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Abstract. A Chebyshev spectral method (CSM) for the dynamic analysis of non-uniform Timoshenko
beams under various boundary conditions and concentrated masses at their ends is proposed. The matrix-
based Chebyshev spectral approach was used to construct the spectral differentiation matrix of the
governing differential operator and its boundary conditions. A matrix condensation approach is crucially
presented to impose boundary conditions involving the homogeneous Cauchy conditions and boundary
conditions containing eigenvalues. By taking advantage of the standard powerful algorithms for solving
matrix eigenvalue and generalized eigenvalue problems that are embodied in the MATLAB commands,
chebfun and eigs, the modal parameters of non-uniform Timoshenko beams under various boundary
conditions can be obtained from the eigensolutions of the corresponding linear differential operators. Some
numerical examples are presented to compare the results herein with those obtained elsewhere , and to
illustrate the accuracy and effectiveness of this method.

Keywords: Chebyshev spectral method; modal analysis; spectral differentiation matrix; chebfun;
Timoshenko beam 

1. Introduction

Members with variable cross-sections have been extensively used in many industrial fields,

including the mechanical, civil, aerospace and rocket engineering fields, to optimize the distribution

of weight and strength, and sometimes to satisfy some special requirements. The cost of fabricating

such members is relatively high and offsets their advantages. However, when weight and

performance are the most important considerations, members with a variable cross-section are

preferred. 

Approximate solutions to such problems can be found by variational methods. Based on practical

considerations, energy methods are felt not to be straightforward since they require a priori

selection of displacement functions that satisfy at least, the geometric boundary conditions.

Satisfying these conditions is difficult, especially in cases of mixed boundaries. Also, the necessary

application of variational calculus commonly requires a knowledge of the principles of mechanics

that frequently exceeds that of many engineers. Including the shear deformation of beam analysis
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which significantly affects the dynamic characteristics of short beams, especially at higher modes of

vibrations would complicate the matter. Exact solutions for the behavior of Timoshenko beams with

arbitrary variable coefficients governing equations do not exist, so related problems must be studied

using approximate numerical methods, such as the finite element method (Rossi et al. 1990,

Cleghorn and Tabarrok 1992, Gutierrez et al. 1991, Rossi and Laura 1993), the transfer matrix

method (Irie et al. 1980), and the Rayleigh-Ritz method (Gutierrez 1991). In special cases in which

the coefficients in the governing differential equations are of polynomial form, the method of

Frobenius has sometimes been used (Lee and Lin 1992, 1995, Leung and Zhou 1995). Recently,

Posiadala (1997) examined the free vibrations of uniform Timoshenko beams with attachments

using the Lagrange multiplier formalism. Ho and Chen (1998) analyzed general elastically

restrained non-uniform beams using a differential transform approach. Karami and Malekzadeh

(2003) developed a differential quadrature element method for determining the vibration of shear

deformable beams under general boundary conditions. Hsu et al. (2009) solved the free vibration

problem of uniform Timoshenko beams using the Adomian modified decomposition method. 

The formulation of the free vibration of a Timoshenko beam using the Chebyshev spectral method

is straightforward and sufficiently powerful to produce approximate solutions that are close to exact

solutions. This method has been highly successful in such areas as turbulence modeling, weather

prediction and nonlinear waves. Lee and Schultz (2004) presented an eigenvalue analysis of

Timoshenko beams and axisymmetric Mindlin plates using the pseudo spectral method. They used

Chebyshev series expansion to generate a recurrence formula of expansion coefficients. Ruta (2006)

applied Chebyshev series approximation to solve the vibration problem of a non-prismatic

Timoshenko beam resting a two-parameter elastic foundation. Salarieh and Ghorashi (2006)

analyzed the free vibration of a cantilever Timoshenko beam with a rigid tip mass. Ferreira and

Fasshuer (2006) explored the free vibration of Timoshenko beams and Mindlin plates using the

RBF-pseudospectral method.

In this study, a novel matrix-based Chebyshev spectral method (Don and Solomonoff 1995, Costa

and Don 2000, Trefethen 2000) is implemented via Matlab matrix eigenvalue commands to analyze

the modal parameters of non-uniform Timoshenko beams under various boundary conditions. 

The system that is introduced herein is built on the chebfun system. In the chebfun system,

vectors are replaced by functions that are defined on an interval [a, b], and commands like these are

overloaded by their continuous analogues such as integral, derivative, or L2-norm. The functions are

represented by interpolants in suitably rescaled Chebyshev points ,  or

interpolants in suitably rescaled Chebyshev polynomials, either globally or piecewise. The process is

terminated when the Chebyshev coefficients fall to a relative magnitude of about 10−16. Thus the

central principle of the chebfun system is to evaluate functions in sufficiently many Chebyshev

points for a polynomial interpolant to be accurate to machine precision. This study proposes a

method of so doing based on collocation in the Chebyshev points and lazy evaluation of the

associated spectral discretization matrices, all implemented in object-oriented Matlab on top of the

chebfun system. 

2. Chebyshev spectral method and differentiation matrix

According to Don and Solomonoff (1995), in the domain x ∈ [−1, 1], the Nth-order Chebyshev

polynomial TN(x) and Chebyshev-Gauss-Lobatto (CGL) collocation points xj can be expressed

cos jπ/n( ) 0 j n≤ ≤
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respectively as  

 (1)

,   (2)

Notably, the CGL points, which are numbered from right to left for convenience, are clustered

near ±1.

Let p(x) be a smooth function p(x) in the domain x ∈ [−1, 1]. p(x) is interpolated by constructing

the N-order interpolation polynomial g(x), where g(x) is the polynomial of degree N, gj = g(xj) =

p(xj), and j = 0,…, N. The function g(x) can be written as 

,  

(3)

The derivative of g(x) at the CGL points xj can then be computed via matrix-vector multiplication,

which can be formally represented as

(4)

where  is an  matrix. The elements of the matrix in (Don and Solomonoff

1995) are 

,

, , (5)

Concerning higher derivatives, we remark that often the second- and higher-derivative matrices

are equal to the first-derivative matrix raised to the appropriate power. However, computing higher

derivative matrices by computing the powers of the first-derivative matrix is not recommended. The

computation of powers of a full matrix requires O(N3) flops, compared to the O(N2) flops for the
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recursive algorithm (Costa and Don 2000), which is described as follows. Not only is this recursion

faster, but also introduces less roundoff error compared to that when computing matrix powers.

(6)

Eqs. (5) and (6) play significant roles in this study. By using the Chebyshev spectral

differentiation matrix, a linear differential operator may be transformed into a matrix operator; that

is, the modal solutions of Timoshenko beams can be eigensolutions of the transformed matrix. 

3. Free vibration analysis of a non-uniform Timoshenko beam by the Chebyshev

spectral method

The material and geometric parameters E, G, A, I, v, and ρ of a non-uniform Timoshenko beam

(Fig. 1), are functions of the longitudinal coordinate x. Applying Hamilton’s Principle and carrying

out integration by parts yield the governing equations and external boundary conditions for free

vibration with frequency ω of the non-uniform Timoshenko beam

(7a)

(7b)

in which a shear factor κ is applied to all terms that involve G and A, such that  accounts for

the non-uniform distribution of shear stress across the cross-sectional area.

The corresponding external boundary conditions are

DN

m( )ij m DN

m 1–( )ii DN( )ij xi xj–( ) 1–
DN
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d
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2
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Fig. 1 The non-uniform Timoshenko beams with various boundary conditions 
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(8a)

(8b)

where kTL and kRL are the translational and rotational spring constants, respectively, at the left end;

kTR and kRR are the translational and rotational spring constants, respectively, at the right end; ML

and JL are the concentrated mass and moment of inertia, respectively, of the mass attached to left

end of the beam, and MR and JR are the concentrated mass and moment of inertia, respectively, of

the mass attached to right end of the beam.

The following dimensionless quantities are defined.

, ,

, ,

, , ,

, , ,

 

, , , (9)

Notably, the range of the independent variable is u ∈ [0, 1]; however, in the Chebyshev spectral

method, the domain prefers to normalize in [−1, 1], with the following transformation

, (10)

Substituting Eqs. (9) and (10) into Eq. (7) allows the governing equations may be rewritten in the

following dimensionless forms.
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Let D denotes the differentiation operator, with  then Eq. (11) is rearranged in a

matrix form as

(12)

Let {W} and {Φ} denote the vectors of wi and φi, respectively, evaluated at CGL collocation

points zi, and be expressed as

(13)

where , , , .

In terms of the Chebyshev spectral differentiation matrix, Eqs. (4)-(6), Eq. (12) can then be

reduced to

(14)

where

(15)
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(17a)

where , and 

(17b)

where .

Consequently, various external classical and non-classical boundary conditions can be modeled by

assembling different conditions in Eq. (17). For illustrative purposes, under classical boundary

conditions, such as free, pinned and clamped, Eqs. (17a) and (17b) can further be reduced as

follows.

Free at end X (either left or right) 

(18a)
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beam with the left end clamped and mass attached at the free right end is illustrated. Under the

specified boundary conditions, with  Eqs. (17a) and (17b) can

be reduced to

(19a)

and 

 (19b)

Substituting Eq. (16) into Eq. (19b) allows the right end condition to be further reduced to

 (20)

where vector {Bλ} is defined as

(21)

From Eq. (20), the right end boundary condition contains an eigenvalue due to the attached mass.

For a specific beam vibrating mode, the attached mass will vibrate with the corresponding natural

frequency. 

4. Imposing boundary conditions on the Chebyshev spectral matrices

In summary of Eqs. (18a)-(18c) and (20), two boundary conditions must be handled, i.e., a

homogeneous Cauchy condition, and boundary condition varying with the eigenvalues of the

dynamic system. 

Based on the properties of the boundary conditions, matrix [L] and vector [Z] in Eq. (14) can be

rearranged and partitioned as follows.

 (22)
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generalized coordinates in the interior CGL points.

In the case of homogeneous Robin conditions, such as given by Eqs. (18a)-(18c), the equations

can be rewritten as 

 (23)

For the case of boundary conditions containing eigenvalues, such as in Eq. (20), the equation can

be rewritten as 

 (24)

Substituting Eq. (23) for the second row in Eq. (22), and substituting Eq. (24) from the third row

in Eq. (22), then Eq. (22) can be reduced to
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5. Numerical results

In the following examples, the material properties of the beam are assumed to be constant, while
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and linearly varying thickness. The dimensionless parameters of the cross-section are
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(30)

Case 2 is a Timoshenko beam which width and depth both vary linearly with the taper ratio α.

The dimensionless parameters of the cross-section are

(31)

A preliminary run of the check for convergence of the eigenvalues of the non-uniform

Timoshenko beam under various boundaries. Tables 1 to 3 present the results for case 1 under C-F,

C-S and C-C boundary conditions. The number of collocation points determines the size of the

problem. The rapid convergence of the Chebyshev spectral method is evidenced by N < 20 for the

convergence of the first five eigenvalues to five significant digits. Tables 1 to 3 also show the first

five dimensionless natural frequencies. Excellent agreement is achieved between the results of the

p u( ) m u( ) 1 αu+= =

q u( ) r u( ) 1 αu+( )3= =

p u( ) m u( ) 1 αu+( )2= =

q u( ) r u( ) 1 αu+( )4= =

Table 1 Convergence results of the first five dimensionless frequencies for N = 30 in Case 1. (C-F) (α = −0.2,
γR = 0, µR = 0, η = 0.01, ξ = 1/3.12η, υ = 0.3, κ = 5/6)

N

8 3.3306 14.2974 30.7985 47.8769 62.0107

10 3.3306 14.2891 30.7081 47.8338 65.3291 

13 3.3307 14.2892 30.7108 47.7510 64.9867 

15 3.3307 14.2892 30.7108 47.7502 64.9978

18 3.3307 14.2892 30.7108 47.7502 64.9770

20 3.3307 14.2892 30.7108 47.7502 64.9770 

25 3.3307 14.2892 30.7108 47.7502 64.9770 

30 3.3307 14.2892 30.7108 47.7502 64.9770 

*Leung and Zhou (2001) 3.33 14.29 30.71  47.70 ------- 

Table 2 Convergence results of the first five dimensionless frequencies for N=30 in Case 1. (C-S) (α = −0.2,
γR = 0, µR = 0, η = 0.01, ξ = 1/3.12η, υ = 0.3, κ = 5/6)

N

8 10.6875 26.1159 43.8044 60.2425 68.2347

10 10.6869 26.1070 43.6079 61.6402 68.4820

12 10.6869 26.1072 43.5000 61.6486 68.4135 

15 10.6869 26.1072 43.5907 61.6560 68.4210

17 10.6869 26.1072 43.5907 61.6559 68.4207

20 10.6869 26.1072 43.5907 61.6560 68.4207 

25 10.6869 26.1072 43.5907 61.6560 68.4207 

30 10.6869 26.1072 43.5907 61.6560 68.4207 

*Leung and Zhou (2001) 10.69 26.11  43.60 60.04 -------

λ1

N( )
λ2

N( )
λ3

N( )
λ4

N( )
λ5

N( )

λ1

N( )
λ2

N( )
λ3

N( )
λ4

N( )
λ5

N( )
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analysis herein and those of Leung and Zhou (2001).

To demonstrate the efficiency of the present algorithm for beams with non-classical boundary

conditions, especially those with heavy masses and those with rotary inertias, various examples are

Table 3 Convergence results of the first five dimensionless frequencies for N = 30 in Case 1. (C-C) (α = −0.2,
γR = 0, µR = 0, η = 0.01, ξ = 1/3.12η, υ = 0.3, κ = 5/6)

N

8 13.2223 27.7757 45.0600 60.6723 72.4833

10 13.2223 27.7782 44.7048 61.7450 75.5222 

13 13.2223 27.7782 44.6971 61.8062 72.5549 

15 13.2223 27.7782 44.6971 61.8066 72.5547

18 13.2223 27.7782 44.6971 61.8066 72.5547

20 13.2223 27.7782 44.6971 61.8066 72.5547 

25 13.2223 27.7782 44.6971 61.8066 72.5547 

30 13.2223 27.7782 44.6971 61.8066 64.5547 

*Leung and Zhou (2001) 13.32 27.78 44.72 60.16 ------- 

Table 4 First six dimensionless frequencies of a cantilever tapered beam with attached mass at right end :
Case 1 υ = 0.3, κ = 5/6, α = −0.2, γR = 0.0, µR = µ(1 + α/2), ξ = 1/3.12η

µ = 0.2, η = 0.0016 µ = 0.2, η = 0.01

Present Leung
and Zhou 

(2001)

 Rossi
et al. 

(1990)

Present Leung
and Zhou 

(2001)

 Rossi
et al. 

(1990)
N = 10 15 20 N = 10 15 20 

λ1 2.5888 2.5888 2.5888 2.59 2.59 2.4618 2.4618 2.4618 2.46 2.46 

λ2 15.6704 15.6708 15.6708 15.67 15.67 12.2684 12.2687 12.2687 2.27 12.27 

λ3 41.7452 41.5309 41.5309 41.53 41.56 27.7448 27.7252 27.7252 27.73 27.78 

λ4 78.3230 75.6669 75.6632 75.67 75.84 45.4958 44.8895 44.8893 44.89 45.15 

λ5 114.8122 115.0394 114.9829 - - 65.4581 62.9629 62.9477 - -

λ6 140.5508 157.2472 157.4484 - - 71.9424 68.9766 68.9785 - - 

Table 5 First six dimensionless frequencies of a cantilever tapered beam with attached mass at right end :
Case 2, υ = 0.3, κ = 5/6, α = −0.1, η = 0.0008, ξ = 400

γR = µR = 0 γR = µR = 0.2

Present Leung
and Zhou 

(2001)

Lee
and Lin 
(1992)

Present Leung
and Zhou 

(2001)

Lee
and Lin 
(1992)

N = 10 15 20 N = 12 15 20

λ1 3.6464 3.6464 3.6464 3.65 3.65 1.6656 1.6656 1.6656 1.67 1.67

λ2 20.5725 20.5742 20.5742 20.57 20.57 5.1390 5.1391 5.1391 5.14 5.14 

λ3 53.4353 53.4251 53.4251 53.45 53.43 23.9839 24.0107 24.0107 24.01 24.01 

λ4 98.1446 97.1232 97.1230 96.91 97.12 56.3211 56.5033 56.4986 56.51 56.50 

λ5 159.9709 148.5359 148.5191 - - 105.0615 99.3709 99.3207 - -

λ6 221.2256 205.1447 205.0865 - - 153.1226 148.4395 149.2887 - -

λ1

N( )
λ2

N( )
λ3

N( )
λ4

N( )
λ5

N( )
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considered here. In most cases, the results are presented at different collocation points to reveal the

high rate of convergence of the method. Tables 4 and 5 list the first six dimensionless natural

frequencies of cantilever non-uniform beams with an attached mass at their right ends in cases 1

and 2, respectively. The rapid convergence of the results is obvious. The results of the present

method are compared with the results of the dynamic stiffness method of Leung and Zhou (2001)

and other convergent solutions provided by Lee and Lin (1992), which are believed to be very near

to the exact solutions. Comparing the results indicates an excellent rate of convergence and high

accuracy.

In other applications, one non-uniform cantilever beam carries a heavy tip mass and is restrained

at the free end with elastic restraints of various strengths. Tables 6 and 7 present dimensionless

natural frequencies with different tip masses and elastic restraints. From Table 6, when the

dimensionless elastic coefficients of support KTR are held constant, the natural frequency decreases

as the dimensionless concentrated attached mass increases. In Table 7, the dimensionless

concentrated attached mass is constant and the natural frequency increases with the dimensionless

elastic coefficient of the support increases. Tables 6 and 7 also reveal that the simple-support

boundary condition applies when either the elastic coefficient KTR or the concentrated attached mass

is sufficiently large.

 

 

Table 6 First four dimensionless frequencies of cantilever tapered beam restrainted and carrying a tip mass at
the free end : Case 1 υ = 0.3, κ = 5/6, α = −0.2, η = 0.01, ξ = 1/3.12η

KTR = 0,
µR = 0

KTR = 0,
µR = 1

KTR = 1,
µR = 1

KTR = 1,
µR = 10

KTR = 1,
µR = 100

KTR = 1,
µR = ∞

KTR = 0,
µR = ∞

(C-F) (C-S) 

λ1 3.3307 1.3946 1.6659 0.5720 0.1825 0.0002 0.0000 

λ2 14.2892 11.1193 11.1224 10.7349 10.6917 10.6869 10.6869

λ3 30.7108 26.5009 26.5014 26.1493 26.1114 26.1072 26.1072

λ4 47.7502 43.8924 43.8926 43.6226 43.5939 43.5907 43.5907

λ5 64.9970 61.9689 61.9689 61.6893 61.6593 61.6560 61.6560

λ6 70.5880 68.5382 68.5382 68.4328 68.4220 68.4207 68.4207

Table 7 First four dimensionless frequencies of cantilever tapered beam restrainted and carrying a tip mass at
the free end : Case 1 υ = 0.3, κ = 5/6, α = −0.2, η = 0.01, ξ = 1/3.12η

KTR = 0,
µR = 0

KTR = 0,
µR = 0

KTR = 1,
µR = 1

KTR = 10,
µR = 1

KTR = 100,
µR = 1

KTR = ∞,
µR = 1

KTR = ∞,
µR = 0

(C-F)  (C-S) 

λ1 3.3307 3.9355 1.6659 3.1934 8.6266 10.6869 10.6869 

λ2 14.2892 14.4087 11.1224 11.1526 11.8588 26.1072 26.1072

λ3 30.7108 30.7561 26.5014 26.5061 26.5604 43.5907 43.5907

λ4 47.7502 47.7700 43.8926 43.8939 43.9079 61.6560 61.6560

λ5 64.9970 65.0023 61.9689 61.9696 61.9766 68.4207 68.4207

λ6 70.5880 70.5934 68.5382 68.5384 68.5407 79.6605 79.6605
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6. Conclusions

This study presented a differentiation matrix to determine the modal parameters of Timoshenko

beams using the Chebyshev spectral approach. A simple and efficient matrix-based method is used

to integrate complicated boundary conditions into a condensation matrix. This method allows

complete natural frequencies and mode shapes to be calculated simultaneously using the standard

matrix eigenvalue algorithm in Matlab software. Numerical results are compared with those

obtained using other methods. Nevertheless, the rapid convergence and high accuracy of the

proposed method were demonstrated. The method is a straightforward and efficient approach for

computing eigensolutions of linear differential operators in engineering problems. 
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