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Buckling behaviour of plates partially restrained
against rotation under stress gradient
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Abstract. In this paper, the behavior of plates partially restrained against rotation under stress gradient
is investigated. As a first stage, an energy formulation is presented to model this boundary condition
and a general expression is derived for the prediction of the elastic buckling of the plate under this
general loading condition. The accuracy of the derived expression is compared numerically using the
Galerkin method with other available data for the two limiting conditions of rotationally free and clamped
boundaries. Results show that the prediction is within a 5% difference.

The influence of rotational restraint and stress gradient upon the buckling load and the associated
buckling mode is investigated. Numerical results show sensitivity of the buckling mode to the degree
of rotational restraint and the variation of the buckling load with the stress gradient.

Key words: plate buckling; stiffened plate; plates under compression and bending; plates partially
restrained against rotation; plate modelling using the energy method.

1. Introduction

Plates under compressive stress gradient can be encountered in the webs of beam-columns
when subjected to axial compression and bending about the major axis or in stiffened
box-girders. The flanges in the former and the stiffeners in the latter restrain both rotation and
in-plane translation of the plate. The problem can be analyzed by invoking well established
numerical methods (e.g.. finite strip, finite element, finite difference, - etc.) where extensive com-
putation cost and effort cannot be avoided; furthermore, closed form solutions may not be always
possible. The objectives of this paper are to furnish this class of stability problems with closed
form solutions and to investigate the influence of the rotational restraint and stress gradient
on the buckling behaviour of the plate. A closed form solutions will be proposed that for design
purposes. is suitable for hand-calculations.

Schuette and McCulloch (1947), Johnson and Noel (1953), investigated the buckling of infinitely
long flat plates subject to pure in-plane bending. The plate was considered to be simply supported
along the-tension edge and rotationally restrained along the compression edge. To further simplify
the analysis, a sinusoidal rotational restraint distribution was assumed at the compression edge.
Walker (1966), (1967), (1968) investigated the local stability of the flanges and webs of initially
perfect channel section under eccentric loading along the axis of symmetry. He used the Galerkin
method of investigate numerically the buckling and post-buckling behaviour. A sinusoidal function
was used to approximate the longitudinal out of plane deflection and a polynomial function
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to approximate the transverse deflection. Rhodes, Harvey and Fok (1975). Rhodes and Harvey
(1976). (1977) used the Ritz method to analyze plates with linearly varying displacement in the
transverse direction. Usami (1982) employed the energy method to investigate the post-buckling
behaviour of a simply supported plate in combined compression and bending. A sinusoidal
function was used to approximate the out-of plane deflection and the resulting system of non-
linear equations was solved numerically using the Newton-Raphson method. Lau and Hancock
(1986) and Bradford (1989) presented a finite strip formulation for plates in combined bending
and compression.

In this paper, the buckling behaviour of plates partially restrained against rotation under in-
plane stress gradient is investigated. Closed form expression for predicting the buckling load
under this loading condition is proposed. The accuracy of the derived expression is compared
for two limiting conditions, rotationally free and rotationally clamped. The influence of the rotatio-
nal restraint and the stress gradient coefficient upon the buckling stress is also investigated.

2. Theoretical analysis

Consider the plate of Fig. I, supported along the unloaded edges, y==1b/2, by two flanges.
Each flange has a cross sectional area (4,). out of plane bending rigidity (/,), in-plane bending
rigidity (Z.) and torsional stiffness (C). This may represent the web of an /-section or a single
panel of a stiffened plate. The plate is subjected to a linearly varying compressive load distribution,
N.. at its mid-plane given by
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Fig. 1 Stiffened plate under compressive stress gradients (la); Coordinate system for
Galerkin's formulation (1b).
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where n=3/b and ¥ is defined as the stress gradient coefficient. When ¥= —1 the plate is
under pure in-plane bending and when ¥=1, the plate is under uniform compression.

The buckling analysis of a plate, partially restrained against rotation along the unloaded edges.
can be achieved by assuming the out-of plane deflection is described by three displacement
functions as:

w=1{ £ G\(n)+f GAn)} F(E) Q)

where G| (n) and G-(n) describe the transverse displacement profile and F(¢) describe the longitu-

dinal displacement profile. ¢ and n are non-dimensional parameters given by {=x/a and n=y/b.

It is further assumed that the transverse edges can be either simply supported or clamped.
Therefore, F(&) at == 1/2 satisfies either of

F&)=0. S g
o<
or
F(f):& M:O (4)
o<
Furthermore G,(n) and G,(n) at n==1/2 should also satisfy
G\ (m)=0, 26 _ 5)
on
and
G(m)=0, o0 ©)

Thercfore, w satisfies the free rotation condition along the unloaded edges by setting fj=0 and
the rotationally clamped condition by setting 4=0 in Eq. (2). The out of plane boundary condi-
tions at n==x 1/2 are given by

w=0 (7)
dFw v _Iw _ ow
(G + 5 5 =) ®

where B is the plate aspect ratio, I' is a non-dimensional parameter referred to as the rotational
restraint coefficient that depends upon the torsional stiffness, C, of the flanges and the plate
bending rigidity per unit width, D=FEr/12(1—v"), and v is Poisson’s ratio. It varies from 0 (rotatio-
nally free condition) to <« (rotationally clamped condition). Substituting Eq. (2) into Eq. (8) and
using Eqs. (3)-(6). yields

(l{dG(n)}/f{ dG;n)})Mm o
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Substituting Eq. (9) into (2). w can be expressed in terms of I" and either of fi or fu ie.

W:ﬁ{p[ 2040 ( o )‘]n,l,ﬁl(nHG:(n)}F(f) (10)

The total strain energy, IT. stored in the system is composed of U,, the strain energy of bending
of the plate, Us the strain energy in the restraining media, and 7 the potential energy of the
applied load 1ie.,

O=U+U+T (11)

Where U,, U, and T are expressed in non-dimensional form as

_ cFw ol P dw [ dw )
. 2Ba LJW [ - th 2] i V)ﬂ[ o8 o’ <a§an> ]}d‘f"” (12)

_K ow \* ow \? ,
v f —m[( an >n=1/z+< on )n:_m:l F($) d¢ (13)

12 (12 )
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Substituting Eq. (10) into (12), (13) and (14) yields

__ D" FRE) | g () 2
U= 2 fzj_l/zj—m[?((n) & +p° & F(f)] dé dn (15)
VT 9GA) Y 9GAn) Y k(&) |*
= bzf ~1/z[( an >n71/2+< an >n~171:|l: 84: ] dé: (10
ff f [( ) x| (=¥t 50+ ¥)] d dn (17)
where
rm={r PG (LGN Gimrain] (19)

The critical load is therefore computed by minimizing IT with respect to f> to obtain

7 D

No=K 7,

(19)

where K is given by
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3. Results and discussion

In this section, results are obtained to show the sensitivity of the buckling load and correspon-
ding buckling mode to the rotational restraint coefficient, I', and the stress gradient parameter,
¥. The functions G,(n), GA(n) and F(£) of Eq. (2) are chosen, for ¥20, to be

G;(n>=4(nz+ﬂi}m)—l o1
G(n)=cos(nrm) (22)
F(¢&)=cos(mnt) (m=1. 3,5 ) (23)
=sin(m¢&) (m=2 4.6, ) (24)

indicating that the plate is simply supported along the loaded edges and elastically restrained
against rotation along the unloaded edges. Analogous results can be obtained for clamped-clam-
ped loaded edges by choosing a suitable displacement function, F(¢), satisfying Eq. (4) Substituting
the displacement functions described by Egs. (21)-24) into Eq. (20) the following expression
for the buckling load factor, K, is obtained

K= 7{ (000921 x*+0.04736 k> +0.02276] I+ [0.18%43 x>+ 059472 k> +037886] I+ [k +x '] } (25)
- (000921 I*+0.18943 I'+1] [1+ ¥]

where x=m/f, m is the number of half-wave length in the longitudinal direction, B is the plate
aspect ratio=a/b. I'=(7°GJ/Db) (b/A)". G and J are the shear modulus and the torsional rigidity
of the stiffeners, D and b are the flexural rigidity and width of the plate and A is half wave
length=a/m. Note that the restriction stipulated on F(¢) by Egs. (23) and (24) for even and
-odd values of m to satisfy Eq. (3) due to the coordinate system chosen does not affect the
form of K owing to the following integral property

172

172
f sin‘(mné) dé= J cos(mné) déE=1/2 (26)
12

—12

3.1. Numerical verification

In this section the accuracy of the derived buckling coefficient from Eq. (25) is examined
numerically using the Galerkin method for the two limiting conditions of rotationally free, i.c.
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simply supported (I"=0), and rotationally clamped, (I >©). For convenience in mathematical
manipulation, the origin of the plate is shifted to the lower left hand corner as shown in Fig.
1(b).

The differential equation governing the behaviour of the plate subject to a stress ‘gradlent
in the transverse direction is given, in non-dimensional form, as

o'w J'w 4 é’ W Lz ow
PR il N‘( Fe ) @

The Galerkin method after substituting the expression w(¢£,n) that satisfies the kinematic boundary
condition leads to the following eigenvalue problem

>3y

m=1 n=1 i=1

Mz

l rmu',i_ lRmn(j| Anmi/:O (28)

The matrices Q,,; and R,,; are each of order (mXn)X(iXj) and the magnitudes of their entries
depends upon the form of w(&,n) selected and A =N, b*/7°D. For the rotationally free condition,
the out of plane displacement function is assumed to be

w(&n)= Z Z sinfmng) sin(nm) (29)

m=1 n=

The entries of Q,,; and R,,,; of the eigen-problem of Eq. (28) become

[:an(j]m.\'n = %( n;— 1> 8»:[ 51(/- [:an[/]m\'n:’nz[ W Knmj]+(1 - Yl) Imni/] (3())
where
1
[Kmni;:llm'n - Z 51”1 5111 (3 1)
5/111 611
I:Imn[[:lm\‘n = ——g—/__ (32)
__ 21

= —(—ITW Smi if ntj is odd, =0 elsewhere (33)
where §,, is the kronecker delta defined as §,,=1 if m=i and zero otherwise. A computer
program was developed to generate and solve the above eigenvalue problem. Experience has
shown that convergence of the truncated series defined by Eq. (29) can be attained with reasonable
accuracy using 4 or 5 terms. The difference is less than 1% from the analytical values for ¥ =1
and various f values.

The upper part of Table 1 shows a comparison between the buckling factor. K, obtained
from the analytical expression Eq. (25) and the Galerkin method. The value of K is obtained
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Table 1 Comparison of K from Egs. (34), (39) and the
Galerkin method

(a) Rotationally free condition

B b 4 Present Galerkin | Difference (%)
0 8 7.84 204

1 0.5 533 532 0.19
1 4 4 "0
0 8.68 8.42 31

1.5 0.5 5.78 5.70 14
1 4.34 435 1
0 8 7.84 204

2 0.5 533 532 0.19
1 4 4 0

(b) Rotationally clamped condition

0 15.51 15.45 04
0.25 12.41 12.36 0.4
1 0.5 10.34 10.30 04
0.75 8.86 8.83 0.34
1 7.75 7.72 0.39
0 14.01 13.98 0.21
025 11.21 11.18 0.27
2 0.5 9.34 932 0.21
0.75 8.01 799 0.25
1 7.01 6.99 0.28

by setting I'=0 in Eq. (25) which reduces to the following expression

The Galerkin solution was based on nine terms of the displacement series. As can be seen
from the table, the difference fluctuates from 0% to 3.1% reflecting the high accuracy of Eq.
(34). 1t should be mentioned that the buckling modes were identical for both cases.

For the rotationally clamped condition, a kinematically admissible displacement function satisfy-
ing the zero deflection and slope conditions can be assumed as

N N
w(En)= ZI Z{ sin(mn¢) sin’(nm) (395)

The entries of Q,,.; and R,,; of Eq. (28) in this case are given by

4

R Bl N i 5””
[Qmm/]m\n - |: ’:gz 011/ + (m_n_ + 2n4ﬂ -) 6/1/ ] T (36)
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[Rmni/]nl\'n — m2 91{[ (l + W) % (37)

where 8,; is given by
3 1 . .
0,= 5 6y =5 i n# (39)

The numerical solution was based on nine terms of the series and the analytical values were
computed from Eq. (25) for I—>w, ie.

2 Kk +10284 k144943
[1+Y¥]

K — s [ (39)

The lower part of Table 1 shows a comparison between the predictions of the analytical expression
Eq. (39) and the numerical values using the Galerkin method for =1 and 2 and ¥=0, 0.25,
0.5, 0.75 and 1 for the rotationally clamped condition. It can be seen that both predictions are
in excellent agreement.

3.2. Comparison with existing formulas

A comparison is made between Eqs. (34) and (39) and various formulas and data for the
limiting conditions of simply supported and clamped plates under stress gradients, available
in standard stability references and structural handbooks. Note that Eq. (25) represents a more
general case of plates partially restrained against rotation. Gaylord and Gaylord (1990) presented
an approximate formula based on the German specification, DIN4114, given by

84

K:W- for ﬂZl (40)
k=—2L (gl )2 for <1 @1
LI+Y B =

A comparison is made in Table 2 between Eq. (34) and Eq. (41); as can be seen the values
are close to each other. It can also be observed that when the aspect ratio is not an integer,
the difference between the two equations increases. This is because Eq. (41) is the asymptotic
value of K, which can be obtained by substituting k=1 in Eq. (34) resulting in the follo-
wing

8
1+

K= (42)

which is very close to Eq. (41). However, for §=1.5 the buckling mode is two half sine waves,
~ie. m=2, and the theoretical value of K, of Eq. (34). is
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Table 2 Comparison of K from Egs. (34), (41) and (44)

B b 4 DIN 4114 Beedle Present
1 4 4 4
| 1/3 5.86 596 6
- 172 5.25 532 533
0 7.64 7.79 8
1 4 4 434
15 1/3 5.86 5.96 6.51
: 172 5.25 532 5.78
0 7.64 7.7¢ 8.68
1 4 4 4
5 173 5.86 5.96 6
1/2 525 532 533
0 7.64 7.79 8

Table 3 Comparison of K presented by Galambos (1988)
and Egs. (34) and (39)

b4 Unloaded edges Galambos Present
0 Simply supported 7.8 8
Clamped-clamped 13.6 1401
13 Simply supported 5.8 6
- Clamped-clamped - 10.5
_ 868
k= 1+¥ (43)

which explains the reason for a larger difference in this case. An alternative formulation based -
on the West European standards, presented by Beedle (1991), is given by

16
VAT F0IR(— PP +(1+9)

K= (44)

Table 2 shows also a comparison between Eq. (44) and Eq. (34). It is seen that Eq. (44) gives
a constant value independent of f, similar to Eq. (41), leading, again, to larger differences for
B=15 as explained earlier.

Limited data was available for comparison of the clamped limiting condition. Galambos (1988)
presented some numerical values for this condition for long plates. Comparative data is shown
in Table 3 in which the K factor of Eq. (39) for long plates becomes asymptotic to 14.01/(1+ ¥).

3.3. Elastically restrained condition

The previous section is concerned with the computation of the buckling load for plates either
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Fig. 2 Variation of K with I" (B=1. ¥=0.5).

simply supported or clamped along the unloaded edges. The former assumes the flanges have
zero torsional stiffness while the latter assumes an infinite value. In reality, the flanges have
finite rotation capacity and thus the plate is partially restrained against rotation along those
edges. In this section typical results are given detailing the buckling behaviour and showing
the transition from the simply supported to the rotationally clamped condition for various aspect
ratios, f, and stress gradient coefficient, V.

Fig. 2 shows the transition of the buckling load factor, K, from the simply supported to the
clamped condition for stress gradient coefficient, ¥ =0.5 and aspect ratio, §=1. The solid curve
represents K values for a buckling mode of one-half sine wave, m=1, and the dotted curve
for a full sine wave buckling mode, ie., m=2. Starting with the simply supported condition,
ie. I'=0, the plate buckles in one-half sine wave with K=5.33; the value of K then increases
with increasing I until the asymptotic value to the rotationally clamped condition, K — 10.34,
is attained as I— co. During this interval the plate buckling mode changes from a one-half
sine wave to a full sine wave, corresponding to the buckling mode of square clamped plates.
The changes from m=1 to m=2, in this casc, occurs at K = 9.65. The curve also shows rapid
initial increases in K for small values of I'. The asymptotic value of K is visible at I'~ 50.
Fig. 3 also shows the variation of K with I' for =2 and ¥=02. The plate buckling mode
in this case changes from a full sine wave, m=2, to three half, m=3, sine waves over I'=0
to oo and the K value at this transition point in 89.

Figs. 4-6 show the variation of K with stress gradient ¥. from the triangular load pattern,
¥ =0, to uniform compression, ¥=1, for I'=0, 5, 10, 20, 50, 100 and co and representative
B=1. 4, 8 The numbers in brackets in the legend box refer to the buckling mode, m, for each
I’ Based on a study of several plate aspect ratios, it was found that. as the plate gets longer,
the buckling mode becomes very sensitive in the early stages to slight increases of rotational
restraint, I". This can be observed for the representative cases of =1, 4 and 8 For =3, the
number of half sine-waves changes from m=8 to 9 to 10 within I'=0-5, whereas, for §=4
the plate changes the buckling mode only once, m=4 to 5, within this interval of I". For g=1.
the buckling mode does not change over a much larger range. The difference in K for the
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Fig. 3 Variation of K with I' (=2, ¥=0.2).
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Fig. 4 Variation of K with stress gradient coefficient ¥ (=1, I" is variable).

rotationally free condition, I'=0 and the rotationally clamped condition, I'—=c0, increases as

¥ decreases. For example, for B=1. the difference between these two limiting condition is 3.76
for ¥=1 whereas for ¥ =0 the difference increases to 7.51.

4, Conclusions

The paper presents an analytical formulation for the determination of the buckling load and
the associated buckling mode of plate partially restrained against rotation and under in-plane
stress gradients. Unlike the classical assumption where the plate and the attached flanges are
assumed to be hinged along their junction, the flanges are assumed to posses a finite rotation
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Fig. 5 Variation of K with stress gradient coefficient ¥ (=4, I' is variable).
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Fig. 6 Variation of K with stress gradient coefficient ¥ (8=8, I' is variable).

capacity. Using the energy method, approximate explicit expressions are derived for the buckling
coefficient. These expressions are verified numerically using the Galerkin method and compared
with existing data available for the two extreme conditions of rotationally free and clamped
boundaries.

The paper also investigates the influence of rotational restraint and stress gradient upon the
associated buckling mode. Numerical results show that changes of the buckling mode occur
with increases in the rotation restraint coefficient. With knowledge about the buckling behaviour
of the plate, the post-buckling behaviour can now assessed.
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Notations

a length of the plate
A cross sectional area of the stiffeners
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width of the plate

torsional rigidity of the stiffeners

plate bending rigidity per unit width, =E£ £/12 (1—v?)
elastic modulus :

amplitudes of the displaccment functions

function that describe the longitudinal displacement profile
functions that describe the transverse displacement profile
out of plane and in-plane bending rigidity of the stiffeners
buckling coefficient

number of half waves in the longitudinal direction
compressive forces per unit length in the x direction
buckling load per unit length

thickness of the plate

plate aspect ratio

torsional restraint coefficient

nondimensional width, =y/b

Poisson ratio

nondimensional length. =x/a; and

total strain cnergy of the plate and the attached stiffeners
stress gradient coefficient

eigen-vector

half-wave length=a/m





