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Abstract. Green's functions are obtained in exact closed-forms for the elastic fields in bi-material elastic
solids with slipping interface and differing transversely isotropic properties induced by concentrated
point and ring force vectors. For the concentrated point force vector, the Green functions are expressed
in terms of elementary harmonic functions. For the concentrated ring force vector, the Green functions
are expressed in terms of the complete elliptic integral. Numerical results are presented to illustrate
the effect of anisotropic bi-material properties on the transmission of normal contact stress and the
discontinuity of lateral displacements at the slipping interface. The closed-form Green’s functions are
systematically presented in matrix forms which can be easily implemented in numerical schemes such
as boundary element methods to solve elastic problems in computational mechanics.
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1. Introduction

Green’s functions are introduced to represent the distribution of displacements and stresses
in an elastic solid due to the action of concentrated forces prescribed either at the boundary
surface or in the solid interior. Closed-form Green’s functions are the peculiar ones which can
be expressed in terms of elementary or special functions whose mathematical characteristics
are well known. The main motivation of seeking Green’s functions in elasticity originates from
the fact that Green’s functions can be employed to construct solutions for many problems of
practical importance by using various analytical and numerical methods including eigenstrain,
dislocation methods, boundary integral equations and boundary element methods (see, e.g., Elliott
1948, Mura 1982, Hasegawa and Kondou 1987, Lin and Keer 1989, Hanson 1992).

The objective of this paper is to present Green’s functions in exact closed-form for elastic
field in bi-material solids by taking into account the influences of slipping interface and transver-
sely isotropic material properties. At a bi-material interface, slipping generally occurs when the
interface shear stress reaches a limiting value based on a frictional law of Mohr-Coulomb type.
There are many mathematical difficulties to consider such a more realistic situation of frictional
bi-material interface. This paper considers a simplified and idealized situation of imperfect inter-
face where the interface shear stress is assumed to be zero. Such idealized model of a slipping
interface provides a mathematical convenience to obtain closed-form solutions of the Green's
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functions in bi-material solids and is a limiting case of the general frictional interface following
Mohr-Coulomb type law. In some bi-material problems, the interface between the two materials
fails in shear at relatively low shear stresses while a complete material contact is maintained
(Dundurs and Stippes 1970). Such situations can arise in geotechnical engineering, bioengineering
or composite materials (see, e.g, Gladwell and Hara 1981, Gharpuray et al. 1991, Selvadurai
1994, Wijeyewickrema and Keer 1994). For instance, a precompressed slipping bi-material interface
was used by Gladwell and Hara (1981) and Selvadurai (1994) to examine unilateral contact
problems in geomechanics.

Classical studies of the relevant elastic problems were given by Dundurs and Hetenyi (1965)
who derived Green’s functions for point forces parallel to, and perpendicular to the slipping
contact interface between two dissimilar isotropic semi-infinite solids using the Papkovich-Neuber
displacement functions. These closed-from results were used by Yuuki e al. (1987) to formulate
bounde{fy element methods for efficient elastostatic analysis. Pan and Chou (1979) obtained
closed-form Green's functions for point force perpendicular to the slipping contact interface
of two transveresly isotropic elastic halfspaces using potential function technique. More recently,
using the method of images, Vijayakumar and Cormack (1987a) have extended the closed-form
results to cover Green’s functions for isotropic bi-material elastic solids with slipping interface
subjected to nuclei of strain. Further studies related to closed-form Green'’s functions for bi-mate-
rial elastic solids were given by Rongved (1955), Plevako (1969), Pan and Chou (1979), Vijayakumar
and Cormack (1987b), Yu and Sanday (1991), Hasegawa et al. (1992a), as well as Yue (1995).
In all these studies, the bi-material interface is assumed to be fully bonded.

In this paper, closed-form Green’s functions are presented for a transversely isotropic bi-material
solid of infinite extent with a slipping interface. The isotropic planes of the anisotropic bi-material
solid are parallel to the slipping interface. Green's functions due to concentrated point and
ring force vectors are simultaneously examined using Fourier integral transforms (Fig. 1). In
particular, the ring force vector is a force vector uniformly concentrated along a circular ring
in the interior of the bi-material solid. The loaded circular ring is parallel to the bi-material
interface. The closed-form (Green’s functions due to the ring force vector can be utilized in
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(a) Point force vector (Fx,Fy,Fz) (b) Ring force vector (Pr, B, Pz)

Fig. 1 A transversely isotropic bi-material solid with a slipping interface subjected to force vectors.
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eigenstrain and boundary element methods to more effectively solve axisymmetric and torsional
boundary value problems in elasticity (Hasegawa and Kondou 1987, Hasegawa et al. 1992b).
For the concentrated point force vector, the Green functions are expressed in terms of elementary
harmonic functions. For the concentrated ring force vector, the Green functions are expressed
in terms of the complete elliptic integrals. Numerical results are presented to illustrate the effect
of anisotropic bi-material properties on the transmission of normal contact stress and the disconti-
nuity of lateral displacements at the slipping interface. The Green’s functions are systematically
presented in matrix forms which can be easily implemented in numerical schemes. The closed-
form results can also be used as benchmark solutions for the development and verification
of purely computational schemes such as finite element methods to attack mechanical problems
in bi-solids associated with a Mohr-Coulomb type frictional interface.

2. Boundary conditions and governing equations

We consider the Green’s functions of elastic fields in two joined dissimilar transversely isotropic
solids subjected to concentrated point and ring body force vectors. The first solid occupies the
halfspace region (k=1; 0" <z<+ o) and has ¢, (j=1~5) as the five transveresly isotropic material
constants. The second solid occupies the halfspace region (k=2; —0<z<07) and has ¢, (j=1~5)
as the five transveresly isotropic material constants. The two dissimilar solids are bonded without
friction at the interface z=0, ie., U,l.—o* =u.l.—o~, Oul.=o* =0,|,~o~, and O_|,—ot =0, [,_o+ =0.
For the force vector f(x, y, z) concentrated at a point (0, 0, #) (Fig. la), the Cartesian coordinate
system (Oxyz) is used and f(x, y, z2)=F.6(x)8(y)8(z—h), where &( ) is a Dirac delta function
and F,=(F,, F,, F.)". The superscript 7 stands for the transpose of matrix. For the force vector
f(r, 6. z) concentrated uniformly along a circular ring (r=a, z=h) (Fig. 1b), the cylindrical coordi-
nate system (O r@ z) is used and f(r, 6, z)=P,5(r—a)b(z—h)/(2mr), where a is the radius of the
loaded circle, and P,=(P,, Py, P.)’. Without loss of generality, the body force vectors are assumed
to be located in the interior of the first solid (k=1), ie, A>0.

A brief account of the governing equations can be presented as follows in a Cartesian tensor
notation. The constitutive equations governing the linear relations between stresses (0;) and strains
(&) in the bi-material transversely isotropic solid take the form

Ou=Cibatlen—2sley T en s On=241 &
0,= Lew—2esi)eat e & Tk &z Op= 204 &
o':::(;Zk 80+CZk sljv+c3k &z O;jv - ZCSk 8x1 (1)

The strains are related to the displacements (u;) by
1
&=, ) 2

The governing equations are complete with the specification of equations of static equilib-
rium.
%, +£=0 ©)

where f; is the body force vector; i j=x, y, or z; for z 207, the subscript k=1; and for z<0,
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the subscript k=2.

3. Governing equations in the transform domain

We take the two dimensional (2-D) Fourier integral transforms of Egs. (1) to (3) with respect
to the horizontal coordinates (x, y) in the Cartesian coordinate system (Sneddon 1972). As a
result, we obtain the following sets of solution representations for the field variables in a transver-
sely isotropic elastic halfspace (Yue 1995).

u(x, y, 2)231;[7 J; %Hw(g", n. z)Kdédn

1 + oo .

Ty D=5 | | v n aKdedn
1 ([

Ly 9= | | mwe n aKdédn
1 (7

we == [ pItute y K+ ddy

| o

Y.(& m, Z)ZEJ f II*T,(x, y, z) K* dxdy

g€ no=o-| [ mre K duy @

where K=e'“**" and i=+/—1. The above 2-D integrals are in the sense of the Cauchy principal
values. The vector fields in Egs. (4) are defined by u=[u,, u,, u.)", T,=[0,, ©,, 6.1 f=[f.,
5 LI L=6w, & 6,17 w=[wi, wo, w3l Y.=[1, © wl’, and g=[g, g, &1" K* and IT* are
respectively the complex conjugates of K and I1

i in ¢ én,
P P 2 p?
_|in =i __| % n’=¢&
== o O} A . pr Y
0 0 1 —Z% i’} 0 (5)

In the following, we shall note that wz)=w(¢, n, 2), Y.2)=Y.(& n, z) g(z)=g(<& n, z) for simplicity.
In particular, g(z)=g&(z—h) for the body force vectors concentrated at the horizontal plane z=A.

The partial differential Egs. (1)~(3) governing the behaviour of a transversely isotropic solid
can then be reduced to two sets of first-order ordinary differential equations in the Fourier
transform domain. Solving these ordinary differential equations, we can obtain algebraic equations
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governing the field variables in the bi-materials transversely isotropic solid.

(i) For k=1(0" <z<+ o), the algebraic governing equations can be expressed as follows in
terms of the six boundary variables at z=0".

2 2 2
QW(Z):I: Ze*pzm Anl] w(0+)+[ Ze'pzr,,l Bnl]n(0+)+|: Z e Plz=hlt @n]g
n=0

n=0 n=0

2 2 2
2Yz<z)=[2ew Cm] w(0+)+[ 2 e P Dnl]n(0+)+[ 2 et v’] g (©)

n=0 n=0 n=0

(1i) For k=2(— o<y, z<0"), the algebraic governing equations can be expressed as follows
in terms of the six boundary variables at z=0".

2w(z):[ ie"”’"zAn;_] w(0" )+[ f eP?n2 an]yz(())

:20 nfz()
2n(z):[ > evema an] w(0“>+[ > et Dnz]n(o—) ™)

where 4,4, By, G, D, @,, and ¥, (n=0, 1, 2; k=1, 2) are 30 constant square matrices and

are given exactly in Appendix A. yOk:\/% D Yu= &%t B vu=a— B, where
4

ak:[ ( {c'lkcy(_.cy()(, /¢ Cyt ot 204) ]1/2 i ﬁk:[ (\/_ cicuteuX ClkCSk—CZk—zc‘lkL]l/z

4eycu deyi e

If \/cieCse— e 2c4=0, (then Y= Yu=(cu/c3x)"), the governing equations for w(z) and Y,(z)
can be obtained by taking the limit as ¥,,—Vx in Egs. (6) and (7). This degenerated case includes
the solids which exhibit isotropic material properties, where Yu=Yu=Yx=1, cu=cu=A+2,
=M and cu=cs=M; A and g are the Lame’s constants.

4. Green’s functions in the transform domain

By putting z=0" into Eq. (6) and z=0" into Eq. (7), we can have six independent algebraic
equations governing the twelve unknown boundary variables w(0) and Y,(0*) at the slipping
interface. Using the slipping interface condition, we can have the following six results of w(0")
and Y(07): wi(0")=wy(07), 5(0")=15(07), t(0")=7(07)=0, and (0")=1(0")=0. Solving the
twelve independent linear algebraic equations, we can obtain the following solution for w(0*)
and Y,(0%) in terms of g.

2
Wi O+):|:Zep’”’nl P”l]g

n=0

w(()*):[ 267["77111 Pnz:l g

n=0

n(0+)=m0):[ > e Q,,]g ®)

n=0
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where Py (k=1, n=0, 1, 2; k=2, n=1, 2) and Q,(n=1, 2) are 7 constant square matrices and
are given exactly in Appendix A.

Substituting the results of Eq. (4) into Egs. (6) and (7), we can obtain the Green’s functions
of w(z) and Y,z) in terms of g as follows.

(i) In the solid region k=(0" <z <+ o), we have

4

2w(z)=[Ze’”’"' D, + Ze""'z”"ynl ¢n]g

m=0 n=0

4 2 :
zyz(z):[ze-pzmn v, + Ze*p‘z"”’"l ‘I’n]g C)]

m=0 n=0

(ii) In the solid region k=2(—c <z<0"), we have

2w(z)=|: ie"’zm? 45,,,2] g

m=0

4

zn(z):[ Qe e m] g (10)
m=0

where Zo1= 701 (h+Z), 211:}’11(}1+z), 231:711h+7212,'231:7/21h+YHZ, Z41:Y21(h+2); 212:}/11}1_}/122,

Zn=Yuh— Yoz, zn="Yah—Yuz, zp=Ynh—"nz; and @, and ¥, k=1, m=0, 1, 2, 3, 4; k=2,

m=1, 2, 3, 4) are 18 constant square matrices and given exactly as follows:

Dy =Ao Py

¥ =Co Py

Dy =Au P+ By Q)
Dy =Ay P+ By Q:
Dy =A\ P+ By O
Dy =Ay P+ By Q>
Y =CyPy+Dy Q)
Vo= Cu P+ Dy Q)
¥, =Cy Py +Dy Q,
Yy =Cou Py +Dy Q5

5. Green’s functions in the physical domain

5.1. A general force vector

For simplicity, we re-express the solution of w(z) and Y,(z) in Egs. (9) and (10) in the following
general form.

wz)=dg,  Y.)=¥g (11)

where @ and ¥ are square matrices and are functions of Pz and Ph. Using Egs. (4) and (11),
we can systematically present the solution of the displacements u, the vertical stresses 7., and

the plane strains I, in the bi-material solid due to a general body force vector f(x, y) 8(z—h)
concentrated at the horizontal plane z=#.
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_ 1 +j°°L
u==-] » H®dgKdédn

o3}

_ L[
L=~ f L O ¥gKd&dn
1 ("
L=—- f f 1T, &g K dédn (12)

where —oo<x, y, z<+ .
5.2. The point force vector

For the concentrated point force vector, we have g=II*F./(2n). The solution can then be
expressed in the forms of 2-D inverse Fourier transforms.

1
4

u= ff %Htpﬂ*ngfan(.

[ .
r=-h f L MV IT*gK dédnF.
h=4=| | memgkasanr. (13)

where —co<yx y z<+ o, m#).
5.3. The ring force vector

In the ensuing. the cylindrical coordinates systems are used for Green's functions due to
the force vector uniformly concentrated along a circular ring (r=a, z=h). The relationships bet-
ween the Cartesian and cylindrical coordinate systems in both physical and transform domains
are defined by x=rcosf, y=rsinf; and &= psing, n =pcose. After the coordinate transformation,
the solution in Eq. (12) can be expressd in the forms of Fourier series expansions. In particular,
for the concentrated ring force vector, the solution can be expressed in the forms of Hankel
transform integral involving the products of the Bessel functions of order zero to second.

u= f My (pr) @Iy (pa)dpP,
0

T.= f p I, (pr) ¥y (pa)dpP,
4]

L= o aton @M o), (14)
O



476 Zhong Qi Yue

where 0<r <+, 0L0<2m —oo<z <+ and \/(r—ay+E—h)+0; u="[u,, uy, u.]”; T.=[0,,
Gy, 0.1" I,=[¢&w, €. &)". The matrices IT(X) and IL,(X) are defined by

—Ji(X) 0 0
Hom:( 0 @) 0 )

0 0 Jo(X)
1 JoX)—JAX) 0 0
I (X)=—+ 0 J(x) 0 (15)
0

Jo)+J2(X) 0

where J,,(X) is the Bessel functions of order m(m=0, 1. 2).
5.4. Closed-form Green's functions

The improper integral in Egs. (13) and (14) can be analytically calculated. As a result, closed-
form solutions can be obtained for the Green’s functions associated with the concentrated point
and ring force vectors as follows.

(i) In the solid k=1(z<0"), we have

4 2
e DXGCESRE S NACHEIA Al
m=( n=0

4 2
T::[ZG\[Ow Zmls le]+ ZGt[:L ‘Z_h|y,,1q Yln:leF

m— 0 n=0

4 2
L=| 26,020 0,0+ 26,01 -, 2| (16)

m=10 n=1{

(ii) In the solid k=2(z<07), we have

4
u :[ Z Gr [05 Zmds QIIZJ]F

m= 1

4
T: :[ Z Gv [ l- AN WmZ]jIF

m=1

4
17):|: Z G/)I:L Zms ¢n12]]F (17)

m=1

a) For the point force vector. the solution is presented in the Cartesian coordinate system
(Oxyz) F=F. The square matrices G,.[a z. @] and G,[a z, @] (a=0. 1. z20) are defined
in the following

4G, [a, z, S]Zz—lnf f p* e P IIS IT* K dédn
£a02(2) —8u1(2) 0
o |

—gan (@) ganl(z) O
0 0 0
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Sllgall(Z) S118e02(2) S1&aon @)

( Sugazo(z) S118a11(2) S138a10(2) )
+
—8318a10(2) —S318201(Z) S1&w(2)

+ o
4nG,lq, z, S]:—;—ﬂf f p* te P IIpSIT* K d&dn

ga2(2) —8uwi(2) 0
:SZZ(%[ga(B(Z)—gazl(Z)] %[galo(z)—gan(z)j 0 )
—8a12(2) a1 (2) 0

S1gai(2) Sngalz(l) _Slsgau(Z) (18)

( Sugwo@)  Snuga1@  —Sigan(@) )

_+.

—Snga:2)  S1ga03(@) —S8138.02(2)

where g4;(z) (0<i+/<3) are elementary functions and are given explicitly in Appendix B.
b) For the ring force vector, the solution is presented in the cylindrical coordinate system

(Or8z), F=P, The square matrices G,[a z, @] and G,[a, z, @] (a=0, 1; z20) are defined

in the following.

4nG.[a z. S1= pte s Ih(pn) S Ih(pa)dp
0

Sigai (@) 0 —S13qa10(2)
- 0 Szgqau(Z) O
—=85314001(2) 0 S33gq00(2)

4nG,lat1, z, S]:f pee I (pr) S I (pa)dp
0

S11q@+no @) 0 —S19@+1y00(2)
:( 0 %SZZQ((HI)OI @) 0 )
0 0 0
Shga(2) 0 ~S139a0(2)
”i— ( 0 S2nqai(2) 0 ) (19)
—S14qa () 0 S13Ga10(2)

where g,;(z) (=0, 1;j=0, 1) are functions of the complete elliptic integrals and are given explicitly
in Appendix B. In Egs. (18) and (19), S is a constant square matrix and is defined by

Sn 0 S13 )
S:( 0 S» 0 ) (20)
SSI O S33

The solution of the vertical strains I;=[gs, &3, &3] and the plane stresses T,=[0,, 0y, 05,]"
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can be easily and uniquely found by using the constitutive relation Eq. (1) and the solution
of I, and T..

6. Numerical results

Two transversely isotropic materials are selected for the numerical evaluation. One is magne-
sium (¢;=41.19, ;=14.79, ¢;=42.57, ¢,=11.32, ¢s=11.56 kPa) and the other is zinc (¢,=111.02,
¢, =34.57, ¢;=4209, ¢,=2643, ¢s=4395kPa) (Lin and Keer 1989). Two isotropic solids called
m-iso (A=19.0, u=11.44 kPa) and z-iso (A=6.175, p=35.19 kPa) may be estimated from magnesium
and zinc, respectively, using the assumption that u=0.5 (cs+cs) and A+2u=05(c;+cs). As a
result, we have the following four cases of material properties for the bi-materials:

case 1: magnesium for z20" and magnesium for z<0";

case 2: magnesium for z20" and zinc for z<0;

case 3: m-iso for z>0" and z-iso for z<0~ and;

case 4. m-iso for z20" and m-iso for z<0".

In particular, case 1 (or case 4) represent a transversely isotropic (or an isotropic) elastic solid
of infinite extent with a slipping interface.

Fig. 2 and Fig. 3 illustrate the transmission of normal contact stresses at the slipping interface
due to the point forces (F,, F.) and the ring forces (P,, P,), respectively. The normal contact
stress distribution are different for the four cases of the bi-material properties. The normal contact
stress may be tensile if an inclined point (or ring) force acting toward the slipping interface,
which means the slipping interface must be precompressed (Dundurs and Hetenyi, 1965).

Fig. 4 and Fig. 5 illustrate the discontinuities of lateral displacements at the slipping interface
of the bi-material case 2 due to the point forces (F,, F.) and ring forces (P,, P,, P,), respectively.
The corresponding displacements at a fully bonded (rough) interface of the bi-material are conti-
nuous and also plotted in Fig. 4 and Fig. 5 for comparison purpose (Yue 1995). The absolute
values of the lateral displacements at z=0" the slipping interface are always greater than those

2
100h%072/Fx 100R% 622/ Fz
1 30
1 0e000 case 1
04 ] cee88e case 2
- [ asasn case 3
-1 = habk case 4
— 20—
_2—- —
— - y/h=0;z2/h=0
—3— ]
n 10—
-4—] -
-5_: y/h=0;2/h=0 ]
L O O R B 0 IIII|II[II[IIIIITIII]IIIT
0.0 0.5 1.0 x/hl.ﬁ 2.0 25 0.0 0.5 1.0 T h1.5 2.0 2.5

(a) (b)

Fig. 2 Transmission of normal contact stress between the slipping bi-material interface due to point
forces (F., F>.).
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Fig. 3 Transmission of normal contact stress between the slipping bi-material interface due to ring forces
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Fig. 4 Discontinuities of lateral displacements at the slipping bi-material interface due to point forces
(K., F).

of the corresponding displacements at the rough interface. The lateral displacements at z=0"
of the slipping interface always have the same directions as the corresponding displacements
at the rough interface. But, the lateral displacements at z=0" of the slipping interface can have
opposite directions. The torsional ring force Py acting in the bi-material region k=1 does not
generate any deformation in the bi-material region k=2 if the interface is slipping.

7. Concluding remarks

(1) By using the classical Fourier transform technique, closed-form Green’s functions are obtain-
ed for the elastic fields in a transversely isotropic bi-material solid with a slipping interface
subjected to concentrated point and ring force vectors. ‘

(2) As special cases, closed-form Green’s functions are also obtained for problems of (i) a
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Fig. 5 Discontinuities of lateral displacements at the slipping bi-material interface due to ring forces
) (P R P & P z)'

transversely isotropic elastic halfspace smoothly joined with an isotropic elastic halfspace;
(ii) two isotropic elastic halfspace with a slipping interface; (iii) a transversely isotropic
(or an isotropic) elastic infinite space; and (iv) a transversely isotropic (or an isotropic)
elastic halfspace with either a traction-free boundary or a horizontally traction-free and
vertically fixed boundary, subjected to the concentrated point and ring force vectors.

(3) The solution presented in Eq. (12) can be further used to examine Green's functions due
to other concentrated force vectors such as the force vectors either concentrated along
an elliptic (or rectangular) ring or distributed over a circular (or rectangular) area.

(4) The Green’s functions are systematically presented in matrix forms which can be easily
implemented in numerical schemes such a boundary element methods. The closed-form
results can also be used as benchmark solutions for the development and verification
of further solutions in bi-solids associated with a Mohr-Coulomb type frictional interface.
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Appendix A

The 30 coustant square matrices in Egs. (6) and (7) are given exactly as follows: Ay =Ap=Dyu=Dn

— 6. By= —1 Oy, Bp=—— 6Oy, Coi= —ca Yoi @ C02:C42(}’02) (O Au:_@z()/n), Alzz“@z(*)’lz),
Car Y01 Ca }’0’
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Azlz@z(m), An=6{—yn); Bi=—6(n), Bi=—60(—112), Bu=6(yn). Bo=0(—vn); C.i=—604(n)).

Clz"_@4( )/21) C21~@4(}’21) Cn= @4( ¥2); Dn—“@3()’11),D12:_@3(_712), D21:@3(721), 022:@3(_)/22);
=% }/ ®, @ =SIGN &,(SIGN y,)), &=—-SIGN 6&,(SIGN 7,); ¥%=—SIGN 6, ¥ =SIGN 6,
41

(SIGN y1)), ¥>=—SIGN 6;(SIGN ); where for z2h, the SIGN=1; and for z>A, then SIGN=
—1. The kernel matrices 6y and O(y) (j=1, 2, 3, 4) are defined as follows.

0 0 0
@o=< 0 1 O)
0 0 0
A(x) 0 A
@1()():( 0 0 0 )
Q) 0 A
—As(x) 0 —4s(x)
@z(x)=< 0 0 0 )
As(x) 0 —A4:(x)
—As(x) 0 —As(x)
@3&)2( 0 0 0 )
AS(X) 0 “A7(X)
¥ 0 1
@4(;():/18(;()( 0 0 0 )
1 o0
x (Al)
where the elements 4;(x) (j=1., 2, 3, 4, 5, 6, 7. 8) are defined as follows.
R
— Co Clk
AS(X)_BA<X+ ) AG(X) B ( (673 xt Cskl)
A= Bk< Cz‘“ﬁ;“éﬁ R ) Ag(x)sz(clk—%> (A2)

where Bk:—?lT: for y==* yu(n=1, 2), then the subscript k=1, and for y = — %, then
1k 2k
the subscript k=2.
The 7 constant square matrices in Eq. (8) are given exactly as follows: Py = Y
41 /01

Pu=—(rui+ )M & (— 1), Px=(ut )M O (—ra), 0= —(rut+r)MsO(— i), =+ 1) M, 6,
(—y2); where k=1, 2; and M;(j=1, 2, 3) are defined as follows:

gu 0 gqs ga 0 ga 0O 0 0
M1=( 0 0 0 ) M2:< 0 0 0 ) M;z( 0 0 0 > (A3)
g 0 q23 (75 0 q23 g3 0 q33

The elements in (43) are given as follows.

q”:l[%ﬁ”)/n jci+\/0116’31)(612€32 sz)]
D C31C41\/ C12C3 (771 + )




Appendix B

For the point force vector, the functions gq;(z) (@=0; 0<i+;<3) are given by

where R=\/x*+3?+z> and R,=R+z.

Closed-form Green's functions

10
9= [ \/6‘11C31]
11 (&3]
= [ C31 C31]
‘123:5[)’11+Yz|:|
:_1_[ (ccn—ch) 6'11631‘621):'

EE)) civenen(yat )

[ 012C32—C%2)(Yn+}’21) ]
LV C12C32(}’21 +72)

i (cn—V/ecpen)y/encai—ca) ]
Ciuy/ ClzC32(Y21 + }’22)

[ (ca—v/encolyut ) |
\Y4 C|2€32(}’z[ + }’22)

q3=

ga—

o= L= S~

qa3—

>l
Y
-

sm@)=%

guo(2)= 1;1?2

g1 (2)= ;gz

g (@)= ;R)?;
I
gm(z)= ;z [1_ xzz ]
g003(z):'ﬁ{)22‘ Tiy}:; —3:

transfer formula,

+ ;) [ + Ven(enen—ch)rt y)
Ve VE3Ces (}’21 + Yzz)

(Ad)

(BI)

For a2 1. the functions g,;(z) can be obtained by using the following
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o) = —-Zetul@) ®2)

For the ring for force vector, the functions ¢.;(z) (@=0; i=0, 1; j=0, 1) are given by (see Eason,
et al. 1955).

qom(z)—% —1}2 (x)

11001(2)— [ () K]‘F%H(a_")
CI()I()(Z)* [ K:l _’l,'H(r_a)
qon(@)=— arR (R K(x)— RiE(x)] (B3)

where m:—zjg«, K:AR@, Ri=v/(a+rV+2. Ry=+\/P+a’+2, K(x). E(x), and Ik, &) are the
1

complete elliptic integrals of the first, second, and third kinds; H( ) is the Heaviside step function. For
a>1, the functions g,;(z) can be obtained by using the following transfer formula,

Goy(@)= _ﬂ%@_) 5





