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Abstract. New active “intelligent” structural systems with integrated self-sensing, diagnosis, and control
capabilities can lead to a new design dimension for the next generation high-performance structures
and mechanical systems. However, temperature effects to the piezoelectric transducers are not fully under-
stood. This paper is concerned with a mathematical modeling and analysis of a laminated piezothermo-
elastic cylindrical shell composite exposed to mechanical, electric, and thermal fields. Generic shell equa-
tions and solution procedures are derived. Contributions of spatial and time components in the mechani-
cal, electric, and temperature excitations are discussed, and their analytical solutions derived. A laminated
cylindrical shell composite with fully distributed piezoelectric layers is used in a case study; its multi-
field step and impulse responses are investigated. Analyses suggest that the fully distributed actuators
are insensitive to even modes due to load averaging and cancellation. Accordingly, these even modes
are filtered from the total response and only the modes that are combinations of m=1, 3, 5, -** and
n=1, 3, 5, - participating in dynamic response of the shell.

Key words: piezoelectric transducers; smart structures; distributed control

1. Introduction

New active “intelligent” structural systems with integrated sensing, diagnosis, and control capa-
bilities can lead to a new design dimension for the next generation high-performance structural
and mechanical systems (Tzou and Anderson 1992, Tzou and Fukuda 1992). Piezoelectrics have
inherent electromechanical characterisitics: the direct and converse piezoelectric effects, and they
are very popular in both sensor and actuator applications in intelligent structurdl systems (Tzou
1993). Distributed sensing and control of elastic and composite continua using distributed piezo-
electric transducers has been studied recently. However, temperature effects to these distributed
sensors/actuators are not well understood. Depending on piezoelectric properties, temperature
fluctuation can significantly change the sensing and control effects of distributed piezoelectric
transducers. Mindlin (1974) derived governing equations of a linear piezothermoelastic medium.
Nowacki (1978) proposed a uniqueness theorem for the solutions of piezothermoelastic differential
equations. Nowacki (1982) discussed the influence of a temperature field on an elastic dielectric
medium and a reciprocity theorem. Tzou and Howard (1994a, 1994b) proposed a piezothermo-
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Fig. 1 A generic piezothermoelastic shell.

elastic shell vibration theory with applications to active ring shells. Tzou and Ye (1994) studied
the thermal influence to distributed transducers and investigated thermoelectromechanical charac-
teristics and static/vibration control of structures. This paper is concerned with a mathematical
modeling and analysis of a laminated piezothermoelastic shell composite exposed to mechanical,
electric, and thermal fields. Generic solution procedures are derived and applied to a laminated
cylindrical shell composite with distributed mechanical, electric, and thermal excitations. A numer-
ical example is provided to illustrate the multi-field step and impulse responses. Spatially filtered
modal responses are also investigated.

2. Multi-field excitation and response

It is assumed that a double-curvature piezothermoelastic shell is exposed to three fields: mecha-
nical, electric, and temperature fields, Fig. 1. Note that the shell is defined in a curvilinear coordi-
nate system with @; and @, defining the neutral (or reference) surface and ¢; the normal direction.
In this section, multi-field step and impulse responses of a piezothermoelastic shell is discussed
and solution procedures derived.

A simplified piezothermoelastic shell equation with mechanical, electric, and temperature exci-
tations can be expressed as

Lim{ule U, u3}+Lid{uls U, ll}}_‘Cil,'—pha,': _q,'*, lzl, 2, 3. (l)

where / denotes the i-th direction; u;, u, and u, are displacement, velocity, and acceleration,
respectively; L/ {u,, uy, us} is a Love's operator of the mechanical effect; L {uy, us, us} is an
operator of the direct piezoelectric effect; ¢ is an equivalent viscous damping factor; p is the
weighted mass density; / is the shell thickness: cu; is the viscous damping force; phu; is the
inertia force; and ¢* is the generalized force, ¢*=q,+L(¢:)+L7(0)+L7(0). In the generalized
force. ¢; is the distributed external mechanical forces; L/ (¢) is an operator of the converse



Spatially filtered multi-field responses 113

piezoelectric effect; L7(0) is an operator of the pyroelectric effect; and L°(6) is an operator
of the thermal strain (expansion and contraction) effect (Tzou and Bao 1995a, Tzou and Ye
1994). Detailed definitions of these operators are presented in Appendix.

The response of the piezothermoelastic shell subjected to mechanical, electric, and temperature
excitations can be represented by a summation of all participating natural modes-the modal
expansion method. The amount of participation of each natural mode in the total response
is defined by the modal participation factor. Thus. the general solution of the piezothermoelastic
shell continuum can be represented by an infinite series of shell’s eigenfunctions in the form
(Soedel 1993, Tzou 1993):

ui(a, @ D= 2 nOUx(@. a). i=1, 2,3, )
k=1

where 7, () is the modal participation factor and Uy (a;, @) is the natural mode function (mode
shape function) in the /-th directions (=1, 2, 3). Substituting the expressions of u; into the govern-
ing equation and using the modal orthogonality, one can derive the k-th modal participation
factor equation-the modal equation:

;INL‘pC—h e+’ n=F, (3)

where @, is the (undamped) natural frequency; F,=F%+F,+F; is the generalized modal force
for the k-th mode. F7, F}, and F; are respectively the generalized mechanical, electric, and thermal
modal forces defined by

FT:: thk . [Z} [q[l],k]A|A2da1daz, (43)
1 S
B onn, j J X W@ Avddande, (4b)
3
Fzz—l—f f DALY (0)+ LD Uit A Ardayda, (4¢)
thk ald @ =1

where 4, and 4, are the Lamé parameters and N, is defined by the mode shape functions:

N,= f j (ZU,A ) A\Arday an (Soedel 1993, Tzou 1993). Introducing a (modal viscous) damp-
al

a =1

ing ratio §= one can rewrite the modal equation as

tha)k ’
M +26 @ i+ @ ;i =F. (5)

Since the piezothermoelastic shell is assumed linear, the principle of superposition is valid.
Thus, each modal participation factor can be solved independently and the overall shell response
can be determined by the modal expansion equation, Eq.(2). Detailed multi-field responses of
a laminated cylindrical shell composite are presented next.
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Fig. 2 A laminated cylindrical shell.

3. Laminated cylindrical shell composite

A laminated cylindrical shell is made of five laminae: three graphite/epoxy laminae with 90°/0°/
90° lamination sandwiched between two piezoelectric laminae on the top and bottom surfaces
(Tzou and Bao 1995b). Fig. 2 illustrates the laminate cylindrical shell. In this section, detailed
multi-field responses are analyzed. Numerical solutions are presented in the next section.

Note that the cylindrical shell is defined by a radius R, length L, and curvature angle S
For a simply supported laminated cylindrical shell compoiste, the transverse mode shape function
1S Uspn=Cim sin(mli—vc )sin _n%z ) where m and n are the half-wave mode numbers; L is the
length; B is the curvature angle; and C,,, is an arbitrary constant. Accordingly, N,, can be
defined by

B
Non= J J ( Z U,m,,2)Rdadx~J f sin2<m—L@>sin2(n—]ﬁTg>Rdadx:%ﬁ (6)

The generalized mechanical, electric, and thermal modal forces are

F':’n”—phLﬁj J q;sm( )sin( ; )d dx, (7

c__4 e
Fon= hiB f f [—%—‘ (it 302 (0= @;)]

[eﬂ (it 3022 (0~ )]—[e“ (¢;‘+¢s)]}sm< ,fx>3'n(ﬂg@ )d“d’“’ ®

a3k 2 2
e1ps [, - 9%0
,,,,, phLﬂ j f l:( £33 ) S f%k 1 &xw ax daz Z - (/11)1( —&-X—z [04] da3:|

d}k

1 _@jjs) f 0’0 — %
+— o°¢ SWAL:
R [< €33 k;_s @3 o asday— Z oy 1(/1.)1\ &aza3da3
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— I;Z (?3_;53) k:ZLS f:z: l9dd3 Z fa3k l(/lz)k BdQ{I}SlIl( I )sm( nﬁa)d dx (9)

where e;; is the piezoeletric constant; 4; is the i-th layer thickness; ¢y is the transverse electric
field applied to the i-th layer; &; is the dielectric constant; p; is the pyroelectric constant; 6
is the temperature rise; R is the radius; and 4 is the transformed thermal stress coefficent. (In
the laminated composite, #;=hs and h,=h;=h,) In the expressions of F,, and F,,, the first
square bracketed component is due to the bending moment M,,; the second square bracketed
component is due to the bending moment M,,; and the third square bracketed component is
due to the membrane force N, Note that for each generalized force, there are two important
components. One is its spatial distribution, e.g, point, line, surface, etc, and the other is its
time function, e.g, step, impulse, sinusoidal, etc. These modal forces and their time/spatial compo-
nents are discussed below. Spatial characteristics of these forces are discussed first; the time
function is assumed a step function and an impulse function in this study. Spatially filtered
modal responses are also discussed.

3.1. Mechanical force

For a uniformly distributed mechanical load normal to the surface, ie. ¢;(x, @, )=¢;(), the
generalized mechanical modal force is

L (B
i f . f 0 (”Si“< T )Si“( i )"“d"

2L B oi—1y—11(—1y—1]

Fon=

phLﬂ mm nm
_ 1—6‘];—@— when m and n odd;
=Y phm*mn
0, when m or n even, (10)

3.2. Electric force

For the cylindrical piezoelectric layers (the 1st and Sth layers) with fully covered electrodes,
it is assumed that the excitation voltages ¢;, and ¢;; are uniform on the shell surface, i.e. ¢y= ¢ (1),
and ¢y= ¢s(¢). That is the electrode surface is a potential equivalent surface. Then, the generalized
electric modal force becomes

L (B
P h4L I f f { ——2—' Lo (t)+¢5(t)]}sin( anx )sin( nga )dadx

:,T:H; m%, —,,% {‘% E¢1(t)+(¢s(r)]}f(— 1y"—1J[(—1y—1]

Fon=

_ 16
:{ phn mn e3, Lo )+ ¢s(?)], when m and n odd:

0, when m or n even, (1)
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It can be seen that the above expression only has the contribution of membrane force Ny,
in this uniform voltage distribution. Assume ¢, ()= ¢s(#)= @), then,

32y ]
Foo— { —_—phn2mn R ¢(f), when m and »n odd:
0, when m, or n even. (12)

3.3 Thermal force

Assume the temperature rise 6 is uniform on the shell surface and linear variation through

the thickness O(a;, 1)=(aa;+c)f() where a= 255;%1 ; c= & _;00 0s is the temperature rise
i 2

on the top surface; 6, is the temperature rise on the bottom surface of the laminated shell.

Since the top (5th) and bottom (Ist) layers are piezoelectric materials, the temperature induced

pyroelectric effect appears on these two layers. However, the thermal strain effect appears in

all five layers.

; _énps “
o= phLB f o j 0 [( &3 )k;.sf a1 e
_ 2;‘fmkqéah9dai}ﬁn<ﬂ%§>ﬁn<£%?>dadx

- PhLB mn _n% [__Tf(t)][(—l)'"-—lj[(_l) 1]

_{ —ﬁ% when m and »n odd:

0, when m or n even, (13)

where
a3y

N Sofo
T_<€u23> 3 (aas+c)da,— ZJ‘ (A (aas +c)das
k=1 J Bk—|

&3 ) Z1sd mr—y

B (QB)UE, (az +c)a’Z+J’Z5 (aZ+C)dZ] —f:' dplaz +c)dz

&3

5
Aelaz +c)dz—f Ay(az+c)dz

24

ZZ Z
—f /lh(az+c)dz—f A, (az+c)dz—f
1 3

:<e36‘ 3— )U (az+c)dz+J (az+c)dz]

Mf]m+@¢—hfkm+@¢—AJ(w+qw, (14a)
7 kS B2

and
3

“hy 2= —

2

Z}Zé—hz. 242%}12, ZSZ%hz‘hl- (14b)
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Note that this thermal force is also primarily contributed by the in-plane membrane force
Neo

The above derivations of generalized modal forces suggest that for a simply-supported cylindri-
cal shell whose modes are symmetric or anti-symmetric with respect to a line or lines of symmetry,
none of the anti-symmetric modes is excited by any of the uniformly distributed mechanical
loads, electric loads, or thermal loads. Accordingly, these even modes are filtered from the total
response and only the modes that are combinations of m=1, 3, 5, -*- and n=1, 3, 5, :-- participate
in dynamic response of the cylindrical shell.

3.4. Time responses

There are two time responses considered here: 1) a step response and 2) an impulse response.
The step excitation can be considered as a sudden applied constant load and the impulse excita-
tion as a “shock” input. These analytical solutions are presented next.

If these excitations are in the form of step inputs, the individual modal participation factor
is determined by

i oo ol — G @ ~ . s
Do st (= wmnz[l e (cos( W)+ ﬁ%msm( Win t))jl, (15)

where i/ is either m (mechanical), ¢ (electric), or ¢ (thermal); and @,, is the damped natural
frequency @, = @nn\/ 1 — &nn’. Note that the laminated cylindrical shell is assumed under-damped.
On the other hand, the modal impulse response to an impulse excitation is

i) = g’;”e‘gmﬂ Ornl sin (@Wmt), i=m, ¢ 1. (16)

n

Detailed response patterns of the cylindrical shell are presented next. Spatially filtered responses
are also investigated.

4. Numerical example

In this section, a numerical example is provided to demonstrate the multi-field responses
of a laminated cylindrical shell composite. As discussed previously, the laminated composite
is made of five laminae: the top and bottom laminae are piezoelectric materials and the middle
three laminae are made of graphite/epoxy with 90°/0°/90° lamination. The piezoelectric materials
are lead zirconate titanate (PZT) piezoceramics. The laminated shell is 0.1m long in the x direction
and 90° curvature angle in the circumferential direction B, its radius R of the middle surface
is 0.05m. The thickness of each lamina is 0.0005m. Detailed material properties are listed in
Table 1.

It is assumed that the cylindrical shell is simply supported on all four edges and the transverse oscil-

. ) ) . . mx . HAna
lations are of primary interest. The transverse mode shape function is Us,,=sin—— sin—5 .

L B
Natural frequencies of the shell are calculated analytically and numerically (finite element analy-
sis), and these two results are compared favorably. The first sixteen natural frequencies are sum-

marized in Table 2.
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Table 1 Material Properties
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PZT:

Young’s modulus

Shear modulus

Poisson’s ratio

Density

Thermal expansion coefficient
Electric permittivity
Piezoelectric contant
Pyroelectric constant

Y.=Y,=Y.=61 GPa

G,=G..=G,.=23.64 GPa

u=029

p=77X10° kg/m?

a=12X10"*m/m/°C

Ey3— 1.65X 1078 F/m

dnw=171X10"2C/N (m/V); en=1043 C/m?
p3=025X107*C/m¥/°C

Graphite/epoxy;

Young's modulus

Shear modulus

Poisson’s ratio

Density

Thermal expansion coefficients

Y.=181 GPa, Y¥,=Y.=103 GPa
G,.=287 GPa. G,=G,.=17.17GPa
=033, My =M. =028
p=16X10"kg/m’
a=0.02X10"¢m/m/°C
a=225X10"*m/m/°C

Table 2 Transverse natural frequencies fin,(Hz)

n/m 1 2 3 4
1 3707.6 7805.1 10958.6 137909
2 3868.8 6089.6 9065.6 12476.4
3 8158.2 9412.7 11672.5 14811.0
4 144789 15519.7 17414.6 20209.7
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Fig. 3 Multi-field step response of the (1,1) mode.

It is assumed that the mechanical excitation magnitude ¢;*=1.0X10°(N/m?)=0.1 MPa; electric
excitation magnitude ¢*=100(V); and temperature excitation magnitude 8*=10(°C); the time
function is a step function and an impulse function. The temperature rise is assumed uniformly
distributed in the composite. The modal damping ratio ¢,,=0.03. Since system is linear, the
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Fig. 4 Multi-field step response of the (1,3) mode.
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Fig. 5 Multi-field step response of the (3,1) mode.
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Fig. 6 Multi-field step response of the (3,3) mode.
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modal equation becomes '
o+ 2L @oan Town = o T =Fo () Fr (0)+ F 100 (0. (17

Accordingly, one can calculate the individual modal response 1,7 (), B, (), and n,. () due to
its mechanical, electric, and thermal load, respectively. The overall modal response becomes

Ui, & 0= 22 Moy OVl @= 23 L1071t )+ 1t O1Us (%, 0) (18)
Note that the response us(x, @ t) is a spatial function. As long as the total solution is determined,
the multi-field displacement response of any location can be calculated easily. The individual
responses of these component excitations are calculated and plotted to show their respective
contributions. The total response is a summation of all these individual responses. Multi-field
step and impulse responses of the laminated cylindrical shell are presented below.

20
; ; —-~— MFRF of m=3n=3
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Fig. 7 Magnitude responses.
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Fig. 9 Multi-field impulse response of the (1.1) mode.
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Fig. 10 Multi-field impulse response of the (1.3) mode.
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Fig. 12 Multi-field impulse response of the (3,3) mode.

4.1 Multi-field step responses

Figs. 3 to 6 illustrate the step time-history responses of the (1,1), (1,3), (3,1), and (3,3) modes.
(Recall that all even modes are not excited due to their spatial characteristics.) The mechanical
and thermal induced displacements are in phase, and the electric induced displacement is out-
of-phase. Accordingly, the electric excitation can be used to control the mechanical and thermal
induced excitations. Magnitude of the modal frequency response functions of these natural modes
are plotted in Fig. 7; their phase responses are plotted in Fig. 8. Since the initial modal damping
ratios are assumed the same, they all have very similar responses.

4.2 Multi-field impulse responses

Figs. 9 to 12 illustrates of the multi-field impulse responses of the first four odd modes, ie.,
the (1,1), (1,3). (3.1), and (3.3) modes. As discussed previously, the mechanical and thermal induced
oscillations are in phase, and the electric induced oscillation is out-of-phase. Accordingly, the
electric excitation can be used to compensate the mechanical and thermal induced oscilla-
tions.

5. Discussion and conclusion

External temperature fluctuation can significantly change the piezoelectric and control charac-
teristics of piezoelastic structures. In this paper, multi-field step and impulse responses of a lamina-
ted piezothermoelastic cylindrical shell composite were studied and spatially filtered phenomena
were investigated.

Generic solution procedures of piezothermoelastic shells subjected to mechanical, electric, and
temperature excitations were presented first. Detailed definitions of their spatial and time compo-
nents were discussed afterwards. The spatial function was assumed uniformly distributed and
the time functions were a step function and an impulse function, respectively. Analytical deriva-
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tions suggested that the uniformly distributed excitation can only excite odd modes, and are
ineffective to all even modes. Accordingly, these even modes are filtered from the total response.
Since the system is linear, the total response is a summation of all participating modal responses.

Multi-field step and impulse responses of the laminated cylindrical shell laminate showed
that the displacements induced by mechanical and temperature excitations are in phase, and
that induced by the electric execitation is out-of-phase. Accordingly, the electric excitation can
be used to compensate the mechanical and temperature induced excitations, and accordingly
active vibration control can be successfully achieved.
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Appendix

Operators of generic piezothermoelastic shells

Mechanical Love's operators L{u,, u- us} are defined as
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Li™{ur, us, usb= Al JL oW1 A>) —Nﬁ'&—/:xz +M+va§:ﬂfi

1A> da da Ja da
A st oaa) o0 ] o

where N/ are the elastic membrane forces; M/} are the elastic bending moments; A, and A, are the
Lamé parameters; R, and R, are the radii of curvatures (Tzou 1993). Operators of the direct piezoelectric
effect L {u), u>. us} are defined as

., __ 1 { ONHA) _ g 04y OWNSAY) | g 04
Liffur, u>, w3} A4, Ja Nzt da + da N Ja

1[dMiA4s) 4042 dM3A) dizjl_l:l
+R1[ da M o + o M o }’ (Ad)

J __ 1 {5!]\/1‘51‘12) 4 94 | OWNSA) g 04
L5 {LM, U, u}} A A> day TN ca + Jda» N Jax

1[OMEA) ., 04, , OMAA) d,dé]}
+R||: &a. M 3(11+ 8(13 M” &az ’ (AS)

¢ 1 {_c?_ [L( OM{AY) _ypy OAy . OMEA) d_A>]
L3 {Ll]. Uz Ll}} A]Az ﬁa. Al &m > dal * dag +M12 8a3

J_[1{ oMiA) g 04, OMAA) _ /%)]
* Jay [Az( o M o + da, M o

AlAz( R, + R, S (A6)
where N¢ are the electric membrane forces; M¢ are the electric bending moments. Both of them are
induced by the piezoelectric effect (Tzou 1993). Operators of the converse piezoelectric effect L {¢s}
can be defined by replacing all superscript “d” by “c” in Egs. (A4){(A6). Similarly, one can define

operators of the pyroelectric effect L/{6} and operators of the temperature effect L6}, @i, a» and o
are the three coordinates in the curvilinear coordinate system.





