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Stochastic finite element analysis of plate structures
by weighted integral method
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Abstract. In stochastic analysis, the randomness of the structural parameters is taken into consideration
and the response variability is obtained in addition to the conventional (mean) response. In the present
paper the structural response variability of plate structure is calculated using the weighted integral method
and is compared with the results obtained by different methods. The stochastic field is assumed to
be normally distributed and to have the homogeneity. The decomposition of strain-displacement matrix
enabled us to extend the formulation to the stochastic analysis with the quadratic elements in the weighted
integral method. A new auto-correlation function is derived considering the uncertainty of plate thickness.
The results obtained in the numerical examples by two different methods, ie., weighted integral method
and Monte Carlo simulation, are in a close agreement. In the case of the variable plate thickness,
the obtained results are in good agreement with those of Lawrence and Monte Carlo simulation.

Key words: stochastic finite element analysis, weighted integral method: auto-correlation function; mate-
rial and geometrical randomness; Monte Carlo simulation.

1. Introduction

When the structure is analyzed with finite element methods, the assumption that the structures
have deterministic parameters is implicitly accepted. Thus the element stiffness matrix is formed
based on the assumption that the elastic modulus, Poisson’s ratio, and the thickness are constant
throughout the domain of structures. However, in real structures, the material and geometrical
properties have certain uncertainties, thus the assumption of spatial and/or temporal uncertainties
of the structural parameters need to be adopted in the analysis. The spatial uncertainties include
the material and geometrical uncertainties, and the load varying with time can be classified
as one of temporal uncertainties.

The deterministic hypothesis of structural parameters can be considered as an ideal case.
Traditionally, the engineers consider the uncertainty of the structures in his design problem
through the increase of the safety factors almost arbitrarily. However, this approach lacks the
theoretical background (Kleiber and Hein 1992) and therefore the stochastic analysis should
be performed with consideration of the randomness of parameters. The stochastic analysis can
be divided into two major categories. The first category is the method using a statistical approach,
which includes the Monte Carlo simulation (MCS). The MCS uses the real random fields generat-
ed according to the assumed statistics of the stochastic field. Therefore, this method can be
considered as an exact solution scheme, which can be attained with large number of generated
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samples. As an alternative to the MCS, the Neumann expansion method can be used in which
the solution scheme of the structural matrix is improved by the use of the Cholesky’s matrix
decomposition, thus the computing time of analysis can be reduced (Yamazaki 1988). The second
category is the nonstatistical approach which includes the numerical integration, second moment
analysis, and the stochastic finite element analysis (Liu, Belytschko and Mani 1986).

Until now, the study on stochastic analysis has been heavily concentrated on the topics consider-
ing the influence of the spatial randomness of elastic modulus on the structural response variabi-
lity. In the present study, in addition to the material property randomness of the elastic modulus,
the spatial randomness of the plate thickness as a geometrical uncertainty are analyzed using
the weighted integral method. The use of the weighted integral method is expanded to apply
to the quadrilateral elements. The key to the expansion is the decomposition of the strain-displace-
ment matrix into the constant matrices multiplied by the independent polynomials. Some numeri-
cal examples are provided for the validation of the proposed schemes.

2. Weighted integral method

The weighted integral is defined as the integration of the stochastic field function f(x) multiplied
by the known deterministic function #(x) over the given domain. The domain of integration
is the area of each element in the case of the two-dimensional finite element analysis. The
integrated term is a kind of random variable that can be denoted as X.

X= j fE)x)d KEQY, NTN) (1)
o

In the process of application into the real problem, the unknown stochastic field function f(x)
is replaced by the auto-correlation function (Deodatis, Wall and Shinozuka 1991) defined as

Ri{(H=ELf(x)f(x2)]). &=x—x Q)

where, E[ » ] is an expectation operator and ¢ is a separation vector between two points x,
and x, in the structural domain. As being seen in Eq. (2), the main characteristic of the auto-
correlation function is that this function is only a function of separation vector & This function
assumes the maximum value when the separation vector has the value of zero (0.0), and decreases
exponentially with the increase of the value of separation vector. This function is included in
the formulation for the covariance of response (see Egs. (20) and (29)).

3. Formulation for stochastic finite element anslysis

The 8 node plate elemenmt with nonconforming modes (Choi and Kim 1989) is used in
the analysis. The displacement field including the nonconforming modes can be written as Eq.

3)
=2 N+ 2 N, 3)

With this displacement field, the load-displacement relation can be derived as the following
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partitioned matrix equation, where ‘¢’ and ‘n’ denote the contribution from the conforming
and non-conforming modes, respectively.

Ka' Kcn Uu. |_ R
EEa N @
The additional degree of freedom L_l_;S in Eq. (3) are condensed out by the static condensation
and then the final form of the stiffness takes the form as follows

K’ :KCC _—KC" Kl’l; : KL"IT (5)

For the stochastic analysis, the elastic modulus £ and the thickness of the plate ¢ are assumed
as a function of x, ie., E=E(x), t=(x). Where, x is the position vector of a point in the structural
domain. The element stiffness matrix can be written as

K= f B'D,Bd0 (6)
Qé’

The first stochastic field to be considered is the spatial randomness of the elastic modulus
E. The field of elastic modulus is assumed to have the following form (Deodatis, Wall and
Shinozuka 1991).

EX)=E,[1+f(x)] (7

where, the mean value and the stochastic field of elastic modulus are denoted by E, and f(x),
respectively. The mean value of the stochastic field function is zero (0.0). The stochastic function
is assumed to be homogeneous and to have the Gaussian distribution. The Gaussian distribution
can be defined by the two terms; ie., the mean and the standard deviation. With Eq. (7), the
constitutive matrix can be written as follows

D=D,[1+f(x)] t)

Separating the B matrix in Eq. (6) into B, and B, the stiffiness matrix can be written as

K":f B"D,BdfY°
né'

:f BbTDeBbdne+f B.YTDeBsd'QC
of Q¢

=K, +K; ©)

where, the subscripts b and s mean the bending and shear contributions, respectively. With
the substitution of Eq. (8) into the element stiffness Eq. (6). The stiffness matrix can also be
separated into two parts; iec., the mean stiffness and deviatoric stiffness, as

K=K+ AK*
K/=Ku+Kg
AK'=AKS+AK (10)

The strain-displacement matrix B used in calculating the deviatoric stiftness AK® can be written
as the summation of a constant matrix B; multiplied by the independent polynomials p.,.
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Bb:Bblphl +Bb2pb2+ o +BbNbprb
B=B, p,,+B,,p,,++B,, p (1

where, N, and N, are the number of independent polynomials in B, and B; respectively. Only
with this expansion of B, the formulation of stochastic analysis using the weighted integral beco-
mes possible for the quadrilateral element where the strain-displacement matrix contains. the
function of polynomials, unlike the constant strain triangle (CST) where the strain-displacement
matrix contains constant terms only.

With the substitution of Eq. (11) into the last equation in Eq. (10), two deviatoric stiffness
equations for the bending and shear stiffness which include the random variable X; can be
obtained.

.AKbE:f f()C) B,,TngB,,d.Qe
né’
=B,/ D,’By Xit +(By| D,’By,+B,I D' By) X% +++-+B,,! D, By, Xnbws (12a)
AKf= f fG)BID,;B,d$
nl?

:Bs]TDosleX]; +(Bs|TDosBs2+BszrDaSB.vl)Xl; +-+B TDOSB_,N;X]\";;-NS (12b)

SNs
where, X§=f S &) peipydS2
Q(’

c¢=b: bending, s shear
l’lew 25 R Nb or Ns‘

Since the element stiffness matrix K¢ contains the deviatoric stiffness, it is a function of random
variable Xj and thus the overall structural stiffness matrix K is also a function of random variable
Xj.

AK*=function of X, c=b or s
thus K & K=function of X, ij=1, 2, -=-, N, or N, (13)

As the stiffness matrix in_the equilibrium equation is a function of random variable X, the
displacement vector U, which can be obtained from the inversion of stiffness matrix multiplied
by the force vector, can also be assumed as a function of random variable X.

4. Stochastic analysis of displacement

In this chapter the random variable is denoted as Xjj; to indicate the weighted integral method.
The superscript ‘e’ means the random variable for each element. Consider now the first-order
Taylor series expansion of the displacement vector U about the mean value of the random
variable X5 .

N, N
UsU+ Y f(xv;,—xvsg ( j/‘%l )F (14)

e=1 WI=1

where, ‘0’ means the mean value and (¢ ); denotes the calculation at the mean value.
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In the above equation the last partial derivative term can be calculated by partially differentiat-
ing the equilibrium equation KU=F with respect to Xuf and then evaluating the value at the
mean (Deodatis, Wall and Shinozuka 1991, Choi and Noh 1993). That is

OK , . . 0U\_
(qu/?J+K o*’XW;) 0

auy\ _ . [ 7K
(dXﬁ)ﬁ - Ko <8XW;>]; UO (15)
Thus substituting Eq. (15) into Eq. (14), the following result is obtained.
No N
UxU~Y > XK, —ﬂi—) U, (16)
e=1 WI=1 oXr Ji

With the above equation, the first-order approximation of the mean vector and the covariance
matrix of displacement vector U can be easily found as

E[U]=U, (17
CovlU U]
E[(U-UXU-U,)]
N, N, N, N, T
., K T( aK) _T> o ve
IDIP3 > (x S U s | KT ELK 6, (18)

where, E[ ¢ ] is the mean or expectation operator.
The above equation can be simplified by using the definition of the stiffness matrix that
is divided into constant matrices and random variables (Eq. (12a) and (12b)).

N, N
ColUU]= Y K;'ELAK"U,UTAK]K, T (19)

ey e

Now, terms in the expectation operator can be arranged utilizing the definition of the auto-
correlation function as follow

E[AK"U,US"AK?]

:fn PJQ f’E[f(x‘)f(x2):] BFTDOBPI Uo UoTBegDoBezd()Zednle
1 2

:J y J  Re(& &)BID,B.,U,UTBLD,B.,d0d 0y 0)
1 2

The function used is

Ro(6. &)=ai » exp|—LE1HIELL e

where, d is the correlation distance, &'s are components of the separation vector ¢ in the plane
Cartesian coordinate system, and oy is the coefficient of variation (COV) of the stochastic field.
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5. Response variability due to randomness of thickness

One of the parameters that have spatial uncertainties for plate structures is the plate thickness.
The plate thickness may have difterent values at one point to another in the structural domain
even though the nominal thickness of the plate is assumed to be the same. Thus the plate
thickness can be assumed to have stochastic properties like the elastic modulus. However, the
influence of this parameter on the structural response may be different from that of elastic
modulus since the stiffness matrix is third order function of the thickness.

K=K (t(x)") (22)

while the stiffness of the plate is first-order function of the elastic modulus.
The stress-strain matrix D, can be written as

2utA A0
3 _ -
D=2 "5 044 0 23)
12
0 0 u
with the Lameé parameters which are expressed as follows.
u=G= E G= 2Au A= 2Gv (24)

20+ 7 A2 1—2v

The spatial variation of the plate thickness can be modeled as a stochastic field and takes
the following form which is the same as that of elastic modulus.

10)=1,(1+/(x)) (25)

where the stochastic field function fix) of the plate thickness has the same characteristics of
the function assumed for the spatial randomness of the elastic modulue E. With the substitution
of Eq. (25) into Eq. (23), D, can be divided into two parts as;

D.=D,+AD
where AD=(f+3*+/%)D, (26)
Substituting the above equation into the element stiffness matrix equation Eq. (6), the following
equation can be obtained

K= f B'D,Bd¥+ f Gf+32+1°) BTD, BdS¥
e o

=K+ AK* @7

where D, is obtained from D, with the mean value of the thickness 7, and the matrices K,°
and AK* are the mean stiffness and the deviatoric stiffness, respectively. With the stiffness matrix
in Eq. (27), the same procedures as used for the case of the randomness of elastic modulus
can be utilized for the stochastic analysis of displacement with the randomness of the plate
thickness (Egs. (10)(19)). The different influence of these two random parameters, ie., the elastic
modulus and the plate thickness, on the variability of structural response can be seen in the
deviatoric stiffness equation. In the case of spatial randomness of the plate thickness, the terms
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in Eq. (20) are slightly different from those of the spatial randomness of elastic modulus, i.ec..
E[AK"U,U,"AK*]

:E,:fn e.fn ('(3f1+3f'2+f13)(3f2+3f22+f23)ByTD(,B] U, (JUTBzTDaBzd-Q’zednf:I
1 2

:fn PJ;} E [(3f1 +3/2 G L3S +f23)] B'D,B,U,U,B,"D,B,d 2 d )¢ (28)
1 2

Denoting the term in the mean operator in the above equation as I_Qﬂ(é ). the equation is rewritten
as

E [AKel Ug UUTAK()ZJ _JQ efﬂ (,Eﬁ“(éf) BITD()BI Uo l]()TBZTDoBZd{)Zed‘Ql() (29)
1 2

where, the newly derived auto-correlation function E_ﬁ(f) can be rearranged as Eq. (30) according
to the general formula for the expectation of random variables.

Ry(£)=(9+ 1807 +907) Ry(&)+ 18R7(£) + 6R}(£) + 90} (30)
Ry(¢)=auto-correlation function of f(x)
op=coefficient of variation of random field

This auto-correlation function represents the characteristics of the random field of plate thickness.
This new auto-correlation function is needed in calculating the covariance of the structural respo-
nse where the stiffness of the plate is a third-order function of thickness.

Through the stochastic finite element analysis, the structural response variability, using the
field function assumed to have the stochastic properties, can be obtained. The terms must be
obtained by the analysis are the first-moment (mean) and the second-moment (covariance) of
the structural response. The variance of response reveals the effects of the spatial uncertainties
of the uncertain structural parameters on the structural response. The variability of the response
can be denoted by the COV which is expressed as the following equation

1/2
ax(comz[g"[;(’j‘g] =G 31)

A

It is the indication of the relativesvalue of variance of the response to the mean value.

6. Numerical example
6.1. Results for material randomness

The first example problem is a square plate with two different boundary conditions; ie. a
simple boundary and a clamped boundary. A unit distributed load is applied in the downward
direction. The length of the side is 20 and only a quarter of the plate is actually needed to
be modeled due to the symmetry (Fig. 1). To be strict, the variations of the elastic modulus
and the plate thickness may disturb the symmetry of the structure. However, since the coefficient
of variation of the random field is small, the asymmetries introduced by the stochastic field
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Fig. 1 Modeling of example problem (case of simple support).
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Fig. 2 COV vs. d (weighted integral method).

100

are small enough to be neglected. The value of variance of the vertical displacement is sought
at the center point A. The structural parameters used are: the elastic modulus £=10.29E+03,
Poisson’s ratio v=0.3, and the mean thickness of the plate 7,=1.0. The coefficient of variation
of the random field (op) assumed to be 0.1. All the parameters are used without units so that
any units can be specified as long as they are used consistently. For the integration of auto-
correlation function in Eq. (20) and (29), a 10X 10 gauss quadrature is used.

The result of the weighted integral method is compared with that of the MCS. The sample
generation technique used is a statistical preconditioning (Yamazaki and Shinozuka 1990), with
which fairly good statistics can be obtained with a relatively small number of the generated
sample fields.

The first result is for the spatial randomness of the elastic modulus. Fig. 2 and 3 show the
changes of COV of the displacement due to the different values of correlation distance d of
the auto-correlation function at the center point A in Fig. 1. In the MCS nelem Xnf X4 samples
are used, where nelem is the total number of elements used in the finite element model, nf
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Fig. 3 COV vs. d (MCS).

is the number of cosine terms involved in generating random fields. As the value of d approaches
to infinity, the COV value converges to the value of coefficient of variation of the random field
assumed to be 0.1

The two extreme values of convergence (i.e., at d=0 and d=0o0) can be explained as follows.
When d=0, there is no correlation between any set of two points in the domain, and each
stochastic field f(x) can be thought as a white noise process. In this case the variance of response
is zero (0.0). The small value of d related to the stochastic field of short wave length, ie., a
number of waves can be contained in the small region of the field. In this case, a randomly
generated constant which is used to represent the stochastic field function can not represent
the field appropriately. Thus, in the case of MCS the irregular results appear for the small
values of correlation distance d. As can be seen in Fig. 3, the results are improved as the number
of elements used is increased.

When d=co, it means the perfect correlation between any two points and each sample function
f(x), consists of waves of a very large wave length, and therefore, is considered to be a constant
/i over the entire domain of structure. In other words, the elastic modulus £ is a contant over
the whole domain of the structure. Then the ensemble of £}, £, fs, =** represents a random variable
f(Shinozuka 1987). Hence, the stochastic field function f(x) in this case is in effect a random
variable with a zero mean and standard deviation of. Since the displacement is linear depending
on the elastic modulus the COV of displacement is equal to the standard deviation of stochastic
field assumed to be 0.1.

The mean value of displacement for the weighted integral method and the MCS are in good
agreement with each other with the maximum difference of 045% for 6X6 mesh of simply
supported plate. For the case of MCS, a coarse mesh (e.g. 2X2) may lead to an inaccurate
results as shown in Fig. 3 and therefore, the use of a too simple mesh should be avoided.
It is expected from the fact that the random fields can be well represented when a large number
of elements are used in the analysis.

Fig. 4 shows the influence of mesh division on the value of COV when the proposed weighted
integral method is used in the analysis. This figure shows the convergence of the COV value
as the mesh division is changed, from 2X2 to 8X8 while 4 value is fixed to be 2.0 as an
example. The observation of this figure reveals that only a small change of the COV value
is produced as the mesh is refined after 4X4. This indicates that a reasonable result can be
obtained with a relatively small number of elements. Since the CPU time increases almost expone-
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Fig. 4 Influence of element division.

Table 1 Comparison of results (d=2.0)

Boundary

Method condition Simple support Clamped support
Modeling 2X2 4X4 6X6 2X2 4X4 6X6
Weighted Mean 06588 06593  0.6591 02116 02131 02129
Integral Variance 00191 00218  0.0225 00062 00066  0.0068
MCS Mean 06617 06621  0.6621 02116 02133 02134
Variance 00393 00288  0.0260 00126 00091  0.0081

ntially as the mesh is refined, the above feature is very useful.

Table 1 shows the comparison of the mean and variance values obtained by the two different
methods: namely, the weighted integral method and the MCS. As the mesh is refined, the difference
between two results decreased. A little larger value of COV is obtained by the MCS which
is a general trend which has also been reported previously by Lawrence (1987).

6.2. Results for geometrical randomness

Fig. 5 and Fig. 6 show the results of stochastic finite element analysis for the spatial randomness
of the plate thickness for plate in Fig. 1. For this analysis, the newly derived auto-correlation
function Rg(¢£) which represents the characteristics of the thickness-varying random field is used.

In this case, the converged value of COV at the infinity (d= ) is approximately 0.3 for both
the weighted integral method and MCS which is approximately 3 times as large as that obtained
for the spatial randomness of elastic modulus.
~With Eq. (30), when d=0, the function becomes independent of the variable of separation
vector & and the auto-correlation function has a value of approximately 0.0, thus the new auto-
correlation function becomes

Ry($)=Y0; (32)

For the case d= oo, the value of Ry() becomes of, thus the new auto-correlation function has
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Table 2 Comparison with the results of Lawrence

Boundary conditions Simple support Clamped support
Method Proposed MCS Proposed MCS
This study Mean 0.01286 0.01348 0.006275 0.006527
d=o Standard deviation 0.00395 0.00424 0.001929 0.002038
Lawrence Mean 0.01339 0.01349 0.006467 0.006491
d=o0 Standard deviation 0.00389 0.00413 0.001877 0.001968
Mean ratio

(This study/Lawrence (1987)) 0.9607 1.0000 0.9703 1.0055
Standard deviation ratio 10154 10259 10277 10356

(This study/Lawrence (1987))

713

the value of 907 +450;7+ 1504, and these values are used in calculating the covariance by Eg.

(29).

For the comparison of the results with that of Lawrence (1987), the variability of the deflection
of a square plate with the spatial randomness under the deterministic central point load is
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studied. The same material and geometrical properties are used as used by Lawrence.

Elastic modulus E=10X10" Poisson’s ration v=03 Length of plate L=100.0
Central point load P=1000 Mean Thickness =10 Standard deviation of thickness 0.10

Table 2 shows the comparison of the results obtained by the weighted integral method using
the 6X6 mesh with that obtained by Lawrence for both the simple and the clamped boundary
conditions. The results obtained by the MCS is also presented for each case. The correlation
distance d is taken to be infinity, which means the thickness at various points are perfectly
correlated.

In case of the proposed scheme, the values of the coefficient of variation obtained are 0.3075
for both the simple and the clamped boundary conditions. For the mean value, the result of
Lawrence is approximately 4% larger than that of the present study. However, the value of standard
deviation appears to be slightly larger for this study than that of Lawrence. Thus, it can be
stated that the standard deviation, ie., the target value of the stochastic analysis, is evaluated
more appropriately in the present study. When the Heterosis element is used all the results
reveal a less value than given in Table 2, ie., the nonconforming plate bending element gives
the results in the safe side.

For the MCS, only 720 samples are used in this study, which is a rather small number compared
with 10,000 which Lawrence used. Even though a small number of samples are used, the results
appear to be reasonably good. The small sample number implies the less CPU time, thus endows
the computational efficiency.

7. Conclusions

In the present study, the spatial randomness of the elastic modulus E and the plate thickness
¢ are taken into consideration in the stochastic finite element analysis by the weighted integral
method. The decomposition of the strain-displacement matrix in the stochastic formulations
enabled us for the first time to extend the use of the weighted integral method for quadrilateral
finite elements.

The new auto-correlation function in Eq. (30) can be effectively used for the analysis of the
response variability of the problems with the randomness of plate thickness. The new function
is derived in terms of the original auto-correlation function in Eq. (21) and the coefficient of
variation of the stochastic field.

The numerical examples show the robustness of the method, and reveal a fairly good agreement
with the results of the MCS for both the material and geometrical randomness and with those
of Lawrence for geometrical randomness as well. For the randomness of the thickness, the value
of COV is approximately three times as large as that obtained for the randomness of elastic
modulus. Thus, the randomness of the plate thickness can be considered to have more influence
on the response variability of plate structure than the elastic modulus.

Utilizing the nonconforming plate bending element, a more reasonable results can be obtained
as compared with the case of using the Heterosis element. In the weighted integral method,
the covariance of response is calculated based on the mean value, thus the use of more improved -
element is generally recommended.

More research on the method to deal with the randomness in loading and the multiple random-
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ness of the structural parameters in the field of weighted integral method in needed in the
future.
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