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Abstract. A free vibration analysis is made of a moderately-thick toroidal shell based on a shear
deformation (Timoshenko-Mindlin) shell theory. This work represents an extension of earlier work by the
authors which was based on a thin (Kirchoff-Love) shell theory. The analysis uses a modal approach in
the circumferential direction, and numerical results are found using the differential quadrature method
(DQM). The analysis is first developed for a shell of revolution of arbitrary meridian, and then
specialized to a complete circular toroidal shell. A second analysis, based on the three-dimensional theory
of elasticity, is presented to cover thick shells. The shear deformation theory is validated by comparing
calculated results with previously published results for fifteen cases, found using thin shell theory,
moderately-thick shell theory, and the theory of elasticity. Consistent agreement is observed in the
comparison of different results. New frequency results are then given for moderately-thick and thick
toroidal shells, considered to be completely free. The results indicate the usefulness of the shear
deformation theory in determining natural frequencies for toroidal shells.
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1. Introduction 

Toroidal shells (Fig. 1) over the years have been proposed for, or used, in such applications as

fusion reactor vessels, satellite support structures, protective devices for nuclear fuel containers,

circumferential reinforcement for submarines, rocket fuel tanks, and diver’s oxygen tanks. Vibration

analyses are an important part of the design process for such applications. Analytical solutions are

useful in vibration analyses, either in the form of a primary solution or as a means to supplement

results determined using the finite element method (FEM). 

There is extensive literature on the analysis of toroidal shell vibrations based on the classical

(Kirchoff-Love) shell theory (Balderes and Armenakas 1973, Leung and Kwok 1994, Wang and

Redekop 2005, Kosawada et al. 1985). This theory is restricted in validity to relatively thin shells.

There is further literature on toroidal shell vibrations using theories applicable for thicker shells

(Kosawada et al. 1986, Buchanan and Liu 2005, McGill and Lenzen 1967, Jiang and Redekop

2002). Among these is the work by Kosawada et al. (1986), who developed a solution for toroidal
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shell vibrations based on a shear-deformation theory. However, this comprehensive work included

an awkward series solution in the thickness direction, which required some calculations in

quadruple precision. A collection of results for frequencies of vibrations of thin and thick toroidal

shells, determined by either analytical or numerical methods, is given in Wang et al. (2006). A

solution based on shear deformation theory has been presented recently for a shell of revolution

(Artioli et al. 2005, Artioli and Viola 2006), but the application was intended for paraboloidal shells

rather than toroidal ones. Analyses for thick toroidal shells to date have been based on the FEM

(Buchanan and Liu 2005), or have dealt only with axi-symmetric vibrations (McGill and Lenzen

1967, Jiang and Redekop 2002). Certainly for some applications, toroidal shells will be moderately-

thick or thick; it is desirable to establish effective theories appropriate for their analysis.

In this study, equations based on shear deformation (SDT) theory of Soedel (1982, 2004) are

developed for the linear free vibration analysis of an isotropic homogeneous toroidal shell. The

work can be considered an extension of the authors’ previous work on thin toroidal shells (Wang

and Redekop 2005). The equations are first written for a general shell, then specialized for a shell

of revolution, and finally adapted for the circular toroidal geometry. A modal expansion is written in

the circumferential direction, and equations are solved for each mode using the effective differential

quadrature method (DQM). A second analysis, based on the theory of elasticity (ELT), is presented

to cover shells of greater, arbitrary thickness. The SDT approach is validated by comparing results

for complete thin, moderately-thick, and thick toroidal shells with previously published results. A

parametric study is then conducted, covering moderately-thick and thick toroidal shells. An

indication of the limiting range of application of the SDT is given. Conclusions are drawn about the

usefulness of this theory for analyzing toroidal shell vibrations.

2. Geometry and boundary conditions 

The mid-surface of an arbitrary shell (Soedel 2004) is described by a radius vector R = R(q1, q2),

Fig. 1 Complete circular toroidal shell
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where q1, q2 form an orthogonal Gaussian coordinate system. For a shell of revolution, the radius

vector takes the form R = sinϕi + cosϕj + zk, where q1 ≡ ϕ is the circumferential angle,  = (q2),
z = z(q2), and i, j, k are the Cartesian unit vectors. 

The Lamé parameters of the shell are represented by A1, A2, and the radii of curvatures by R1, R2.

For a toroidal shell of a circular cross-section, (Fig. 2) these four parameters are given (Soedel

2004) by

 (1)

where q2 ≡ θ is the meridional angle, measured clockwise from the positive horizontal, R is the

bend radius, and r is the radius of the cross-section. 

For a complete toroidal shell, the meridian forms a closed curve, and boundary conditions need

not be considered if a shell theory is used. The present method can easily be extended to a toroidal

shell with an incomplete meridian by specifying appropriate boundary conditions at the ends of the

meridian of such a shell. In the application of the theory of elasticity, boundary conditions must be

satisfied on the inner and outer surfaces to ensure zero traction conditions.

3. Shear deformation shell theory 

The shear deformation theory presented by Soedel (1982, 2004) is adopted for this study. The

assumptions of the theory correspond to those of the Timoshenko beam theory and the Mindlin

plate theory, namely that the normal stress in the thickness direction is zero, and that a normal to

the shell mid-surface remain straight, but not necessarily normal. The theory is presented here first

for the linear behavior of general moderately thick shells consisting of elastic homogeneous

isotropic materials.
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Fig. 2 Cross-sectional geometry of circular toroidal shell; point I is the intrados, point II is the lower crown
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In this theory, the mid-surface strains and changes of curvature are Soedel (1982, 2004)

(2)

where u1, u2, u3 are respectively the mid-surface displacements in the q1, q2, and normal directions,

β1, β2 are respectively the mid-surface rotations about the local q2, q1 directions, and the comma

subscripts indicates differentiation with respect to the qi number variable that follows. The

transverse shear strains are given by

 (3)

where the coefficients ai in the expressions for the strain components and changes of curvature are

defined in terms of the Lamé parameters and the radii of curvatures by

(4)

The force and moment resultants are given by 

 

(5)

while the transverse shear resultants by 

 (6)

The coefficients bi are defined in terms of the material and geometric properties by 

 (7)

where E is the Young’s modulus, ν the Poisson’s ratio, 2G = E/(1 + ν), k' the shear factor (taken as

2/3), h the shell wall thickness, K = Eh/(1 − ν2), and D = Kh2/12.

The equations of motions (Soedel 1982, 2004) are given by

(8.1)

(8.2)

(8.3)

(8.4)

 (8.5)

where t is time. It is noted that rotary inertia terms (with coefficients c42 and c51) are included in

Eqs. (8.4) and (8.5). The coefficients ci are defined in terms of the material and geometric properties

by
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 (9)

where γ is the mass density.

The further theory will be written for shells of revolution. The q1 variable is taken then to

represent the circumferential direction ϕ, and the q2 variable the meridional direction θ. Adopting a

modal approach, the displacement components and rotations are expanded in a Fourier series in the

circumferential direction as

 (10)

where m is the number of the circumferential harmonic, u, v, and w are the amplitudes of the

displacements in the circumferential, meridional and normal directions for the mth harmonic, α and

β are the amplitudes of the respective rotations, and ω is the circular frequency in rad/sec. Each

harmonic may be analyzed separately, and the problem is thus reduced mathematically to one-

dimension.

The equations of motion for shells of revolution can be represented as

(11.1)

(11.2)

 

(11.3)

(11.4)

 (11.5)

where the ei are known coefficients expressible in terms of the geometric parameters and the ai, bi,

and ci coefficients given in this section. For each circumferential mode m, there are five field

equations, in one geometric variable, for five unknown functions and the unknown frequency ω.

The m = 0 case, i.e., the axi-symmetric circumferential harmonic, is a special case that can easily

be extracted from the theory for the general harmonic described in the preceding. In this special

case, the displacement component u1, the rotation β1, and the resultants N12, M12, Q1 will be zero,

and the Eqs. (11.1) and (11.4) will become trivial. 
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4. Theory of elasticity

When the wall of the shell is considered thick, the assumption that a normal remains normal is no

longer valid. For such shells, accurate results can be obtained using the theory of elasticity, which

permits arbitrary variation of components in the thickness direction, and mathematically contains

one additional position variable relative to shell theory. The consideration is again restricted here to

linear behavior of shells consisting of elastic homogeneous isotropic materials. 

In the theory of elasticity, the normal and shear strain components (Buchanan and Liu 2005,

Redekop 1992) are

 (12)

where u1, u2, u3 are respectively the displacement components in the q1 ≡ ϕ, q2 ≡ θ, and q3 ≡ r
directions (Fig. 3), and the comma subscript again indicates differentiation with respect to the qi
variable that follows. 

The coefficients ai in the expressions for the strain components are defined for toroidal

coordinates as

 (13)

where ρ = R + r cosθ, R is again the bend radius, and r is now the radial coordinate. The normal

and shear stress components are given by 

 

 

Fig. 3 Geometry and coordinates for analysis using theory of elasticity
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 (14)

The coefficients bi are defined for homogeneous isotropic materials by 

 (15)

where K1= 2(1 − ν)G/(1 − 2ν), K2= 2νG/(1 − 2ν), K3= 2G, and where E is again the Young’s

modulus, ν the Poisson’s ratio, and 2G = E/(1+ ν).

The equations of motion for a toroidal shell are given by

 

(16)

where γ is again the mass density. The coefficients ci are defined for toroidal coordinates as

 (17)

Adopting again a modal approach, the displacement components are expanded in a Fourier series

in the circumferential direction as

 (18)

where m is the number of the circumferential harmonic, u, v, and w are the amplitudes of the

displacements in the circumferential, meridional and normal directions for the mth harmonic, now

functions of both θ and r, and ω is the circular frequency in rad/sec. Each harmonic may be

analyzed separately, and the problem is now reduced mathematically to two-dimensions.

The equations of motion for a solid of revolution can be represented as 

(19.1)

    (19.2)

(19.3)

where the ei are known coefficients expressible in terms of the geometric parameters and the ai, bi,

and ci are coefficients given in this section. For each circumferential mode m, there are thus three

field equations, in two geometric variables, for three unknown functions and the unknown

frequency ω.

The Eq. (19) are to be applied to the interior points of the domain, whereas on the inner and outer

surfaces the following boundary conditions apply: σ31 = 0, σ32 = 0, and σ33 = 0. It is to be realized
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that computer times for an ELT analysis will greatly exceed those for an SDT analysis due to the

additional dimension in the variables.

The m = 0 case, i.e., the axi-symmetric circumferential harmonic, is a special case that can again

easily be extracted from the theory for the general harmonic described in the preceding. In this

special case, the displacement component u1, and the stresses σ1, σ4, and σ5 will be zero, and the

Eq. (19.1) will become trivial. The solution of the equation sets (11) and (19) using the DQM is

now considered.

5. Differential quadrature method

Application of the DQM allows for the conversion of the differential equations written for a

particular harmonic m to a set of linear simultaneous equations (Shu 2000, Bert and Malik 1996).

For the shear deformation problem, a one-dimensional grid of sampling points is defined along a

meridian of the radial plane; while for the elasticity problem, a two-dimensional grid is defined on

the cross-sectional area of the radial plane. 

The derivative of a function in a given direction is replaced by the weighted sum of the values of

the function at specified sampling points in a line following the given direction. For a generic

function f(x) of a single variable, the series used to replace the rth derivative of the function at the

sampling point xi is taken as

 (20)

where the  are the weighting coefficients of the rth order derivative in the x direction for the ith

sampling point, f(xh) is the value of f(x) at the sampling point position xh. The number of sampling

points in the x direction is denoted by M. For a generic function of two variables g(x, y), the series

for the (r + s)th partial derivative at the sampling point xi, yj is taken as 

 (21)

where  and N describe the series for the y direction, and g(xh, yk) is the value of g(x, y) at the

sampling point position xh, yk.

In the DQM, the weighting coefficients are determined a-priori for a pre-selected grid with the aid

of selected trial functions. For the shear deformation analysis of the present geometry involving a

complete meridian, a Fourier harmonic basis was used for the weighting coefficients (Bert and

Malik 1996), and sampling points were equally spaced in the coordinate q2. For such a scheme,

explicit formulas for the weighting coefficients  are available (Bert and Malik 1996). For the

analysis of a complete toroidal shell using the theory of elasticity, a Fourier harmonic basis was

used for the weighting coefficients in the meridional direction, and sampling points were equally

spaced. In the radial direction q3, the Chebyshev-Gauss-Lobatto scheme was used (Bert and Malik

1996) with unequal spacing of points. For both schemes, the explicit formulas available (Bert and

Malik 1996) were used.

Application of the quadrature rule (20) of the DQM to the differential equations of the shear

deformation theory leads to a set of linear simultaneous equations. The set reduces to the form
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(22)

For the theory of elasticity it reduces to the form

 (23)

In either case, the matrix equation takes the form of the generalized eigenvalue problem 

[K](U) = λ[M](U) (24)

where the unknowns (U) are the values of the displacement functions at the sampling points, λ is

the eigenvalue, related to ω, and [K], [M] are the known ‘stiffness’ and ‘mass’ matrices. Standard

linear matrix routines may be used to solve the Eq. (24) for the eigenvalues and mode shapes.

6. Validation and results 

The method is validated by comparing results from the SDT and ELT, for fifteen cases of

complete toroidal shells, with results given in the literature. The geometric properties of the fifteen

 

 

Table 1 Properties of fifteen toroidal shell validation cases 

Case ri ro h rm R rm/h R/rm Material

1 0.001 0.0913 0.913 91.3 10 1

2 0.001 0.0645 0.645 64.5 10 1

3 0.001 0.0289 0.289 28.9 10 1

4 0.001 0.0204 0.204 20.4 10 1

5 0.001 0.00913 0.0913 9.13 10 1

6 0.9225 1.0775 0.1549 1 20 6.46 20 1

7 0.9225 1.0775 0.1549 1 10 6.46 10 1

8 0.9225 1.0775 0.1549 1 6.67 6.46 6.67 1

9 0.75 1 0.25 0.875 2.5 3.50 2.86 2

10 0.50 1 0.50 0.750 2.5 1.50 3.33 2

11 0.25 1 0.75 0.625 2.5 0.83 4.00 2

12 0.0025 0.25 1 100 4 1

13 0.0050 0.25 1 200 4 1

14 0.0050 0.50 1 100 2 1

15 0.0075 0.75 1 100 1.3 1
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cases are given in Table 1, where ri, rm, and ro represent respectively the inside, mean, and outside

radius of the cross-section. It is seen that cases 1-5 are shells that have radius to thickness ratios rm/h

mostly greater than 10. Such shells are traditionally considered as thin. Cases 6-8 have an rm/h ratio

of about 6.5, and are considered moderately-thick shells. Cases 9-11 have an rm/h ratio less than 4,

and represent thick shells. Cases 12-15 again represent thin shells. The overall range in rm/h ratio is

from 91.3 to 0.83. The material properties used in the calculations are 

Mat.1: E = 0.207 × 1012 Pa; ν = 0.3; γ = 7800 kg/m3

Mat.2: E = 0.193 × 1012 Pa; ν = 0.291; γ = 7850 kg/m3 (25)

Results for the validation cases, given in Tables 2-6, and for the parametric study, given in Table 7,

are for completely free support conditions. For the thin cases 1-5 covered in Table 2, the first six

natural frequencies ωi are given in Hz for the 2nd circumferential harmonic. For the moderately-

thick cases 6-8 covered in Table 3, a similar set of frequencies ωi in Hz is given. For the thick cases

9-11 covered in Table 4, the frequency parameters ωi = ωi ro√/2G are given for the first six modes
for the 2nd harmonic. For thin cases 12-15 covered in Table 5, the natural frequencies ωi are given

for the first six modes and for the axi-symmetric harmonic.

In Table 2, the PSE (power series expansion) values in Hz are taken from Wang et al. (2006), but

stem from a thin shell analysis by Kosawada et al. (1985) (Table 3, p. 2047). The SDT results are

determined using the shear deformation theory of section 3. For the five cases, there is agreement

within 1.2% for the fundamental frequency as determined by the two methods. The largest

difference occurs for the thickest shell (case 5). For the subsequent five frequencies, the agreement

is nearly as good. The trend of the fundamental frequency from thinnest to thickest shell (case 1 to

case 5) is clearly an increasing one, as would be expected for a set of shells having the same

material properties and R/rm ratio.

In Table 3, the TSL (thick shell Lagrangian) results are from Kosawada et al. (2006) (scaled from

Fig. 3, p. 3041). Only the symmetric modes were represented in their study for these cases. The TSL

theory corresponds to a shear deformation theory similar to the current one, but involves an awkward

series solution in the thickness direction. The SDT results in Table 3 are from the present shear

deformation theory, and the ELT results from the theory of elasticity of section 4. For the three cases,

there is good agreement (mostly within 2%) for all six frequencies as determined by the three

methods. The largest difference occurs in the shell with the smallest frequency, where the relative

error due to scaling is the largest. The trend of the fundamental frequency from the shell with largest

bend radius to shell with smallest bend radius (case 6 to case 8) is a significantly increasing one, as

Table 2 Comparison of SDT frequencies ωi (Hz) with PSE theory results of Kosawada et al. (1985) for thin
shells - validation cases 1-5 (m = 2), (also quoted as cases 10-6 in Wang et al. (2006), Table 4) 

Mode 
Case 1 Case 2 Case 3 Case 4 Case 5

PSE SDT PSE SDT PSE SDT PSE SDT PSE SDT

1 44.1 44.1 74.2 74.3 250 251 427 428 1344 1360

2 47.3 47.5 79.3 79.8 263 265 443 447 1353 1368

3 509.0 509.1 745.5 745.9 1840 1842 2827 2835 9247 9253

4 577.7 577.7 850.7 850.9 2076 2076 3156 3157 10043 10003

5 630.6 630.8 969.8 970.6 2993 2994 5316 5316 13428 13418

6 631.2 631.3 970.5 970.7 3000 2995 5331 5320 19720 19722
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would be expected for a set of shells having the same material properties and rm/h ratio. 

In Table 4, the FEM results are those given by Buchanan and Liu (2005), while the SDT and ELT

results are again from the theories of sections 3 and 4. There is agreement within 1%, 3%, and 11%

Table 3 Comparison of SDT and ELT frequencies ωi (Hz) with TSL theory results of Kosawada et al. (1986)
for moderately-thick shell - validation cases 6-8 (m = 2)

Mode
Case 6 Case 7 Case 8

TSL SDT ELT TSL SDT ELT TSL SDT ELT

1 3.6 3.9 3.6 13.2 13.5 13.2 25.1 26.6 26.2

2 - 4.0 3.7 - 13.6 13.5 - 26.9 26.8

3 57.6 58.0 58.0 105.2 104.2 104.5 120.8 122.0 122.1

4 - 91.3 91.3 - 116.0 116.3 - 129.1 129.2

5 105.8 105.4 106.0 128.0 128.1 128.2 180.2 182.1 181.9

6 - 105.7 106.4 - 180.1 180.0 - 263.0 262.9

Fig. 4 Effect of change in thickness on frequency results for the case R/rm = 6 

Table 4 Comparison of non-dimensional SDT AND ELT frequencies Ωi with FEM results of Buchanan and
Liu (2005) (Table 6, p. 258) for thick shells - validation cases 9-11 (m = 2)

Mode
Case 9 Case 10 Case 11

FEM SDT ELT FEM SDT ELT FEM SDT ELT

1 0.2482 0.2491 0.2479 0.2568 0.2646 0.2567 0.2537 0.2814 0.2534

2 0.2857 0.2832 0.2854 0.2965 0.2871 0.2963 0.2975 0.2818 0.2973

3 0.5288 0.5243 0.5263 0.9762 0.9506 0.9759 1.0081 1.0072 1.0080

4 0.5396 0.5361 0.5371 1.0553 0.9676 1.0529 1.2172 1.2529 1.2172

5 0.9655 0.9633 0.9654 1.0782 1.0058 1.0758 1.7606 1.4237 1.7535

6 1.1137 1.1146 1.1134 1.1851 1.1946 1.1847 1.7729 1.4357 1.7655
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Table 5 Convergence examples and comparison of SDT frequencies ωi (rad/s) with results of Wang and
Redekop (2005) (Table 4, p. 742) for thin shells - validation cases 12-15 (m = 0)

Mode/N
Case 12 Case 13 Case 14 Case 15

10 40 100 10 40 100 40 40

1a 383.4 553.4 279.2 245.9

1 499.0 389.6 389.6 598.8 562.5 562.5 283.8 249.9

2 3106 2686 2686 3144 2990 2990 2165 1869

3 3256 2779 2779 3444 3250 3250 2227 1917

4 3286 2808 2808 3469 3332 3332 2247 1926

5 4143 3033 3033 4327 3765 3765 2383 2042

6 4904 - 3447 5030 - 4071 - 2311

a indicates result in Wang and Redekop (2005), Table 4, p. 742.

Table 6 Effect of rotary inertias and comparison of SDT frequencies ωi (rad/s) with ELT results for
moderately-thick and thick shells - validation cases 7-9 (m = 0) 

Mode
Case 7 Case 8 Case 9

ELT SDT/wa SDT/wob ELT SDT/wa SDT/wob ELT SDT/wa SDT/wob

1 49.8 49.7 49.7 63.0 62.6 62.6 148.8 145.2 145.2

2 82.0 81.9 81.9 118.5 118.4 118.4 271.6 269.5 269.5

3 118.0 117.5 117.5 141.1 140.9 140.9 369.5 368.6 368.6

4 121.2 120.7 120.7 147.6 147.4 147.4 405.0 404.2 404.2

5 288.8 286.4 286.4 296.6 294.4 294.4 619.9 608.3 608.3

6 288.8 286.4 286.4 296.6 294.5 294.5 620.5 609.3 609.3

aSDT/w - rotary inertia effects included. bSDT/wo rotary inertia effects neglected.

Table 7 New results for SDT and ELT frequencies ωi (Hz) for various R/rm and rm/h ratios, for material 1
(bracketed quantity indicates the circumferential harmonic number) 

R/rm
rm/h 8 6 4

Mode STD ELT STD ELT STD ELT

2

1 88.2 (0) 89.1 (0) 105.2 (0) 106.7 (0) 136.0 (0) 139.5 (0)

2 146.5 (2) 144.7 (2) 162.8 (2) 161.5 (2) 179.3 (2) 178.9 (2)

3 176.4 (2) 173.8 (2) 207.2 (2) 204.6 (2) 215.5 (2) 217.9 (2)

4 209.1 (2) 209.7 (2) 211.4 (2) 212.5 (2) 258.9 (1) 259.6 (1)

4

1 52.9 (2) 52.5 (2) 59.1 (2) 58.7 (2) 65.9 (2) 65.4 (2)

2 55.8 (2) 55.5 (2) 62.7 (2) 62.7 (2) 70.5 (2) 70.8 (2)

3 65.4 (0) 65.8 (0) 79.6 (0) 80.3 (0) 102.1 (0) 103.8 (0)

4 117.3 (1) 117.3 (1) 131.9 (1) 132.2 (1) 158.1 (1) 158.8 (3)

6

1 29.3 (2) 29.0 (2) 32.0 (2) 31.7 (2) 34.9 (2) 34.2 (2)

2 29.6 (2) 29.5 (2) 32.7 (2) 32.6 (2) 35.9 (2) 35.8 (2)

3 57.3 (0) 57.6 (0) 68.3 (0) 68.8 (0) 81.7 (0) 82.4 (0)

4 72.5 (3) 72.1 (3) 80.8 (3) 80.6 (3) 87.9 (3) 87.7 (3)
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for the fundamental frequency of case 9-10 as determined by the FEM and STD methods. The

largest difference occurs for the thickest shell (case 11). For the other five frequencies, the

agreement is even better. The agreement of the FEM and ELT results is within 1% for all cases and

modes. The trend of the fundamental frequency from thinnest to thickest shell (case 9 to case 11) is

a very modestly increasing one. It is seen that although the R/ro is constant for these cases, the R/rm
ratio is not. Overall, the results of Tables 2-4 indicate that the SDT shows close agreement with

other applicable theories for an rm/h ratio ranging from about 100 to 3.

Results given in Tables 5, 6 indicate further mathematical and physical characteristics of the SDT

and ELT solutions. In Table 5, an indication is given for the convergence characteristics of the SDT

results, and the accuracy of the axi-symmetric version of the theory. The comparison is with results

for thin shells given earlier by Wang and Redekop (2005) (Table 4, p. 742). It is seen that three to

four figure accuracy is given with a mesh of some 40 points in the DQM, for the lowest six

frequencies. The agreement in the fundamental frequency with the previous thin shell theory results

is within about 3%.

In Table 6, an indication is given of the significance by including the rotary inertia terms of the

equations of motion of the SDT, and the accuracy of the axi-symmetric version of the ELT. The

results given are for moderately-thick and thick shells (cases 7-9). It is seen that for these shells

neglecting the rotary inertia terms does not affect the figures of accuracy cited. The agreement of

the fundamental frequencies of the axi-symmetric versions of the SDT and ELT approaches is

within 2%.

Free vibration frequencies are determined for nine more cases using complete isotropic toroidal

shells as described in Table 7. For this parametric study, the range in the radius to thickness ratio rm/h

is from 8 to 4, and the range in the radius ratios R/rm is from 2 to 6. The results for the first four

frequencies from the SDT and ELT approaches are given in Hz, and the number of the mode in

each case is given in brackets. It is seen that in this parametric range, the contribution to the

fundamental frequency either comes from the axi-symmetric or 2nd circumferential harmonic, and

that further contributions within the first four frequencies come from the 1st and 3rd harmonics. It

is observed that there is close agreement between the two theories, and that as rm is kept constant,

Fig. 5 Effect of change in bend radius on frequency results for the case rm /h = 4 
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the frequencies increase as the thickness is increased, and decrease as the bend radius is increased. 

These trends are further illustrated by two examples shown in Figs. 4 and 5. Fig. 4 shows, for the

case R/rm = 6, the trends of the frequencies of the first four modes as the thickness is increased.

Fig. 5 shows, for the case rm/h = 4, the trends of the frequencies for the first four modes as the bend

radius is increased. The two figures again demonstrate the close agreement of SDT and ELT results.

7. Conclusions

General equations intended to predict the natural frequencies of moderately-thick toroidal shells

have been presented based on the shear deformation theory of Soedel. Further equations based on

the theory of elasticity have been presented for application to thick toroidal shells. Results from the

two sets of equations are consistent with previously published results. It is demonstrated that the

shear deformation theory gives good results in the radius to thickness range of 100 to 3. Results of

a parametric study for the natural frequencies of moderately-thick and thick toroidal shells are

given. The study demonstrates the value of the shear deformation theory for the vibration analysis

of circular toroidal shells.
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