenSeesHandler is
created inside the macro mdlStart in S-function. Whenever Simulink asks OpenSeesHandler to run OpenSees,
it calls mdlOutputs macro in its S-function with parameters. This macro then asks OpenSeesHandler to form a
specific TCL command (e.g., runOpenSeesOneStep) and sends it to the OpenSees server (i.e., puts $s
“runOpenSeesOneStep ..”). Simulink will wait until the responses from the OpenSees server is obtained by
OpenSeesHandler, and then continue the analysis. Detailed discussion about writing S-functions in Simulink
can be found in the literature (Dabney and Harman 2004).

