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Large deflection of simple variable-arc-length
beam subjected to a point load
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Abstract. This paper considers large deflection problem of a simply supported beam with variable
arc length subjected to a point load. The beam has one of its ends hinged and at a fixed distance
from this end propped by a frictionless support over which the beam can slide freely. This highly
nonlinear flexural problem is solved by elliptic-integral method and shooting-optimization technique,
thereby providing independent checks on the new solutions. Because the beam can slide freely over
the frictionless support, there is 2 maximum or critical load which the beam can carry and it is dependent
on the position of the load. Interestingly, two possible equilibrium configurations can be obtained for
a given load magnitude which is less than the critical value. The maximum arc-length was found to
be equal to about 2.19 times the fixed distance between the supports and this value is independent
of the load position.
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1. Introduction

Most research studies on large deflection of beams dealt with beams of given constant deformed
arc-length. They are reported in, for examples, Frisch-Fay (1962), Wang (1968), Prathap and
Varadan (1975), Theocaris and Panayotounakos (1982), and Fertis and Afonta (1990). In contrast,
there has been relatively few studies made on the bending problem of variable deformed arc-
length beams. Conway (1947) and Gospodnetic (1959) presented closed-form solutions for such
variable-arc-length beams under a central point load. Schile and Sierakowski (1967) gave solutions
for this kind of beam under two point loads. More recently, Chucheepsakul (1994, 1995) tackled
the large deflections of variable-arc-length beams under moment gradient. The variableness of
the deformed arc-length may arise from considering one end of the beam being hinged and
allowing the beam to slide freely on a frictionless support located at a specified distance away
from this hinged end. In view to obtain independent verification of the bending solutions, Chu-
cheepsakul ez al. solved the problem using three different approaches, viz.

(1) the elliptic-integral method,

(2) the shooting-optimization method and
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(3) the finite element method.

This kind of beam bending problem finds application in offshore engineering and deep ocean
mining operations. In such applications, the beam may be considered as a link between a spot
on the seafloor and the specified location at the seasurface. Owing to the beam undergoing
large displacements, the total arc-length of beam is not known and must be determined. In
a real condition, the loading is very complex. However, as a first step in understanding the
behavior of this class of beam, this paper considers the beam under a single point load. Unlike
earlier studies by Conway and by Gospodnetic, the point load is not restricted to a central
location between the supports.

The foregoing large deflection problem is solved using the elliptic-integral method and the
shooting-optimization method (Wang and Kitipornchai 1992). Interesting features of this problem
such as the possibility of having two equilibrium states for a given load magnitude, the existence
of a maximum load (or critical load) and a maximum arc-length for equilibrium are also highligh-
ted.

2. Elliptic-integral formulation

Consider an elastic beam as shown in Fig. 1. It is hinged at and A while supported on
a frictionless support at B, a fixed distance L away. On this beam, a point load P is applied
vertically at the position SL away from end 4. The end rotations at 4 and B are denoted by
0, and 6 and the slope at point load is 6p.

Fig. 2 shows the free body diagrams of the two segments of the deflected beam. One refers
to the portion where 0<x <fL and the other refers to fL <x< L. From statical consideration,
the bending moment M, of the two parts of the beam is given by

M= { P(1—pB)x+PBtanfy, 0<x <AL (1a)
Tl PBL—x)+PBtanby.  BLLx <L (1b)

where x, y are the Cartesian coordinates with the origin at end A

BL (1-p)L

¥

(a) (b)

Fig. 1 Elastic beam under a point load: (a) undeflected shape and (b) deflected shape
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H, =PPtanb,

V,=P(1-B)

"

(a) (b)
Fig. 2 Free body of two segments of beam

The constitutive relation and the geometric relations are given by

dg  dx d .
M= ~El—d?; s =cos# and ﬂgz =sinf (2a, b, ¢)

In view of Egs. (2), the equilibrium Eq. (1) after some algebraic manipulations may be written
as

EI ( do >z= { — P(1— B)sin@+ PBtanfzcosf+C, for  6,<6<6; (3a)
2 \ ds Ppsing+ PBtanGs cosf+C, for —6;<6<6, (3b)

where C, and C, are the constants of integration. Applying the boundary condition at end 4

where =6, and 49 =0 gives

ds
C,=P(1— P)sing,— PBtan Gzcosb, )
Upon applying the boundary condition at end B where 6= —6; and i—? =0, one gets C,=0.
At the point of load application, 8=6, and (% in Egs. (3a) and (3b) are equal. As a re-
sult, the following relation can be obtained
C1=Psin 9,,+C2=Psin9,, (5)
Egs. (4) and (5) give the relation of §,, 6 and 6, as follows;
sing,— (1 — P)sinf,— Btanb cost =0 6)
The substitution of C; and C, into Egs. (3) yields the curvature expression of the beam
40 { _fl;l_ V i+t sinf+ s cosé, 8,<6<¢, (7a)
ds ——le sinG+ pcost, — 0,<0<6 (7b)

where
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2

A== =g - = sinb p=—(1=p). p=ptants, p=p

(8a-f)

The negative sign on the right side of Egs. (7) is chosen because 6 decreases as s increases.
Considering Egs. (7), Eq. (2b) and Eq. (2¢), one can express ds, dx and dy as functions of
0 and d6. The integration of these functions yield

For 0<x<f or 6,<6<86,

A

0
= _LA V i+ b sinB+ ps cos@

{zm {F(n2, k)—F(®, k)}, if 6>y,
=Am {F(m2, k)+F®, k), if 6<p

(=An[2{E(n/2, k)—E(®, k)}
) —{E(m2, k)—F®,, k)}—nskcos®,], if 6>y,

0 = i 2AEm2. k) +E(®, k)
\—{F(n2, k)+F(®,, k)}—mkcos®], if <y,

(=An[20E(n/2, k)—E(®, k)}
{ —1F(n2, k)—F(@, k)} —nskcos®,], if 62y,

—_[ Jcosf

6, \ it sinB+ uscos
— [ Asing
y=—

o, VTt bsind+ scosf

9 = m DRAE(2k)+ E(,, )}
\—{F(n/2, k)+F(®\, k)}—nskcosgr], if 6<y,

(%a)
(b)

(10a)

(10b)

(11a)

(11b)

where E and F are the elliptic-integrals of the first and second kind respectively. The parameters

used in Egs. (9)(11) are defined

2

in which w, & and & are given

For B<x<1 or — L0656

— ~9 A {
ST J' v \/USInO+ ucosd d6

— [ Acos6 )
x o/ Msinf+ pscosf

- _[™ Asind

Y .V using+ cosé

=77 nas = ; 714:—%% ns
(" + 157) b (o + %)

as follows:
/M s> — i Sinf— . cos@

b :sin"'/
[ #l+v Wt

yi=sin"! — =2 —rou V2

NIATT = ()"

24ty 2
153

2,
in Egs. (8c)«(8e).
= e \F(®,, 1/~ F(m2, 1/ if 6,

= A \F(®s, 1W/2)+F(m/2, 1/, if 6>1

(= AL {F(®,, 1/~ F(nl2, 1/y/D)}
—20E(®,, 1\/2)—E@2, 1/} +ngcos@], if <y

O an2UE@®, NVD+ERR 1D

\—{F(@,, 1\/D+F2. 1D+ scos@y], if 6>
(= An[{F(®., 1/2)—F(m2, 1/\/2)}

! —2UE(S, IN2)—E(m2, 1\/2)}—mocos®], if 6<p
= A 2{E(D, 1\/2)+E(n/2, 11\/2)}

\ —{F(®,, IN2)+Fn/2, 1/\/2)}—mocos®], if &>

(12a-k)

(13a)
(13b)

(14a)

(14b)

(15a)

(15b)
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where

. Ve F 12— 1t 8inf— pscosf My

®,=sin"' s . p=sin"! :

VT P

Ne= T = 2t M= 2#hs No= V2 §

(u+ ,U32)1/4 ’ (s’ + #32)3/4 T (g + 17"
m
J7A

in which w1 and y, are given in Eqs. (8e)(8f).

In view of the foregoing elliptic-integral formulation, for a given value of P there are three
unknowns to be evaluated, viz. 6,, 83 and 6 for solution and thus three equations are needed.
The first equation is obtained by setting x=p8 and =6, in Eq. (10). This result is

o Acosé@

M= (16a-g)

B o, Vit psind+ 6 cosf d6=p (17a)
The second equation is obtained by setting x=1—p and =6y in Eq. (14), thus
" Acosé -
f o/ Mesin@+ uscos@ do=1-p (17b)

The third equation is given in Eq. (6).

As the foregoing three Egs. (6), (17a) and (17b) are nonlinear, the solution 6,, 8 and 6 for
a given value of P have to be obtained by an iterative procedure. The procedure is terminated
when the obtained results satisfy the specified tolerance. In many cases, there are some difficulties
in obtaining the solutions by the aforementioned procedure. At a specific location of the point
load, if the assigned value of P is greater than the maximum or critical load P, (see definition
below). of that location, the iterative procedure will not converge. An alternative procedure is
hence recommended. In this procedure, instead of solving for three unknowns, only two unknowns
6, or Gz and 6 are to be solved. By combining Egs. (17a) and (17b), so that they are replaced
by

P cosf % cosf .
( ~ﬁ)f9,4 V i+ e sinB+ s cos@ 46-p 0p \/ MusSin@+ i cosl d6=0 (18)

The integral terms in Eq. (18) are then replaced by elliptic-integral expressions as given in Egs.
(10a), (10b), (14a) and (14b). Egs. (6) and (18) are used to solve the problem. The solution steps
are as follows:

(1) Assign the value of 8, 0<6,<7/2, if f<0.5 or assign the value of G, 0<6;<7/2, if f>0.5.

(2) Solve for 8, (or ) and 6, in Egs. (6) and (18) by the Newton-Raphson iterative procedure
based on the value of 8, (or 6 given in Step 1. '

(3) Evaluate Eq. (17a) or Eq. (17b) to obtain P for the values of 8, (or 6s) and 6 obtained
from Step 2.

(4) Add an increment A6, (or A6 to 8, (or ) to get the new values of 8, (or 6s).

(5) Repeat Steps 2-5 and construct the curves of P versus 6, and 6; with different values
of 8, or 6 assigned.
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3. Shooting-optimization method

In order to check the validity of the foregoing elliptic-integral formulation and results, the
shooting-optimization method (Wang and Kitipornchai 1992) is used to solve the same prob-
lem.

In view of Egs. (1) and (2), the governing differential equations and the boundary conditions
can be written as

% =PL[<x—pB>—(1—Bx—Bytan 6;]; 8(0)=86y; 6(1)=—06 (19a,b.c)
dX _T. 0. =0h=0 (1=
s = Lcos@; x(0)=0; x(1)=1 (20a,b,c)
—dsy; =Lsin6; H0)=0; F1)=0 (2labe)
where
S*:—S—' Z:_' (22)
L’ L

The singularity function <x—gL> in Eq. (19a), identified by the angle brackets, is defined
to be zero if (x— BL) is negative and is equal to (x—fL) if (x—fL) is positive. It is the product
of a Heaviside step function with the straight line function (x—pgL).

The three first-order differential equations contain four unknowns (6, X, y, and L). There are
four given end conditions (x(0), x(1), (0), and y(1)) Thus, the unknowns may be solved as functions
of s.

In the solution procedure, the set of differential equations is integrated forward using the
fourth-order Runge-Kutta algorithm. The sum @ of the L, error norms given by the differences
in values of 6, x, y between the prescribed and the computed terminal boundary conditions
is minimized by any standard direct search optimization technique. The objective function of
the optimization is given by

Minimize @=|6(1)+ 65|+ [x(1)—1{+ H(D)] (23)
0. 65 L

In the computation, the desired value of @ is that of zero for solution. The simplex method

Table 1 Comparison between results obtained from EIM and SOM for P=6

6, (rad) O (rad) L
B Stable Unstable Stable Unstable Stable Unstable
EIM SOM EIM SOM EIM SOM EIM SOM EIM SOM EIM SOM
0.25 03453 03452 12991 1.2991 02496 02496 1.1634 1.1635 1.0221 10221 15593 1.5593
0.50 04708 04708 08760 0.8760 04708 04708 0.8760 0.8760 1.0617 10617 12391 1.2391

0.75 03126 03126 06804 0.6804 04134 04134 08012 0.8013 1.0333 10333 1.1534 1.1534

EIM =Elliptic-Integral Method
SOM = Shooting-Optimization Method
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0, for B =025
T \ 6, for =025
0 ﬁ , .
A . 6, and 8, for p =05
54
.
. / 6, for p=0.75
. < *
64 . N
] . \ 6, for p=075

0 —t —t : L )

0 0.2 0.4 06 0.8 1 12 14 1.6 1.8

Fig. 3 Variation of the load parameter, P with respect to the slope 6; and 6

Table 2 P, for various values of f

ﬂ PL'I
0.05 48.5698
0.15 168718
025 10.7271
035 8.2447
045 7.0245
0.50 6.6718
0.55 64447
0.65 6.3241
0.75 6.7093
0.85 8.0430
095 13.4826

of Nelder and Mead (1964) has been adopted for the optimization algorithm.

4. Comparison of numerical results and comments

As a check on the analytical solutions, results obtained from both the elliptic-integral method
and the shooting-optimization method are compared. Table 1 shows a typical comparison of
the pertinent values of the end rotations (6, and @) and the arc-length L for P=6, =025,
0.50 and 0.75. As can be seen, the results obtained from the two methods are almost the same;
thus confirming the correctness of these new results. Fig. 3 shows the variations of the load

P with respect to the end slopes 6; and & and for =025, 0.50 and 0.75. As can be seen
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Lowest P, =63214
at p=0628

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Fig. 4 Plot of P, versus f

from Fig. 3, there is a peak value of P for each f. This peak value P, is referred to as the
maximum or critical load at a specific location of the point of application. This value can
be determined numerically using Dichotomous search algorithm (Kempf 1987) during the numeri-
cal calculation in Step 3. Table 2 shows the numerical values of P, for different values of S.
At =0.5, the P, of 6.6718 is identical to the one given by Gospodnetic (1959) who treated
the symmetrical problem of beam sliding freely over both end supports. Fig. 4 shows the plot
of P, versus as given in Table 2. It can be seen that there exists a minimum value of P, =6.3214
at f=0.628. Once the angles 6,, 05 and 6, have been found, the value of the arc-length L=L'/L
can be determined from Egs. (9) and (13), and the deflection y at any distance X from Egs.
(10), (11), (14), and (15).

Numerical values of P, 6 or (6,), V... and L are given in Table 3 for different values of
0, (or ) assigned and for $=0.25, 0.50, and 0.75. It is worth noting the case where 8,= 0= n/2
and P=0. The values of y,.. and L,.. in this case are equal to 0.8346 and 2.1884, respectively,
and deflection curve is symmetrical about the centerline. Since P=0, it is independent of load
position S. If half of the beam is considered, this configuration is corresponding to a large
displaced vertical column subjected to a vertical force at the top end that reaches a horizontal
plane. The numerical solution for this case of column problem are given by Timoshenko and
Gere (1961). The results of this special case are identical to those obtained by Chucheepsakul
et al. (1995).

It should be noted that there are two possible equilibrium configurations for the range of
end rotations considered here. This is also clearly seen from Fig. 3 that there are two equilibrium
configuarations for a given value of P, except when P takes on a maximum value. Fig. 5 shows
two deflection curves, the stable and unstable equilibrium configurations, for P=6 and =025,
0.50 and 0.75.
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9, =03453rad 05 = 02496 rad

+ + — %
01 T
02 T

6, = 11634 rad

3T Stable equilibrium

6, =12991 rad
04 +
€5 T
06 =+

y Unstable equilibrium
@)
9, =0.4708 rad

P 0, = 04708 rad

021 9, = 08760 rad

6, = 08760 rad
03 T

04 T

o]

06+
y

Unstable equilibrium

(b)

0, =03126rad 6, =04134 rad
; P
. B=075
[

t T — X
o1 T
02+ Stable equilibrium
8, = 08013 rad
03 T
6, = 06804 rad
04 1
05 + Unstable equilibrium
06 -y\—
©

Fig. 5 Equilibrium configurations for P=6 and for load at =025, 0.50, and 0.75
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Table 3 Numerical values of 8, s P, yme and L for =025, 0.50 and 0.75

6 By - — -
B . ; p Ymax L

Degree Radian Degree Radian

025 0 0 0 0 0 0 1.0000

10 0.1745 7.1642 0.1250 31511 0.0467 1.0055

20 0.3491 14.4631 0.2524 6.0588 0.0949 1.0226

30 0.5236 220497 0.3848 84727 0.1465 1.0531

40 0.6891 30.1232 0.5257 10.1262 0.2039 1.1007

50 0.8727 38.9639 0.6800 10.7267 0.2708 11723

60 1.0472 489804 0.8548 9.9572 0.3535 1.2809

70 1.2217 60.7386 1.0600 7.5640 0.4631 1.4519

80 1.3963 747177 1.3040 3.7570 0.6176 1.7335

9% /2 90 n/2 0 0.8346 2.1884

0.50 0 0 0 0 0 0 1.0000

10 0.1745 10 0.1745 277084 0.0584 1.0081

20 0.3491 20 0.3491 49358 0.1184 1.0332

30 0.5236 30 0.5236 63114 0.1816 1.0771

40 0.6891 40 0.6891 6.6571 0.2503 1.1431

50 0.8727 50 0.8727 6.0206 0.3270 1.2369

60 1.0472 60 1.0472 4.6525 04158 1.3676

70 12217 70 12217 29334 0.5225 1.5497

80 1.3963 80 13963 12717 0.6565 1.8084

90 2 90 /2 0 0.8346 2.1884

0.75 0 0 0 0 0 0 1.0000

72204 0.1260 10 0.1745 3.0636 0.0468 1.0055

14.8911 0.2599 20 0.3491 54158 0.0962 1.0231

23.3795 0.4080 30 0.5236 6.5953 0.1507 1.0559

32.8843 0.5739 40 0.6891 6.5266 0.2132 1.1091

43.3946 0.7573 50 0.8727 54817 0.2896 1.1909

547169 09549 60 1.0472 3.9140 0.3764 1.3136

66.5427 1.1613 70 12217 22775 0.4885 1.4963

784808 1.3697 80 1.3963 09126 0.6349 1.7704

90 /2 90 n/2 0 0.8346 21884

5. Concluding remarks

Two different methods, the elliptic-integral method and the shooting-optimization method,
for solving large deflection of variable-arc-length beam under a point load are presented. The
two methods yield almost the same solution. The critical values of P can also be obtained
in this investigation in which their magnitudes depend on the location of load application.
These values correspond to the largest forces which can be applied to the beam at their specific
locations. If P<P,, there are two possible equilibrium configurations. The one with smaller displa-
cement or rotation is stable, while the other is unstable. If P>P,, no equilibrium state exists.
It is also found that the maximum total arc-length is equal to 2.1884 times the fixed distance
between the supporting points and this value is independent of the load position S.
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