Structural Engineering and Mechanics, Vol. 4, No.2 (1996) .163-176 163
DOI: http://dx.doi.org/10.12989/sem.1996.4.2.163

Static and dynamic behaviour of square plates with
inhomogeneity subjected to non-uniform edge loading
(compression and tension)

D.L. Prabhakarat and P.K. Dattat

Department of Aerospace Engineering, Indian Institute of Technology, Kharagpur-721 302, India

Abstract. The tension and compression buckling behaviour of a square plate with localized zones
of damage and subjected to non-uniform loading is studied using a finite element analysis. The influence
of parameters such as position of damage, extent of damage, size of damage and position of load on
instability behaviour are discussed. The dynamic behaviour for certain load and damage parameters
are also presented. It is observed that the presence of damage has a marked effect on the static buckling
load and natural frequency of the plate.

Key words: stability; plates, tension buckling; compression buckling; vibration; in-plane load

1. Introduction

It is known that most engineering materials contain some defects in the form of cracks, voids,
inclusions or second phase particles. The local subdomain having the elastic modulii different
from those of the rest of the main domain is called an inhomogeneity or damage or a flaw.
The inhomogeneity problem has received considerable interest, as evidenced by extensive reviews
of Mura (1982, 1988) including the plates with flaws subjected to in-plane loading. Such flaws
may exist in beams and plates, which are most commonly used structural elements. These compo-
nents are subjected to a variety of static and dynamic loads. Even though in the design one
assumes the material property to be invariant through out its designed life, there are many
situations in practice in which these properties could change because of continuous wear and
tear suffered during operations. The growth of microcracks, cracks in welds, localized corrosion
or presence of voids are some cases of the problem of inhomogeneity. The presence of such
a flaw results in the reduction of local bending stiffness in one and two dimensional components
(Cawley and Adams 1979, Yuen 1985). The presence of a flaw results in a redistribution of
membrane stress, which in turn affect the static and dynamic behaviour of plates. The changes
are further compounded if the plate is subjected to a non-uniform in-plane edge loads such
as concentrated or patch loads. These damages usually alter the dynamics of structures, and
by identifying these changes it is theoretically possible to detect the damage (Stanley 1992, Rizos
and Aspragathos 1990, Joshi and Madhusudhan 1991). The effective and reliable damage assess-
ment methodology will be a valuable tool in the timely determination of damage and deterioration
of structural members. Although damage detection in realistic structures is practical, reliable
damage location requires much more information.
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Literally hundreds of papers dealing with the buckling and vibration of plates subjected to
in-plane initial stresses may be found in the literature. However, in nearly all of them the in-
plane stresses are assumed to be caused by uniform in-plane stresses applied at the boundaries
of a homogeneous plate. This simplifies the problem in two ways:

(1) solution of the plane elasticity problem to determine the internal stress field is trivial and

(2) the resulting governing differential equation has constant coefficients, yielding the possibility

of an exact solution which also satisfies the exact boundary conditions.

But in the problems of either a plate with inhomogeneity and/or a plate subjected to non-
uniform in-plane edge loads, the problem is complex in nature. The dynamic and buckling
behaviour of a plate with a flaw, subjected to an uniform in-plane edge load is extensively
studied by the authors (Prabhakara and Datta 1993). Ayoub and Leissa have studied the vibration
and buckling behaviour of plates subjected to a pair of concentrated compressive loads in homo-
geneous and isotropic plates (Leissa and Ayoub 1988) using a semi-analytical treatment. It is
interesting to note that the plates can also buckle when subjected to forces that are only tensile
(Leissa and Ayoub 1989).

The present paper deals with static and dynamic behaviour of plates with inhomogeneity
subjected to either. compressive or tensile non-uniform in-plane loads using a finite element
method. The effect of a region of damage is introduced by use of an idealized model having
a degradation of flexural rigidity at the zone of damage. The individual effects of the damage
and the load parameters on the static stability and dynamic behaviour are studied.

2. Analysis
2.1. Formulation

The expression for the total potential energy of the plate with a zone of damage, subjected
to in-plane forces and considering the effects of shear deformation can be expressed as
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where 4 is the area of full plate, 4, is the area of damage, w is the deflection, x is the shear
deformation coefficient, ¢,. ¢, are average shear strains, N;, N; and N, are in-plane stress resultants.

The kinetic energy of the free vibration of the plate considering both the effects of transverse
inertia and rotary inertia can be written as
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where p is the mass per unit area of the plate.
Upon assuming the polynomial expression for w and substituting in Egs. (1) and (2), the
potential energy and kinetic energy can be witten in matrix form as

U=lal"[K] lg} and 7=} TM1 ),

where [K]=[K,]—[S], in which {g} and {4} are the vectors of generalized co-ordinates, [K,]
is the elastic stiffness matrix taking care of shear deformation parameter, [.S] is the stress stiffness
matrix, and [M] is the consistent mass matrix of the plate. The explanations and the formulations
of [S8], [K.] and [M] matrices are given in the Appendix 1. A list of notation is given in
Appendix 2.

The equation of equilibrium in matrix form for the free vibration of a plate subjected to
in-plane forces can be written as

[M]{gt+[[K.]—[ST]{g}=1o} )

The governing equations for the following problems can be obtained by setting appropriate
matrix equal to zero in Eq. (3).

(1) Static buckling, [M]=[0]
[[K.J—[ST]{g}={o} “
(2) Free vibration problem without in-plane load, [S1=[0], [M]{g}+[K.]{g}={0} and for
harmonic motion of the form {g}=1{4} sin wt, the above equation reduces to

[[KJ— @ IMT] {g}=1{o} )

The Eqgs. (4) and (5) represent the eigenvalue problems. The eigenvalues of Eq. (4) give the
critical buckling loads (4;) and the eigenvalues of Eq. (5) give the squares of the natural frequencies
of free vibration (@j). The corresponding eigenvectors give the mode shapes of buckling and
vibration respectively.

The non-dimensional parameters are defined as:

Non-dimensional frequency a}_:g)%g‘\/%

Non-dimensional compressive buckling load 4. U:E‘L_u i and

D
Non-dimensional tensile buckling load A, !,«:—P"—éﬁ
3
in which Dzl—zz%’i—vz—) is the flexural rigidity, P.; and P,; are respectively the compressive

and tensile buckling loads, i is the number of approximate half waves in the x-direction and
j is the number of approximate half waves in the y-direction.

2.2. Method of analysis

The element used in this analysis is isoparametric quadratic which has advantages such as
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accommodating-irregular boundaries and accounting for shear deformation. The formulations
of the elastic stiffness matrix, consistent mass matrix and stress stiffness matrix for the plate
are based on the references Mukhopadhyay and Mukherjee. (1990), Rock and Hinton (1976),
etc.

The summary of element matrices are presented here.

Elastic stiffness matrix Ek"]:J f (B'[D][Bldxdy,
Stress stiffness matrix [s]= f f [B;1" (o] [B;ldxdy and

Consistent mass matrix [m]= J' f [INJ[PIN]dxdy,

The details of (B, [D], [Bsl, [ol, [N] and [P] are given in Appendix 1.

In the formulation of elastic stiffness matrix, shear deformation is taken into account so that
the formulation could well be used in the analysis of Mindlin plates. Reduced 2X2 integration
technique is adopted in order to avoid possible shear locking.

It should be noted that the stress stiffness matrix [s] is essentially a function of the plane
stress distribution in the element due to a given combination of in-plane loads on the edges
of the plate. Since the stress field is non-uniform. mainly due to the presence of damaged region,
plane stress analysis is carried out using finite element techniques to determine the stresses
at 2X2 Gauss points of each element. The stresses obtained at Gauss points are used to determine
[o] and the stress stiffness matrix [s] is evaluated using numerical integration.

Both transverse and rotary inertia are considered in the formulation of consistent mass matrix.
This matrix has been evaluated using a 3X3 Gaussian quadrature rule.

These element matrices are assembled using skyline technique. Subspace iteration technique
is adopted throughout to extract eigenvalues.

2.3. Geometry and load

The model used to represent the behaviour of interest is shown in Fig. 1(a). The plate is
rectangular aXb and a flaw is bounded by ¢,<x<a, and b,<y<bh, The centroid (¢, d) of the
damaged area represents the position of the damage. The plate is subjected to in-plane loading
as shown in Fig. 1(b)-(c). The following non-dimensional parameters are used to study the effects
of the damage:

v=e/b, position of load:;
{=c/a, n=d/b position of damage;
E=(D—D,/D, extent of damage and

p=(@—a)b,—b)/ab, a measure of the size of the damage.

where, D, is the flexural rigidity of the damaged zone of plate, D is the flexural rigidity of
the undamaged plate and e is the distance from one corner of the plate to the line of action
of a concentrated load or the band width of a partially distributed uniform load.

2.4. Fortran coding, computation and verification

A general purpose program has been written to analyse plates of rectangular shape with internal
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Fig. 1 Description of the plate problem with damage;
(a) Geometry (b) Buckling with point load (c) Buckling with partial U.D.L.

Table 1 Comparison of non-dimensional buckling loads, for a plate without flaw
subjected to concentrated load

a/b v mode present leissa and ayoub(1988, 1989)
71(:ll Z.]l 1.1! j4.ll
1.0 0.1 SX-SY 48.665 - 48.620 -
0.25 SX-SY 36.405 1163 37.000 1221
0.5 SX-SY 25720 609 25814 614
0.5 0.25 SX-SY 37.608 1295 38.282 1158
0.5 SX-SY 29.852 1527 30.061 1667

inhomogeneity. The program is capable of solving the plane stress, vibration, static stability
and dynamic stability problems for plates subjected to a variety of in-plane edge loads. The
present version of the program utilises eight-noded isoparametric quadratic element with three
degrees of freedom per node. This element formulation is based on Mindlin’s plate theory which
is the most general one and can accommodate both the thin and thick plate with appropriate
shear deformation parameters in the energy expressions. An extensive series of verification analy-
ses of the program have been undertaken. As a check of validity of the program, the results
are first obtained for the case of the undamaged plate subjected to a pair of concentrated loads
and are compared in Table 1 with the available results in the literature for static stability (Leissa
and Ayoub 1988, 1989). The result shows that they compare well with those of Leissa and Ayoub
(1988, 1989). However, for the case of a/b=05 and y=0.25 with SX-SY mode. the difference
is about 9%. This can be improved by taking finer mesh size in the finite element analysis.
Table 2 shows the convergence of natural frequencies for an undamaged square plate which
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Table 2 Convergence of non-dimensional natural frequencies, w;, for a plate
without in-plane load and without damage

a/b mesh division mode
for half plate SX-SY AX-SY
1.0 4X8 19.732 49.208
5X10 19.729 49.148
6X12 19.728 49.135

(Classical results for a/b=1.0 and are ®,=19.739 and ®,>,=49.348
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Fig. 2 Plots of buckling load vs. no. of elements (a) Compressive load (b) Tensile load
(a/b=1.0; B.C: S-S-S-S; {=0.5; n=0.1)

agree extremely well with that of results given in reference Leissa (1969). In the results shown,
SX, SY denote symmetric mode shapes along x and y directions and AX, AY represent the corre-
sponding antisymmetric modes. The problem under investigation is the static and dynamic behaviour
of plates due to the non-uniform stress field caused by both the presence of inhomogeneity
and the application of non-uniform in-plane loads. The absence of any literature for this class
of problem has necessitated the study of convergence of the results which are shown in Fig.

2(a)(b). On the basis of this study, a 5X 10 mesh (50 elements) is adapted in the symmetrical
half plate.

2.5. Problem considered

A simply supported square plate with internal inhomogeneity (flaw or damage) subjected to
four different cases of loading is considered for analyses. The loading cases are,

Case 1-A pair of compressive concentrated loads
Case 2-A pair of compressive partial loads
Case 3-A pair of tensile concentrated loads
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Case 4-A pair of tensile partial loads

The compressive loading Cases 1 and 2 are shown in Fig. 1(b)-(c). The corresponding tensile
loading Cases 3 and 4 can be obtained by reversing the direction of the load. A damage of
the size of 4% of the plate area located on the symmetrical y-axis of the plate has been taken
in the analyses. The effects of various damage and load paramters such as the extent of damage
(¢ varying from 00 to 09), the position of damage ({=0.5 and 7 changing from 0.1 to 09)

and position of load (y varying from 0.0 to 1.0) on the static stability and dynamic behaviour
are studied.

3. Results and discussions

The results obtained for the static and dynamic behaviour of a simply supported square thin
plate having an internal inhomogeneity for different cases of loading and damage parameters
are presented as follows. The effects of damage have been compared with the corresponding
undamaged plate for all the cases, as depicted in the Figs. 3 to 6. In the plots, the continuous
curves refer to the damaged plate and dotted lines refer to the undamaged plate.
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Fig. 3 Plots of non-dimensional buckling load vs. position of load for load Cases: 1-4.
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Fig. 4 Plots of non-dimensional buckling load vs. position of damage for load Cases: 1-4

3.1 Static buckling behaviour
3.1.1 Position of load

The buckling behaviour of the plate for a particular position of the damage (=05 & n=0.1)
is examined for different values of .

For a homogeneous plate with in-plane compression, the buckling load is minimum for the
value of y=0.5 or y~07 for the loading Case 1 or 2 respectively, as can be seen in Fig. 3(a)
(b). In the presence of damage, the buckling load reduces singnificantly for smaller values of
. For concentrated loading (Case 1), the change in buckling load is very small for values
of v beyond 0.5. However, for partial loading (Case 2). there is appreciable difference in buckling
load for all values of . For tensile loading (Cases 3 & 4), for an undamaged plate, the buckling
load is lowest for y=0. For concentrated loading (Case 3). the buckling load increases with
v and attains a maximum value for a particular value of . As y increases further, the buckling
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Fig. 5 Plots of non-dimensional buckling load vs. extent of damage for load Cases: 1-4.

load decreases and attains a minimum value for =05, as can be seen in Fig. 3(c). For the
damaged plate, the change in buckling load is not very significant for tensile loading except
for a severely damaged plate.

For partial tensile loading (Case 4), as v increases, there is a rapid increase in the buckling
load for an undamaged plate. In a damaged plate, as y increases, there is a significant change
in the buckling load as can be seen in Fig. 3(d).

3.1.2 Position of darmage

Fig. 4 shows the variation of buckling load with position of damage for different cases of
loading.

For the loading Case 1 with y=0 and ¢{=0.5, the lowest critical load occurs for the value
of n=0.1. It increases rapidly towards the critical load of an undamaged plate as n increases
irrespective of extent of damage as can be seen in Fig. 4(a). However, there is a particular
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Fig. 6 Plots of non-dimensional frequency vs. non-dimensional in-plane load. p
for load Cases 1 & 3.

value of 7. called an inflection point, beyond which the trend reverses and the critical load
is on the higher side to that of an undamaged plate. Similar kind of behaviour can also be
observed for a partially loaded plate (Case 2) as can be seen in Fig. 4(b). However, here the
inflection point moves further with increase of w.

For tensile loading (Cases 3 and 4), the buckling load behaviour shows that there exists two
points of inflection as can be seen in the Fig. 4(c)-(d).

3.1.3. Extent of damage

The variation of buckling load with extent of damage for different cases of loading and for
other load and damage parameters is shown in Fig. 5.

For in-plane compressive loading cases. the buckling load decreases drastically with the increase
in the extent of damage at higher value of ¢ and lower value of n as can be seen in the Fig.
5(a)-(b). For tensile loading case. the effect of extent of damage on buckling load is similar
in behaviour as shown in Fig. 5(c)-(d).

3.2. Dynamic behaviour

Fig. 6 shows the variation of non-dimensional frequency with in-plane concentrated compressive
and tensile loading for different load and damage parameters. As the applied compressive load
increases, the fundamental frequency goes on decreasing and becomes zero at the corresponding
buckling load as can be seen in Fig. 6(a).

In case of tensile loading, the fundamental frequency rises with applied tension. With the
further increase of load, the frequency starts falling down reflecting the onset of compression
effect and finally becomes zero at the value of tensile buckling load as depicted in Fig. 6(b).

4. Conclusions

The static and dynamic analyses of thin square plates with an inhomogeneity show that the
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presence of a flaw has significant effects on the buckling load and vibration behaviour. The
following conclusions can be drawn from the analytical results.

(1) The buckling load of a damaged plate reduces significantly compared to the undamaged
plate for the position of the concentrated compressive load near the edges, with the flaw
being at the middle of the same edge. Similar behaviour can be observed for partial compres-
sive load of smaller band width. For tensile partial loading with higher band width, buck-
ling load of the damaged plate deviates significantly from that of an undamaged
plate.

(2) For non-symmetrical compressive load, there is a particular position of damage, called
an inflection point at which the buckling load of the damaged plate does not deviate
from that of an undamaged plate. Two such inflection points can be observed for plates
subjected to non-symmetrical tensile load.

(3) The effect of extent of damage is predominant for the damage situated at the centre of
an edge parallel to the direction of loading.

(4) The vibration behaviour of a damaged plate due to in-plane tensile loading shows that
for certain combination of load and damage parameters, the plate with lesser flexural
rigidity, yields higher frequency compared to an undamaged plate.
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Appendix 1
1.1. Elastic stiffness matrix [k.)

The elastic stiffness matrix of the plate element (Mukhopadhyay and Mukherjee 1990) is given
by

k1= f f[B]T[D]‘ [Bldxdy in which,

ON;
F 0 0 ox |
0N,
0 ——‘ay 0
— _____aM _& L = s
[B= 0 Ox a |’ i=1, 2, -, 8
ON; :
ox 0 N
L N _ A
dy N; 0
1 v 0
ER v 1 0 0
— 2 _
12(1—v?) 0 0 12\/
and [D]= o Eh [x 0]
2(1+v) L0 «

Assembling the matrix [k.] yields the elastic matrix [K] for the entire plate.

1.2. Consistent mass matrix [m]

The consistent mass matrix of the plate element, (Rock and Hinton 1976) which takes care of both
transverse and rotary inertia is given by,

[msz' f [NIT[P] [Nldxdy, in which

[N] is the element shape function matrix and

L0 0
[Pl=p| o {’2 0
W

0o o0 L

Assembling the matrix [m] yields the mass matrix [M] for the entire plate.

1.3. Geometric or stress stiffness matrix [s]

Let N, N',; and N, be the stress resultants on a small element of area dxdy due to a normal

in-plane edge load N acting parallel to x-axis. The stress resultants can be expressed in matrix form
as

o=yt ]
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Further, geometric stiffness matrix Cook, R. D. (1989) is expressed as

[s.]= f [Bs)"[ol.[Bsldy dx

in which,
Lol
- W
(o= — Lol
12 5
> [o]
12 *
and
N. O 0
N, 0 0
| 0 0 Nix
[(Bal=| ¢ ¢ N i=1,2 -8
0 Nix 0
0 N, 0

Here, N, is the shape function, N, and N, are their derivatives with respect to x and y, / refers to
the node number of the element.

Similarly. the geometric stiffness matrices [s,] due to a similar load N acting parallel to y-axis and
[s.] due to an in-plane edge shear load N can be expressed as

[s,]= J f (Bc)"[cl,[Bsldy dx and

[sul= J f [B;1"[0]o[Bs] dydx respectively.

If the actual edge in-plane loads are expressed in terms of A, such that N;=aN, N,=b N and N,=cN
then the total geometric stiffness matrix of the element is expressed as
[s]=alsJ+b [s.]+c [sq]

Assembling the matrix [s] yields the stress stiffness matrix [S] for the entire plate.

Appendix 2
Notations
a b dimensions of plate in x and y directions
a1, a», bi, b» boundaries of damage along x and y directions
¢ d co-ordinates of centre of damage
e position of concentrated load or band width of a partially distributed uniform load
h thickness of plate
X ¥y z cartesian co-ordinate system
u v, w displacements along x, y, z directions
N. N, N, in-plane stress resultants at any point in the element
[K.] elastic stiffness matrix of the plate
(M] consistent mass matrix of the plate
[S] stress stiffiness matrix of the plate
(k] clastic stiffness matrix of the plate element

[m] consistent mass matrix of the plate element
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Ls] . stress stiffness matrix of the plate element
Lol resultant stress matrix

v Poisson’s ratio

Lol two dimensional stress tensor

@y non-dimensional natural frequency

i non-dimensional critical load

7 e/b, position of concentrated load or band width of partial w.d!
¢ n position of damage

£ extent of damage

® size of damage





