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Abstract. The design of box girders requires the determinations the buckling stress of the flange and
the webs. Existing design equations available in codes of practice ignore the interactions between the box
girder components. The paper illustrates the influence of the geometric interaction on the buckling stress
of box girders. Generalized equations are first derived in terms of the web the flange geometric
properties. Industrial examples are then presented showing the variation of the flange buckling stress for
various stiffening configurations. The influence of the flange/web proportions on the buckling stress of
box girder components is also highlighted. It is shown that buckling strength of the flange is largely
affected by the restraints imposed by the webs or attached diaphragms. Graphs are presented showing
various limiting states of box girders. These graphs are useful to use in practice in order to achieve
economical and efficient design of box girders and rationally predict local buckling stress. 
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1. Introduction

Box girders are extensively used in bridge constructions and are also used to support mining and

process facilities. As an example, the surge facility shown in Fig. 1, used in the material handling

unit is supported by series of longitudinal girders. The average weight of the surge facility is

approximately 2,600 tons. The box girder supports are normally designed to accommodate heavy

loads caused by dumping and storage of the oil-sands. The structure consists of; 1) a hooper with

horizontal leaf gates; 2) spillage conveyor; 3) apron feeders; 4) mix box feed conveyor; 5) electrical

house and mechanical equipments; 6) air blasting and HVAC systems. During operation, oil sand

material is placed in the hopper by a surge feed conveyor, then it is dumped into the apron feeders,

and then discharged by the chute into the mix box feeder conveyor. Paddle shafts are mounted

above the drives of the apron feeders in order to minimize congestion during operation. The spillage

conveyor collects the material spilled by the apron feeder and dumps it into the discharge chute. 

It is common in practice to stiffen the flanges and the webs in the longitudinal and transverse

directions to enhance the structural stability during operation. The profile of the ribs (or stiffeners)

may also vary in practice. Open stiffening ribs are usually flat bars, inverted tees (or WT section),

angles, L, or bulb sections. Although closed ribs have considerable torsional rigidity, their

*Corresponding author, Ph.D., E-mail: obedair@gmail.com

DOI: http://dx.doi.org/10.12989/sem.2011.39.5.643



644 Osama Bedair

fabrication is more difficult than open ribs. Due to the high loads induced during operation, several

failure modes may result. Some of there failures are caused by the geometric interaction between

the box girder components which is ignored by current design codes of practice. Objective of the

paper is to highlight the influence of the geometric restraints restraints on the computation of the

buckling stresses.

Several investigations were done in the past for analysis of stiffened panels used for various

engineering applications. Rikards et al. (2001) used Finite Element for analysis of stiffened plates.

They used magnified stiffness values at the plate/stiffener points of contacts. Barik and

Mukhopadhyay (2002) presented FE formulations for analysis of plates with arbitrary geometrical

configurations. Patel et al. (2006) used FE formulations for analysis of stiffened panels subjected to

uniform in-plane harmonic edge loading. Mallela and Upadhyay (2006) used ANSYS to present

parametric study on simply supported laminated composite blade-stiffened panels subjected to in-

plane shear loading. Zhang et al. (2005) presented finite element formulation for analysis of

stiffened plates under heavy fluid loading. They incorporated in their formulations the radiation

damping effect due to the fluid loading. Stamatelos et al. (2011) presented a methodology to study

local buckling and post-buckling behavior of stiffened plates. Transverse and rotational springs of

varying stiffness were used to model the plat-stiffener interaction. A two-dimensional Ritz

displacement function is utilized in the analysis. Zhang et al. (2011) used a triangular composite

stiffened plate/shell element to analyze stiffened plates using Mindlin shear deformation theory. The

rotations of ribs and the plate are determined using displacement compatibility conditions. Tamijani

and Kapania (2010) investigated stability of plates with curvilinear stiffeners subjected to in-plane

loading. The transverse deflection and rotations of the plate and stiffener were expressed in terms of

Chebyshev polynomials. The stiffness and geometric stiffness matrices are obtained by

superimposing the strain energy and potential of the membrane force in curvilinear coordinates. Li

and Xiaohui (2010) presented finite element model to study the bending behavior of stiffened plates.

The compatibility of displacements and stresses between the plate and the stiffeners conditions were

used to establish the governing equations. Nath (2010) presented analytical solutions for elastic

fields of a stiffened plate subjected to axial tension and pure bending. A potential function is

Fig. 1 Surge bin facility supported by box girders
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expressed in terms of the displacement components that satisfy the equilibrium condition. Fourier

series approximation is then used to satisfy the boundary conditions. It must be highlighted that the

Finite element and finite strip methods requires extensive computer storage, cost and data

preparation from the user if the stiffeners are not equally spaced or have different profiles, or the

applied load is not uniform as in the case of the many of the oil-sand facilities.

The above studies dealt with specific aspects that affect the design of box girders. Limited

literature addressed the stability of box girders with applications to industrial facilities. It was found

during several industrial investigations that the geometric interactions are very critical and may yield

unpredicted failures. Objective of the paper is to study the influence of the web/flange geometric

interaction on the stability of box girders with application to mining process facilities.

2. Numerical model

Consider typical box girder support shown in Fig. 3, with flange width (bf) and thickness (tf). The

width of the web is denoted by (bw) the thickness by (tw). Section A-A is showing the box girder

profile with longitudinal ribs. Section B-B shows typical transverse rib profile. The superscripts L

and T are used to denote the longitudinal and transverse rib, respectively. Each rib is described by

the following geometric properties; A = cross-sectional area, Q = first moment of inertia, Iy = major

axis second moments of inertia; Iz = minor axis second moment of inertia; J = torsional rigidity.

The origin is denoted by (O) and is located at the left hand corner of the flange. The spacings of the

ribs are also denoted by spLi, and spTi, as shown in the figure. It must be noted that the geometric

properties of the ribs are computed for the T-profile without participation from the flange or the

web. 

Fig. 2 Section elevation showing structural components of the surge bin facility
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In the present formulation the flanges are treated as partially restrained against rotation and in-

plane translation. This represents intermediate boundary condition between the extreme simply

supported and clamped boundaries. The intensity of the flange restraints are dictated by the

geometric properties of the web. Similar treatments are accorded to the longitudinal edges of the

webs. By treating the flange as single plate element, the out-of plane deflection function can be

assumed in the following form 

(1)

Where Pi(ξ) and Ωj(η), describe flange longitudinal and transverse displacement profiles,

respectively. ξ and η are non-dimensional parameters, given by ξ = x/a and η = y/bf. In the present
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Fig. 3 Details of typical stiffened support details
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formulation, the out of plane deflection of the flange at the web/flange junction is assumed to be

zero. It is further assumed that local buckling of the ribs will not occur prior to the flange or the

web. Also, the torsional rigidity of the stiffeners is estimated by St. Venant’s theory.

When using the compatibility conditions (at η = 0, 1) along the web/flange junctions, Ωj(η) can

be expressed as

(2)

Note that the function Ωj(η) relates the flange and the web geometric parameters. The

displacement functions (η) needs to satisfy the rotationally clamped condition, while (η)

needs to satisfy the rotationally free boundary condition at web/flange junctions (η = 0, 1). 

In the presented formulation, the transverse edges (ξ = 0 and 1) are treated as either simply

supported or clamped. Accordingly, the function (ξ) needs to satisfy in addition to zero out-of

plane deflection, either zero moment or slope, i.e.

, (3)

or

, (4)

The flange in-plane displacement functions (Uf and Vf) are expressed as 

(5)
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The expressions for the integral functions [F] are provided in Appendix I. Similarly, the strain

energy of typical longitudinal rib can be expressed as

(8)

Note that the superscripts denote the rib direction and subscripts denote the summation. The

matrices [SLi] contain the geometric parameters of the ribs and are provided in the Appendix I.

Similarly the strain energy of typical transverse rib is given by 

(9)

The expressions for the integral functions [STi] are given in Appendix I.

Beside the rotational restraint, the attached webs (or diaphragms) also restrain the flange laterally

against in-plane motion. As the flange is compressed axially, the longitudinal edges (at ξ = 0,1) will

expand in the perpendicular direction due to the Poisson effect. However, the webs (or diaphragms)

will resist this in-plane motion. The two extreme conditions are free in-plane motion or fully

restrained against in-plane translation. If, in the analysis, the flange is considered to be restrained

against in-plane translation, the strain (εy = 0) at ξ = 0 and 1. As a result, additional destabilizing

forces will appear in the transverse direction that will lower the buckling load. If the webs are

stiffened, the intensity of this restrain will be more pronounced on the flange. The work done by the

applied and the applied and induced forces due to lateral restraint, is given by

(10)

Πst

Li
Sijkl
Li
  Sijmn

Li
  Sijmnkl

Li
  Sijkltfze

Li
  Sijkltf

Li
  Smnpq

Li
  Srsgh

Li[ ]

bij

f
bkl

f

umn

f
bij
f

bij
f
umn

f
bkl

f

bij
f
bkl
f
btf

f
bze

f

bij
f
bkl
f
btf
f

umn

f
upq
f

vrs
f
ugh
f

=

Πst

Ti
Sijkl
Ti
  Sijrs

Ti
  Sijrskl

Ti
  Sijkltfze

Ti
  Sijkltf

Ti
  Smnpq

Ti
  Srsgh

Ti[ ]

bij

f
bkl

f

vrs
f
bij
f

bij

f
vrs
f
bkl
f

bij

f
bkl

f
btf
f
bze
f

bij
f
bkl
f
btf

f

umn

f
upq
f

vrs
f
ugh
f

=

V Vijkl

1
  Vijkl

2
  Vijkl

3

i 1=

NS
Li

∑
i 1=

NS
Li

∑

N
f

N
Li

N
Ti

bij
f
bkl
f

=



Stability limit state design of box sections supporting mining and process facilities 649

Where 

(11)

(12)

(13)

By assembling the potential energy components, and minimizing with respect to the displacement

coefficients {bij, umn, vrs}, the buckling stress of the flange can be expressed as

(14)

Note that Kf is the parameter that contains the [F],  and [V] integrals which are

function of the flange, web, stiffeners properties and shape functions {Pi(ξ), ωj(η), Φm(ξ), Yn(η),

Zr(ξ), Hs(η)}. By similar analogy, the buckling stress of the web can be expressed in similar format

(15)

Since these parameters are non-linear function of these coefficients, analytical treatment of the

problem becomes difficult. In this study, non-linear programming techniques were employed to

determine the critical stress for the box girder components. The solution procedure for the

mathematical algorithm is described by Schittkowski (1985). In this problem, the objective is to find

the coefficients {bij, umn, vrs} that minimize the flange/web buckling coefficients (K
w,f). The

mathematical statement of the unconstrained optimization problem is stated as follow

Minimize (16)

The solution strategy for the non-linear function is performed iteratively by generating and solving

a sequence of Quadratic sub-problems. Each iteration is described a step size and search direction

that are computed to produce a sufficient decrease in the objective function. The process continues

until there is no further decrease in the objective function or the decrease is of negligible order.

3. Numerical results 

3.1 Unstiffened box girder supports (Uniform Compression)

To illustrate the geometric interaction, unstiffened box girder is first considered. The variations of

the buckling curves for the flange and the web are presented in the graphical format shown in

Fig. 4. The buckling coefficient (Kf,w) is plotted versus the flange/web thickness (tf /tw) for several
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(bf /bw) ratios. Note that the buckling curves for each (bf /bw) ratio are plotted using the same legend.

To maintain clarity of the figure, the continuations of these curves beyond their points of

intersection are not shown. Therefore, the stability domain for each (bf /bw) is the area under these

intersecting curves. The solid curves represent (bf /bw) = 1, the dotted represent (bf /bw) = 2 and the

dashed represent (bf /bw) = 4. Points of intersection represent the values at which the webs and the

flange buckle simultaneously. These points correspond to the optimum flange/web geometric

proportions that maximize the buckling load. The lower and upper limiting conditions are also

identified in the figure. Since the relative geometric proportions of the web and the flange dictate

the intensities of these restraints, their “true buckling coefficients lie within the limiting conditions.

As shown, when (bf /bw) = 1, the flange dominates buckling load for in the range (tf /tw) ≥ 1. For

smaller (tf /tw) values, the web buckles before the flange. Similarly, for (bf /bw ) = 2, the flange

buckles before the web for (tf /tw) ≥ 0.86. It can be observed that the optimum (Kf,w) value for the

box section occur at different (tw/tf) ratios. For example, when (bf /bw) = 1 the optimum K occurs at

(tf /tw) = 1. This is because, the flange and the web have identical restraints (rotational and lateral).

Therefore, increasing (bf /bw) ratio requires lower (tf /tw) value to reach the optimum (K
f,w). For

example, when (bf /bw) = 2, the optimum (Kf,w) is achieved at (tf /tw) = 0.83. By further increasing (bf /

bw) to 4 the optimum (K
f,w) value is attained at (tf /tw ) = 0.73. 

The form of this graph very useful to use in practice to provide an economical design for the box

girder supports. For example, if the designer decides to use a flange width of bf = 1200 mm, web

width bw = 600 mm, and web thickness of (tw) = 12 mm. The optimum flange thickness required in

this case is (tf) = 10 mm. If alternatively, the thickness of the flanges and the web is dictated by the

steel fabricators by (tf) = 8 mm and (tw) = 10 mm. Then, by using a flange width of 1600 mm, the

optimum web width is 400 mm.

Fig. 5 shows the variation of the flange buckling coefficient (Kf) with (bf /bw) for un-stiffened box.

The figure shows the change in the flange buckling coefficient (Kf) by modifying (bf /bw) and (tf /tw)

ratios. The solid curve represents (tf /tw) = 2; the dotted curve represents (tf /tw) = 1.5 and the dashed

curve represents (tf /tw) = 1.25. It can be observed that the decrease in the flange buckling coefficient

occurs when (bf /bw) ≤ 0.65. For larger values, the decrease in (Kf) is much slower. Further increase

Fig. 4 Variation of Kf,w, with (tf /tw) for unstiffened box section
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in (bf /bw) has slight effect on the flange buckling load. Although in this example the webs did not

dominate the buckling load, the change in their geometric sizes influenced the flange stability.

3.2 Stiffened box girder supports

A computer program was developed to compute the buckling stress of stiffened box girders. For

given rib cross sectional properties and spacing, the program computes the buckling stress.

Geometric detail of the next case study is shown in Fig. 6. In this example, the flanges and the

webs are stiffened in the longitudinal and transverse directions by T-stiffeners along the centrelines,

i.e., for the flange {spL1= bf /2, sp
T1= a/2} and for the web {spL1= bw/2, sp

T1 = a/2}. The dimensions

of the longitudinal rib are; depth = 53 mm, flange width = 103 mm, flange thickness = 8.8 mm and

stem thickness = 7.1 mm. The dimensions of the transverse rib are; depth = 103 mm, flange

width = 102 mm; flange thickness = 8 mm and stem thickness = 6.2 mm. The stability design space

for the box girder support is shown in Fig. 7. The flange/web thickness ratio (tf /tw) ranges between

0.5-2.0. The web is subject to variable flexural load ranging between σ1/σ2 = −1, −0.5, 0, 0.5, 1. 
The solid triangles are used to identify the web curves, while solid circles are used to identify the

flange curves. Note that the solid segments in curves corresponding (σ1/σ2) = 1, 0.5 represent the

web domination and the dashed segments represent the inactive part. It can be seen that as the stress

ratios increases the buckling stress decreases. Also the web buckling stress varies significantly by

modifying the flange geometric properties. For (σ1/σ2) = −1, for examples, the web buckling
coefficient (Kw) varies between 19.2-29 by changing the flange/web thickness ratio (tf /tw) from 0.5

to 2. Similarly, when the stress ratio (σ1/σ2) = 0, the web buckling coefficient (K
w) varies between

15-21. This shows the influence of the flange/web geometric proportions on the behaviour of the

box girder supports. 

Geometric detail of the second stiffened box girder support is shown in Fig. 8. In this case, the

flange and web stiffening profiles are different. The webs are stiffened in the longitudinal direction

by two equally spaced T-stiffeners at spL1 = spL2 = bw/3. The web stiffener depth = 53 mm, flange

Fig. 5 Variation of Kf with (bf /bw) for unstiffened box section
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Fig. 6 Geometric details of stiffened box- section support example 1
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width = 103 mm, flange thickness = 8.8 mm and stem thickness = 7.1 mm. In the transverse

direction the web is stiffened at the centreline (spT1 = a/2). The web transverse stiffener depth =

103 mm, flange width = 102 mm; flange thickness 8 mm and stem thickness = 6.2 mm. The flange

is stiffened in the transverse direction (as shown by section B-B) by central T-stiffener at spT1 = a/2

with geometric dimensions identical to the web stiffener. In the longitudinal direction, the flange is

stiffened by identical rectangular ribs with depth = 50 mm and thickness = 4 mm. Modulus of

Elasticity and Poisson’s ratio of the section are E = 200 GPa and ν = 0.33.

Fig. 9 shows the variation of the flange buckling stress (σ f
cr) with (tf /tw) for the stiffened box

girder. The dotted curve represents flange with four ribs (spL1 = spL2 = spL3 = spL4 = bf /5). The

dashed curve represents a flange with five ribs (spL1 = spL2 = spL3 = spL4 = spL5 = bf /6). The solid

curve represents the flange with six ribs (spL1 = spL2 = spL3 = spL4 = pL5 = spL6 = bf /7). It can be

observed that the increase in the curves becomes sharper in the early stage as the number of ribs

increases. For example, by fixing (tf /tw) = 0.7, the flange buckling stress (σ f
cr) = 203 MPa. when

using four ribs. The flange buckling stress value increases to (σ f
cr) = 219 MPa by adding a fifth rib.

The value of (σ f
cr) = 233 MPa by using six ribs. It should be indicated that the upper and lower

limiting conditions for the flange with six ribs are (σ f
cr) = 250 MPa and 209 MPa, respectively. The

bounds for flange with five ribs are {230 MPa, 203 MPa}; and equals to {210 MPa, 190 MPa} for

flange with four ribs. Therefore, the variations in the buckling stress are very pronounced in this

example due to the interaction between the flange and the web. Although the webs did not

dominate the buckling load, the restraints they imposed to the flange are quite significant. As

illustration, for flange with six ribs the difference in the buckling stress is almost (20%). 

It can also be observed from this example the significant enhancements the ribs induce to the

buckling strength of the flange with almost negligible weight to the overall structure. The weight of

each rib in this example is almost 1% of the overall weight. By adding two ribs (i.e., increase the

weight by 2%), the buckling stress of the flange is increased by almost 18%. To further illustrate

Fig. 7 Variation of Kf,w with (tf /tw) for stiffened box section example 1
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Fig. 8 Geometric details of stiffened box-section support example 2
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the efficiency of the stiffened box system, assume that it is required to design flange for a buckling

stress of 245 MPa. By using six stiffeners, the overall weight of the box girder to achieve this stress

level is approximately 6.2 tons. If this buckling stress to be achieved without using longitudinal

ribs, then the weight of the box girder should increase to 9.2 tons by adjusting the flange thickness.

This corresponds to almost 55% increase in weight.

4. Conclusions

The paper highlighted the influence of the flange/web geometric proportions on the buckling

stress of stiffened box girders. A numerical procedure was presented for the analysis of box girder

supports that accounts for the geometric interactions between the webs and the flange. It was shown

the buckling stress may vary by 20% if the web/flange interaction is not properly accounted for.

Graphs were presented for several box girder supports to identify the stability design space. The

variation of the buckling stresses with the web/flange thickness ratios (tf /tw) was shown for various

stiffening configurations. It was shown that the buckling strength of the flange is largely affected by

the restraints imposed by the webs. These graphs are useful to use in practice in order to achieve

economical and efficient design of box girders. 
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Appendix. I

The expressions for the integral functions [F], [SLi] and [STi] are given by
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Notations

a : length of the box girder
A : areas of the ribs, respectively
bf, bw : width of the flange and the web
E : Young’s modulus of the box girder
G : shear modulus
Iy, Ix : moment of inertia about the major and minor axes of the ribs
J : torsional rigidity of longitudinal and transverse ribs, respectively
Kf, Kw : buckling coefficients for the flange and the web, respectivel
Nf, NLi,NTi : applied forces on the flange and the ribs
Pi(ξ), ωj(η), Φm(ξ), Yn(η), Zr(ξ), Hs(η): displacement functions
Q : first moment of inertia of longitudinal and transverse ribs, respectively
Wf, Uf, Vf : flange displacement functions
spLi, spTi : ribs spacing in the longitudinal and transverse directions, respectively
tf , tw : thicknesses of the flange and the web
Π

f, ΠLi
st,  Π

Ti
st  : potential energy functions

bij, umn, vrs : amplitudes of the shape functions
(σf )max : buckling stress of the flange




