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Abstract. This paper describes a continuum variational formulation for design optimization of nonlinear
structures in the elastic-plastic domain, where unloading and reloading of the structures are allowed
to occur. The Total Lagrangian procedure is used for the description of the structural deformation.
The direct differentiation approach is used to derive the sensitivities of the various structural response
measures with respect to the design parameters. Since the material goes into the inelastic range and
unloading and reloading of the structure are allowed to occur, the structural response is path dependent
and an additional step is needed to integrate the constitutive equations. It can be shown, consequently,
that design sensitivity analysis is also path-dependent. The theory has been discretized by the finite
element technique and implemented in a structural analysis code. Mathematical programming approach
is used for the optimization process. Numerical applications on trusses are performed, where cross-sectio-
nal areas and nodal point coordinates are treated as design variables. Optimal designs have been obtained
and compared by using two different strategies: a two level strategy where the levels are defined accordingly
the type of design variables, cross sectional areas or node coordinates, and optimizing simultaneously
with respect to both types of design variables.
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1. Introduction

Aim of the structural engineering is to design structures meeting prescribed specifications and
being optimal with respect to some criteria. The structural weight has been an important criteria
for many structures. Methods of Design Sensitivity Analysis (DSA4) have been developed in order
to calculate accurately the design gradients of the cost function and constraints we need for
the optimization problem.

If plastic properties are taken in account, then it is possible to achieve additional material
savings. Since most of real loads are cyclic, optimal design of elastic-plastic structures with unloa-
ding and reloading is of considerable practical importance. The real structural behavior leads
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also to the consideration of the material hardening.

For cyclic loading, the structural response is path-dependent. So they are the design gradients
of this response. Methods of DSA have been reviewed for structures with path-dependent material
and applied only to cross-sectional design variables (Tsay 1988, Arora and Cardoso 1989, Valido
1992, etc.).

This paper presents a variational continuum formulation for DSA of nonlinear structures,
including path-dependent material nonlinearities. The direct differentiation method is used for
DSA. Finite element technique is used in discretizing the theory and integrating it into a structural
analysis-nonlinear programming code. To deal with optimal design of elastic-plastic strain harde-
ning structures, a piecewise linear model of the stress-strain law is considered, where the response
obeys either linear hardening law or elastic one, the latter corresponding to loading or unloading.
Sample trusses are used as numerical examples. Design variables are cross-sectional areas as
well as configuration of the structures. Optimization by levels and simultaneous are performed
w.rt both types of design variables.

2. Nonlinear structural analysis

We shall use Total Lagrangian description for the nonlinear equilibrium. Matrix and tensor
notations will be used. To identify the quantities in the deformed configuration of the bodies,
a left superscript indicates the configuration in which the quantity occurs, a left subscript indicates
the reference configuration. For details of the notation and analysis procedures, Bathe (1982)
should be consulted. The equilibrium equation for the body at the time ¢ (load level ) is

f 'S8l dV— f 'f-8'u *dV— f T8 *dI;=0 )

where S, J& ,f. /T 'u. ‘u’ are respectively 2nd Piola-Kirchhoff stress tensor, Green-Lagrange
strain tensor, body force, prescribed surface traction, displacement and prescribed displacements,
% and °T" are the initial volume and its boundary, °I} is the traction specified boundary, °T,
is the displacement specified boundary, § refers to arbitrary variation of the state fields, and
'+' refers to standard tensor product. A general constitutive law is taken as
i
S=® (e 0Xt<t, b)= J Sdr Q)

0

where b is here the design representing material parameters as initial yield stress and hardening.
For path-dependent problems @ takes an integral form. In numerical implementations, however,
the explicit form of @ is not needed. Only an incremental stress-strain relation is required.
To solve Eq. 1 for nonlinear response, we use incremental decomposition and linearization
to get the incremental virtual work equation

J oS- Se 'dV+ f [ S-&n dV= J of-u dV+ f T 8u "dl; 3)

and the incremental constitutive law

oS='D, e (4)
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where u, ¢S, o6=¢eton, of. and (T are the increments of the state fields, and
ve=oa(@l); =1/l Yo ]; Spe=a(Sul);
wa=(1/2{L V)1 + LovOIT+LvOILV el 7T+ Lval TvOT 1)
&n=or@l, sul); oy=/D{[(&T)] [Vl T+ [,vul 1,v(5uT)]} (5)

The tangent or instantaneous modulus tensor of the material at load instant 7, ‘'®,=!E, is
dependent on the stress and strain history and is considered continuously differentiable except
at the points corresponding to yielding, unloading and reloading. For numerical implementation,
we assume a piecewise linear stress-strain law with corners at initial yield points and at unloading
and reloading points.

3. Lagrange-Eulerian description concept in design

The undeformed configuration is taken as reference during the analysis process. However,
during the design process, this configuration changes with the design and another configuration
has to be selected as referential. Let us call this referential as design reference volume or control
volume ¥ with boundary I. When the analysis is performed, we have a Lagrangian description
of the deformation. When ¢ is fixed and a design step is performed, we have an Eulerian descrip-
tion of the design variation (Cardoso 1987, Cardoso and Arora 1988). The mapping of the control
configuration onto the undeformed configuration is defined as

‘dv=J dv, dl=JdI.  ‘w='u(x);;  Je=¢e(x);  ¢S=¢S(x);

J=1XI; X:M; X=X"  J=JIX"nll; V=X,V (6)

a(x, 'y, y)
where J is the Jacobian and J is the area metric with n as the unit surface normal. For oriented
bodies such as bars or beams, J and [X|may be different from each other if we use volume
integrals throughout the sensitivity analysis. After transformation, the domains of performance
and equilibrium integrals become free of design, and there is no distinction between shape
and nonshape problems. The control volume concept gets translated quite naturally into isopara-

metric finite element discretization, where the parent coordinates are the reference coordinates
(Cardoso 1987, Cardoso and Arora 1988).

4. Cost and constraint functionals
Cost and constraint functionals are functionals defined by the optimization problem that require

DSA. They represent measures on stresses, displacements, reaction forces, weight, compliance,
etc. We may take a general performance functional as

Y= f G(;'S, be, 'u, b) dV(b)+ J h('u, ¢T°, b) dI;(b)+ f g('T, W', b) dI(b) @)

where the domain is also dependent on the design.
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5. Design sensitivity analysis

Consider the total design variation %= 8%+ 8Y of the performance functional ¥ of the Eq.
(7), where & and & indicate explicit and implicit design variations. The direct differentiation
approach is an efficient and easy implemented technique of DSA for path-dependent problems.
It is based on satisfying the structural equilibrium after design variations. Vanishing the total
design variation of the equilibrium equation, we get an auxiliary equation to solve for the implicit
design variation of the state fields in terms of equilibrium explicit variations. We will call primary
structure and auxiliary structure respectively to the original structure and the structure correspon-
ding to the auxiliary equation. Taking design variations for the Eq. (1), after transformation
indicated in Egs. (6), we have the auxiliary structural equilibrium in control coordinates at load
level t as

f &S:&/e JdV+ f oS oy (S'ul, 8w’ JdV=
f {8(f)-8'u—8(ST) & e4SJ-8(& €)}dV— f 8(T°T)-8'u dIy )
where
50’8:0(2(5’147), 8(5()’8):(1a(S((SluT))+(]}’(8’uT, 5’ur), S’uIS'u

and virtual primary fields have been used as auxiliary fields. The explicit design variation of
the strain field depends on the design transformation gradient X of Egs. (6). The explicit design
variation of the stress field depends on X and on the material parameters of the stress-strain
law. Comparing Egs. (8) and (3), they have the same stiffness, ie., the stiffness of the auxiliary
structure is the tangential stiffness of the primary structure at load level ¢+ where sensitivity is
required. The shape of the auxiliary structure is the deformed shape of the primary structure.
Other terms for the auxiliary structure are

5 W f DI, 5 W SDHI, 8(5/€). & (o T')T)/J_;

respectively body force, initial stress and strain and prescribed surface traction.

For monotonically varying loads, the auxiliary problem of Eq. (8) has to be solved only once
at the time (load level) ¢ for the auxiliary fields. For cyclic loading, the constitutive law of Eq.
(2) indicates the path-dependence of the auxiliary fields:

5! 85=85( f " SdD+5(,S—"S) 9)
0

Since Eq. (2) is only uniquely defined between each pair of loading and reloading points,
the auxiliary problem has to be solved at the times (load levels) # corresponding to each of
these points during the deformation process, and the solution has to be memorized until the
next loading or reloading point. It should be noted that sensitivities w.r.t. cross-section areas
are not continuous at the yielding points. However they are continuous at the same points
when the design is configuration. After the auxiliary fields 6'u, & & and &'S are obtained, we
need only to calculate &'e=& e+& & &S=&S+&'S, & T=38(/S n), and substitute into the
following performance functional design variation
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S¥=|{G.g'8/8+G,; 6/c+G,, 8" u+Gy 8b)J+GEJ)dV+

f {@q 8d T+g, 8", +gp 5b)J+g 5T\dI,,+
f {(hg & T+, 6 Luthy-8b)J+h 8NdI (10)

6. Discretization

Finite element technique is used to discretize Eqs. (8){(10) for numerical evaluation of the
design sensitivities of stiffnesses, forces and response quantities. They are calculated at element
level (sensitivity elements) and assembled in order to get the design sensitivity analysis model
for the entire structure. The isoparametric concept is used for mapping the control configuration
onto the undeformed configuration of each element. Details of discretization for different types
of sensitivity elements have been presented (Cardoso 1987, Arora and Cardoso 1989). Since the
numerical examples in this paper will be adressed to the optimal weight design of truss structures
with displacement and stress constraints, we perform the discretization only for this type of
elements and response quantities.

Truss elements may be considered as a particular case of the three-dimensional solid if the
parametric mapping is given as

WV=JdV: J=°4°S,; dV=Adr=1dr, X=X="9%, (11)

where ‘s(r) is the arc length at load level ¢ at the material point ‘() given by
N
)= = h ()'sk (12)
k=1

Note that in this case J#|X|
The position and displacement of any point of the continuum are given in terms of the
nodal coordinates and nodal displacements, with interpolation functions matrix H, as

Mn=Hr'X; Ww@=Hr 'U; u@)=HHU (13)

where
x=[(tHT (BT ... aMNTIT,  tk=tk pk k)
H=[H| Hy -+ Hyl; Hp=hy (), (14)
The strain vector for a truss element contains only one component along the coordinates.
This strain may be written, respectively for initial and parametric coordinates, as

ofe= gl Vg + (1205 O P = 0P Oyt (1/20300% (O, 2 (15)
where X=X 1. Now, if we substitute Eqs. (13) into Eq. (15), we have
1 t
Oté‘: (OIBLO+ —Z—OtBL1> U (16)

where the strain displacement matrices (displacement independent and displacement dependent,
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Fig. 1 Stress-Strain law
A-Flastic state
B-Plastic state after initial yielding
C-Unloading after initial yielding
D-Reverse plastic state after initial yielding
E-Reloading after reverse plastic state

respectively) are
— —X)zoXTH Ty - —
OIBLO‘( r s OtBLl“tUTOtBLOTOtBLO 7

Since material parameters have not been considered as design, the explicit design variations
needed for various response quantities in Egs. (8)-(10) with respect to initial cross-section area
04 and nodal point coordinates X are

N
SX: Z hkrESOsk;
k=1 ”

5X=—@2sx: 6= 6x+x8%4;
5B o=[—200° 6xX%%T+ X7 6%, H, (18)

We may note that 6° A and §°x* are the only variations we need to calculate all the response
variations.

7. Numerical examples

Optimal minimum weight (volume) design with respect to undeformed cross-sectional area
and configuration of truss structures are obtained in the present section. Sensitivity capability
is added to a specific finite element nonlinear analysis program in order to supply the nonlinear
programming code ADS (Vanderplaats 1987) for optimization. Sensitivities of cost and constraints
have been verified by finite difference approach before the optimization phase. The method
of feasible directions is used to obtain the optimum solutions. A personal computer IBM AT-
486 has been used to run the applications. Materially nonlinear-only problems are presented.
Piecewise linear constitutive law for elastic-plastic material with kinematic hardening (Young
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Fig. 2 Nine-bar truss structure and loading
Table 1 Nine-bar optimal designs
case | case 2 case 3
Design Initial Status Final Status Final Status Final Status
of the of the of the of the
Variable Design  Material Design ~ Material Design  Materia 1  Design ~ Material
in LD. in F.D. in F.D. in F.D.
Al (cmd) 20 -C 17.39 -D 20.36 D 19.78 D
A2 20 D 1744 D 19.89 -D 20.14 -D
A3 20 -C 15.81 D 14.59 D 20.20 D
A4 20 A 1579 D 14.11 -D 18.55 -D
AS 20 -D 16.31 D 12.33 D 7.90 D
A6 20 -D 1641 -D 13.83 -D 7.98 -D
A7 20 A 17.11 A 723 -D 1743 A
A8 20 A 1797 A 12.54 —C 1646 A
A9 20 A 1797 A 14.04 C 16.76 A
y3 (cm) 500 4939 3722 3135
y4 0 46 137.2 182.8
y5 250 2498 246.7 237.1
Active Constraints* — 15 15 6,15
Max. Violation(%) - 04 04 042
Optimal Vol.(cm?) 104049 86363 68787 72167

*Constraints numbers: 1-9 for element stress, 10-15 for horizontal and vertical displacements of nodes 3-5, respectively.

modulus/tangent modulus=2) and cyclic loading is considered as shown in Fig. 1.
Constraints are maximum point stresses of truss elements and node displacements for all
examples. Optimal designs were performed with three different strategies indicated as

case 1-simultaneous cross sectional areas and nodal coordinates optimization
case 2-optimization by levels: [nodal coordinates [areas]]
case 3-optimization by levels: [areas [nodal coordinates]]

In case 1, scaling has been used for the cross-sectional areas to get the same order of values
for the sensitivities of the objective function w.rz both types of design variables.

7.1. Nine-bar ground truss optimal design

A nine-bar truss structure and its cyclic loading are represented in Fig. 2. For this structure,
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2
Fig. 3 Best optimal configuration

Node X(cm) Y(cm) Z(cm)
1 0 0 1016.5
2 —500 —287.7 200
3 500 —287.7 200
4 0 5774 200
5 —600 —1155 0
6 —400 —4619 0
7 400 —4619 0
8 600 —115.5 0
9 —200 5774 0
10 200 5774 0
b
400
0
O 1 2 3 N4 5 o Inc
-400 1
-800

©

Fig. 4 Three-dimensional twelve-bar truss structure and loading

the material is defined by Young modulus=210 GPa and Initial yielding=240MPa. Constraints
are 360 Mpa for maximum point stresses of truss elements and 4 cm for horizontal and vertical
displacements of nodes 3-5. Table 1 shows the initial and optimal designs and Fig. 3 shows
the configuration for the best results.
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Table 2 Twelve-bar optimal design

case 1 case 2 case 3
Design Initial Status Final Status Final Status Final Status
of the of the of the of the
Variable Design  Material Design Material Design Material Design  Material
in LD. in F.D. in F.D. in F.D.
Al (cm?) 30 ~C 24.66 —E 2477 —E 2432 —E
A2 30 A 13.28 A 79 -C 2453 A
A3 30 A 13.26 C 8.8 E 24.63 A
A4 30 A 1326 A 8.0 A 2498 A
AS 30 A 1326 E 6.7 A 23.11 A
A6 30 A 13.26 A 6.5 A 23.11 A
AT 30 A 2531 —-C 18.75 —E 24.22 A
A8 30 A 25.25 A 26.01 —-C 30.00 —E
A9 30 A 2541 A 21.12 A 2599 A
Al0 30 A 2521 A 18.97 A 2422 A
All 30 A 2533 A 1875 A 24.31 A
Al2 30 A 25.26 A 18.75 A 2431 A
x1 (cm) 0 65.7 —1458 247
x2 —500 —484.2 —315.2 ~219.7
x3 500 484.1 3282 2189
yl 0 13 —2074 —48.1
y4 5774 5547 4109 219.2
z1 1016.5 990.1 500 500
Active Constraints* - 1, 12 3 1, 8
Max. Violation (%) - 04 04 04
Optimal Vol. (cm?) 230844 131704 74466 130603

*Constraints numbers: 1-12 for element stress, 13-15 for x, y and z displacement of node 1.

Fig. 5§ Best optimal configuration
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7.2. Three-dimensional twelve-bar truss optimal design

A three-dimensional twelve-bar truss structure and its cyclic loading are represented in Fig.
4. For this structure, the material is defined by Young modulus=210GPa and Initial yielding =240
MPa. Constraints are 360 MPa for maximum point stresses of truss elements and 6 cm for
x, y and z displacements of node 1. Table 2 shows the initial and optimal designs and Fig5
shows the configuration for the best results.

8. Concluding remarks

Optimal design of structures with path-dependent static response have been presented. The
direct differentiation approach and a Lagrangian-Eulerian description of the deformation-design
variation process is used to perform a unified viewpoint of sensitivity analysis, by a continuum
formulation, with respect to dimensional and configuration problems.

For problems with path-dependent response, design sensitivities are also path-dependent and
have to be evaluated and memorized at unloading and reloading points for further accumulation.
Design sensitivities w.r.t. cross-sectional areas are discontinuous at the yielding points.

The theory is discretized by finite elements for numerical implementation. Constraints must
be imposed along the deformation history. If the number of unloading and reloading points
is large, a maximum point technique may be suggested.

It is observed that the second strategy (case 2-optimization by levels: [nodal coordinates
[areas]]) gave the best results for both examples. The differences among the three cases is
chiefly due to the different contribution the two types of design variables have to the objective.
When configuration design is firstly performed (case 3), this has small influence in the objective
function because member lengths have small sensitivity w.r.t. nodal positions. Next, when cross-
section design is performed, some constraints are already active and there is little “room” to
vary the areas. In case 2, since cross-sectional areas have large influence in the objective function,
when design is firstly performed w.rt the areas, the objective is already substantially reduced
before the configuration variation is started. In case 1 it happens that the design space is not
the same when compared with the cases 2 or 3 and local optimum is searched.

Further developments of the theory and applications have been done for dynamic transient
loading and are to be submitted for future publication.
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