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Abstract. The progressive collapse phenomenon is generally regarded as dynamic. Due to the
impracticality of nonlinear dynamic computations for practitioners, an interest arises for the development
of equivalent static pushover procedures. The present paper proposes a methodology to identify such a
procedure for sudden column removals, using energetic evaluations to determine the pushover loads to
apply. In a dynamic context, equality between the cumulated external and internal works indicates a
vanishing kinetic energy. If such a state is reached, the structure is sometimes assumed able to withstand
the column removal. Approximations of these works can be estimated using a static computation, leading
to an estimate of the displacements at the zero kinetic energy configuration. In comparison with other
available procedures based on such criteria, the present contribution identifies loading patterns to associate
with the zero-kinetic energy criterion to avoid a single-degree-of-freedom idealisation. A parametric study
over a family of regular steel structures of varying sizes uses non-linear dynamic computations to assess
the proposed pushover loading pattern for the cases of central and lateral ground floor column failure. The
identified quasi-static loading schemes are shown to allow detecting nearly all dynamically detected
plastic hinges, so that the various beams are provided with sufficient resistance during the design process.
A proper accuracy is obtained for the plastic rotations of the most plastified hinges almost independently
of the design parameters (loads, geometry, robustness), indicating that the methodology could be extended
to provide estimates of the required ductility for the beams, columns, and beam-column connections.

Keywords: progressive collapse; 2D frames; pushover loads; non-linear dynamic computations; zero
kinetic energy configuration

1. Introduction

Various procedures for analysing progressive collapse related issues can now be found in the

literature for different types of structures, materials, and collapse scenarios (Ellingwood and

Leyendecker 1978, Gilmour and Virdi 1998, Hyung-Jen and Krauthammer 2003, Kaewkulchai and

Williamson 2004, Agarwak et al. 2006, Val and Val 2006, USA-GSA 2003, USA-DOD 2005,

Vlassis 2007, Izzuddin et al. 2008, Ruth et al. 2006, Powell 2004, USA-GDHS 2003, Dusenberry

and Hamburger 2006, Khandelwal et al. 2008, Khandelwal et al. 2009, Fu 2009, Kim and Kim

2009, Yagob et al. 2009, Weerheijm et al. 2009, Gong et al. 2009, Almusallan et al. 2010, Yuan et
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al. 2011). They can be classified according to different criteria. A first distinction can be made

between computational strategies aiming at a full structural analysis (Khandelwal et al. 2008,

Khandelwal et al. 2009, Fu 2009, Kim and Kim 2009, Galal and Sawy 2009, Almusallan et al.

2010), contributions aiming at a more detailed representation of connection details (Liu 2010a, b,

Lee et al. 2009), studies combining these two aspects (Khandelwal et al. 2008), or studies trying to

formulate simplified analysis frameworks (Yuan et al. 2011). Different other criteria can be used

two distinguish the approaches. Some contributions analysed the behaviour of global 3D structures

(Fu 2009, Galal and Sawy 2009), while others focusing on specific aspects of progressive collapse

used 2D simulations (Khandelwal et al. 2008, Khandelwal et al. 2009, Kim and Kim 2009, Lee et

al. 2009, Kim et al. 2009). As another distinction, catenary effects were incorporated in some of the

global studies (Khandelwal et al. 2008, Fu 2009, Lee et al. 2009), while recent contributions or

codes still keep a geometrically linear approach (Dusenberry and Hamburger 2006, Kim and Kim

2009, Grierson et al. 2005). Finally, some contributions investigated more particularly retrofitting

approaches (Galal and Sawy 2009) or the effect of bracing elements (Khandelwal et al. 2009).

Progressive collapse is generally regarded as a dynamic phenomenon, requiring dynamic

computations, since the sudden failure of a vertical support element leaves the structure in an out-

of-equilibrium situation, thereby triggering a dynamic process. Most of the recent investigations use

dynamic non linear computations (Khandelwal et al. 2008, Fu 2009, Galal and Sawy 2009), or

propose to account for them with equivalent quasi static procedures (Izzuddin et al. 2008, Kim and

Kim 2009). In comparison with a quasi-static computation under similar loads, a dynamic

computation was shown to induce stress redistribution over larger portions of the structure, as well

as larger deflections and plastic hinge rotations (Kaewkulchai and Willamson 2004). The various

progressive collapse mitigation procedures indeed usually try to take such effects into account

(Khandelwal et al. 2008). Since nonlinear dynamic computations require a wider expertise and are

time consuming, and since practitioners may not have the corresponding tools, simplified analysis

frameworks have been a subject of interest as in Yuan et al. (2011). An interest also arises for

procedures designed to account for dynamic inertial effects during progressive collapse through

equivalent quasi-static computations. Several such procedures may be found in the literature, some

being based on dynamic amplification factors to be applied to the loads during the design process

(USA-GSA 2003, USA-DOD 2005, Ruth et al. 2006, Grierson et al. 2005), others proposing

procedures based on energetic evaluations for the internal and external forces (Vlassis 2007,

Izzuddin et al. 2008, Powell 2004, Dusenberry and Hamburger 2006). In all cases, equivalent quasi-

static procedures designed to mimic inertial dynamic effects are often referred to as pushover

analysis. The “pushover” terminology is very common in seismic design, where practitioners often

use such quasi-static equivalent analyses (USA-GDHS 2003). In the context of progressive collapse,

however, the source of the structural demands is completely different from seismic design, so that

the loading patterns used for a pushover-like analysis in progressive collapse simulations should be

defined following a different approach which is the purpose of the present contribution.

In the progressive collapse mitigation issued from various sources (USA-DOD 2005, Izzuddin et

al. 2008, Eurocode 2006, Mohamed 2006), a procedure is specified, which allows disproportionate

collapse to be avoided by tying horizontal and vertical components. The tying requirements are

specified, and are intended to allow catenary action to develop, so that the structure may bridge

over the removed vertical support member. In some cases, no sectional or connection ductility

considerations are provided, while it has been demonstrated that such provisions may lead to

unrealistic ductility demands for the beam sections and connections (Vlassis et al. 2008). A
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simplified static equivalent progressive collapse computation methodology providing estimates of

plastic rotations in the various plastic hinges that appear following the initial column loss would

therefore be of interest.

Equivalent static computational procedures are essentially split in two classes. The first one uses

dynamic amplification factors. For instance the DoD guidelines (USA-DOD 2003) specify linear

and non-linear static procedures intended to ensure the formation of an alternate load path for the

gravity loads following the removal of a vertical support member. In order to account for dynamic

effects, a multiplying load factor of 2 to be applied on both dead and live loads is specified. A

similar approach is adopted in the guidelines issued by the GSA (USA-GSA 2005). When section

plastification is taken into account, a dynamic load factor of 2 was however shown to be strongly

conservative (Vlassis 2007, Ruth et al. 2006). Quasi-static pushover analyses for progressive

collapse situations could help analysing a reduction of this excessive security margin, while not

increasing the complexity of the computational procedure; as advocated in (Ruth et al. 2006) where

a reduced multiplying factor of 1.5 is proposed, due to the ability of the structure to dissipate

kinetic energy through section plastification.

The second type of quasi-static equivalent procedures is based on a criterion allowing to estimate

the displacement configuration at the instant of zero kinetic energy during the dynamic collapse

process (Vlassis 2009, Izzuddin et al. 2008, Powell 2004, Dusenberry and Hamburger 2006). The

procedure presented in (Vlassis 2007, Izzuddin et al. 2008) is defined such that the level of model

decomposition can be chosen: the complete structure may be simulated, or a part of it with proper

boundary conditions (just the concerned bays, or only the concerned bays on several floors, or even

just the concerned bays on one floor). This analysis bears similarities with simplified equivalent

single degree of freedom models (SDOF) (Sasani and Sagiroglou 2008). Based on the chosen model

decomposition a static analysis is used to produce a load-displacement curve, where the

displacement corresponds to the displacement of the top of the removed column, and the load

corresponds to the resultant gravity loads applied to the simulated portion of the structure. To obtain

this curve, the static pushover loading pattern consists in gradually increasing the dead and live

loads on the structural model from which the initially failing element has been removed, starting

from the undeformed configuration. The curve is then used as the response of an equivalent SDOF

system, and energetic considerations lead to an estimation of the displacements configuration at the

instant of zero kinetic energy during the dynamic process.

Another distinction between progressive collapse computational assessment procedures relates to

the incorporation of catenary effects captured by large displacement formulations, and which can be

used to help the structure avoid progressive collapse, provided the connections be designed with

sufficient ductility. However, not all the codes or procedures in the literature actually account for

large displacements. The procedures incorporating geometrical nonlinearities generally include tying

force requirements (USA-DOD 2005, Izzuddin et al. 2008, Eurocode 2006, Mohamed 2006). The

procedure based on a zero kinetic energy criterion in (Vlassis 2007, Izzuddin et al. 2008) also

accounts for such effects. Other complete dynamical analyses were also performed with large

displacement formulations (Khandelwal et al. 2008). Numerous authors, sometimes for

simplification, recently adopted a flexural structural mode to withstand collapse, and therefore based

their computational procedures on geometrically linear analyses. This is the case in the DoD

specifications (USA-DOD 2005), where a flexural structural mode is specified for alternate load

path analyses applied for structures requiring higher protection levels, or whenever the tying force

requirements cannot be met. The procedures developed in (Grierson et al. 2005, Vlassis 2007) are
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also geometrically linear, as well as all the computational procedures specified in the GSA

document (USA-DOD 2005). In (Dusenberry and Hamburger 2006), the authors describe how the

zero kinetic energy criterion may be applied when geometrical linearity is assumed, as well as when

catenary behaviour is accounted for; while in (Marjanishvili and Agnew 2006, Marjanishvili 2004),

the recommendations leading to an analysis procedure for progressive collapse do not include

catenary effects.

Even though catenary effects may be used to prevent progressive collapse, adequate tying of the

beams cannot always be met, especially in the case of a lateral or penultimate column failure. Since

the tying force provisions given in (USA-GSA 2003, USA-DOD 2005, Eurocode 2006) do not

account for the limited section ductilities, a procedure such as the one described in (Vlassis 2007,

Izzuddin et al. 2008) is required to ensure that the critical generalised strains in the connections are

not reached, thereby requiring practitioners to perform large displacement analyses. Because of

these difficulties, and since several recent contributions are based on flexural structural modes to

withstand the loss of a vertical support member, the present contribution will focus on geometrically

linear computational procedures, and will aim at a methodology to identify a pushover analysis

procedure for progressive collapse that implicitly accounts for the dynamic aspect of the collapse.

A modified pushover procedure based on the zero kinetic energy criterion is presented. A

parametric study over a family of similar structures of varying size, using non-linear dynamic

computations, enables the definition and validation of the proposed pushover loading pattern. The

main innovation brought here lies in the proposed loading patterns to be associated with the zero

kinetic energy criterion. It is shown to provide a good estimate of a structure ability to redistribute

stresses further to the loss of a vertical support element, by providing an accurate representation of

the plastic hinge locations and appearance sequence. Based on geometrically linear quasi-static

computations, it shows lower safety margins than obtained with a dynamic load factor of 2 (USA-

GSA 2003, USA-DOD 2005). Note that only dynamic effects of inertial nature (as opposed to

viscous effects) are considered here.

The paper is structured as follows: Section 2 describes what is referred to as the zero kinetic

energy criterion, upon which the proposed pushover analysis procedure is based. Section 3 describes

the various families of structures studied in order to both establish and validate the proposed

procedure, while Sections 4 and 5 describe this procedure as well as the results for the cases of

central ground floor column and lateral ground floor column removals respectively. Section 6

discusses results by comparing them with other available procedures, followed by Section 7 which

concludes with future prospects.

2. Pushover analysis based on zero kinetic energy criterion

Some existing procedures are based on what is referred to here as the “zero kinetic energy

criterion” to define equivalent quasi-static loading conditions (Vlassis 2007, Powell 2004,

Dusenberry and Hamburger 2006). The idea is based on two assumptions, namely that (i) the

structure reaches an instant td of zero kinetic energy, and (ii) the corresponding state constitutes the

dimensioning configuration for the structure.

The main idea consists in choosing a loading pattern to be applied quasi-statically to the structure,

with the aim to provide an estimate of the cumulated external forces work following the sudden

column removal, as well as an estimate of the cumulated internal forces work. In a dynamic
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context, equality between these works indicates a vanishing kinetic energy, in which case the

structure is assumed to be able to withstand the sudden column removal according to the above

assumptions. The complete procedure is described in details below.

Since before the collapse triggering event occurs, the structure has no kinetic energy, then at td
(instant of zero kinetic energy), the cumulated external forces work, as of the removal of a failing

element, is equal to the cumulated internal forces work. Indeed, as long as these two energies are

not equal, their inequality gives rise to the kinetic energy of the structure. This translates into

(1)

where Ti represents the cumulated internal forces work as of the removal of the failing element, fd is

a vector in which the forces actually applied to the structure (i.e., constant gravity loads) are

collected, and qd is a vector in which the dynamically computed displacements at the instant td are

collected (considered here as the reference solution). The purpose of a pushover analysis is to avoid

such a dynamic computation. To replace it by an equivalent quasi-static loading, let us assume that

we have a loading pattern to be applied quasi-statically to the structure, represented by external

forces fs, which depend on one (or several) loading factors represented generically by the parameter

µ in the following equations. Let us call qs the vector in which the displacements resulting from this

quasi-static computation are collected. These displacements naturally depend on µ. Assuming that

there exists some value µ* of µ such that qs is a good approximation of qd, Eq. (1) can be rewritten 

(2)

When a quasi-static computation is performed, the works of the external and internal forces are

equal all through the computation, so that in the quasi-static equivalent computation, the cumulated

work of internal forces can be evaluated as

(3)

Finally, transposing (3) into (2) yields

 (4)

where, as explained above, fd merely represents the forces actually applied to the structure during

the collapse event, i.e., the gravity loads. Solving Eq. (4) for µ* therefore provides a vector qs which

is an approximation of the vector qd (i.e., the reference solution). This resolution is achieved by

performing a quasi-static computation, at the beginning of which, the left hand term in Eq. (4)

(cumulated internal work) is smaller than the right hand one (cumulated external work performed by

dynamically applied forces with the approximated displacements qs). When a value of µ is reached

such that both terms are equal, the approximation qs is found. If the structure cannot withstand any

further increase of µ before this event, it is then assumed that the structure cannot withstand an

instantaneous column removal, and should be redesigned in order to avoid the collapse.

Alternatively, if plastic rotations limitations are not incorporated during the computation, it may

occur that the structure can withstand collapse through stress redistribution. In this latter case, the

procedure allows to assess the ductility demands in order to achieve the stress redistribution as
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expected.

The main benefit of such a procedure stems from the fact that it suffices to perform a quasi-static

computation with increasing values of µ in order to solve Eq. (4) for µ. However, the loading

pattern remains to be defined. Indeed, in all generality, separate load factors could be applied for

every degree of freedom, so that Eq. (4) contains as many unknowns µ as there are degrees of

freedom. In order to restrict Eq. (4) to a single equation with a single unknown, a loading pattern

parametrised with a single load amplification factor µ needs to be defined. Various choices may

lead to such a situation. For instance, the factor µ may be applied to all the dead and live loads on

all bays. Alternatively, the dead and live loads may be applied as a first step (at which point Eq. (4)

will not yet be satisfied), after which the factor µ is applied only to additional loads consisting the

of portion of dead and live loads acting on the bays directly concerned by the removed column. The

objective is to identify a loading pattern such that a good agreement is found between dynamic

reference results and the quasi-static equivalent computation, according to some comparison

criterion. As will be shown, the accuracy of the obtained results varies strongly according to the

chosen loading pattern. In the present contribution such a loading pattern to be applied will be

identified to obtain accurate results when compared with dynamic computation results.

3. Parametric study and reference solutions

3.1 Sets of studied structures

In order to establish and validate a general loading pattern to associate with the zero kinetic

energy criterion, a sufficient number of structures needs to be studied. In the present section, the

various sets of considered structures are described. They consist in two-dimensional beam-column

frames with regular bay lengths and floor heights. Varying floor and bay numbers are considered, as

well as varying bay lengths, loads and structural resistance levels.

The structures described here are based on those which can be found in (Kaewkulchai and

Williamson 2004), from which the initial values of the bay lengths, yield moments, cross sections,

inertias, loads and density are taken. Fig. 1 shows the generic pattern for all sets of structures. Floor

and bay numbers vary from four to ten (i.e., 49 possible combinations), while five different bay

lengths are considered. On Fig. 1, Mp is the yield moment of both beams and columns, Ωc, Ic, Ωb

and Ib are respectively the cross section area and inertia of the columns and beams respectively, E is

the Young Modulus, ρ is the density, P is the load uniformly applied on all floors and α is

explained below.

Since different bay lengths and loads need to be considered, the structures often have to be

redesigned. Due to the large number of studied structures, an automated re-design procedure is

required, yet simply increasing (or decreasing) the yield moment Mp is not sufficient, since the cross

sections inertias and areas need to vary accordingly. The coefficient α (expressions on the right in

Fig. 1) is used to easily achieve the consistency between the yield moment values and the cross

sections and inertias. When α is set to 1, the obtained values are equal to those found in

(Kaewkulchai and Williamson 2004). Assuming that the yield moment is then multiplied by a factor

α, the corresponding new cross sections and inertias need to be defined. For both beams and

columns, the simplifying assumption is made that the cross section is I-shaped, and that only the

flanges contribution to the yield moment and inertia is taken into account. Thus, the yield moment
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depends linearly on the flanges area, as well as on the web’s length. For the columns, the

assumption is made that the increase in yield moment is achieved through an increase in the flanges

sections. For the beams, however, the assumption is made that the increase in yield moment is

achieved through an increase of the web’s length. Assuming finally that the initial areas of the web

and each flange is roughly similar (α =1), then when the yield moment changes from Mp to αMp,

the cross section and inertia changes are given by

(5)

where the i subscript refers to the initial values. As a result, in order to generate the various sets of

studied structures we have:

• For a fixed bay length L and a load P, 49 structures resulting from the combinations of floor and
bay numbers varying between four and ten.

• Five different regular bay lengths (see values in Fig. 1).
• As seen later, various load levels will be considered. In order to have an automated re-design
procedure for the new loads (or change in bay length), a resistance coefficient appears in the

data set, the value of which is used to increase or decrease the yield moments, while keeping

the cross section and inertia values consistent with these changes.

As suggested by the value of the density ρ (along with the use of I-shaped sections), the

structures considered here are made of steel. A discussion focuses on the reasons for this choice, as

well as on whether the procedures developed here may be generalized to structures made of other

materials.

3.2 Reference solutions obtained by dynamic nonlinear computations

In order to obtain the reference solutions to which the quasi-static pushover analyses results will

be compared, non-linear dynamic computations are conducted. All dynamic computations are

Ωc
1 2α+

3
---------------⎝ ⎠
⎛ ⎞Ωc i,= Ic αIc i,= Ωb

2 α+

3
------------⎝ ⎠
⎛ ⎞Ωb i,= Ib α

2
Ib i,=

Fig. 1 Generic geometrical pattern for all structures



434 K. Menchel, T.J. Massart and Ph. Bouillard

performed with a Hilber-Hughes-Taylor procedure with 5% numerical damping (Géradin and Rixen

1992). Since the load P is a gravitational load, the corresponding mass needs to be taken into

account. Assuming that the mass leading to this load P is uniformly applied along the beams, the

density used for the columns is ρ (as specified in Fig. 1), while the density used for the beams is

adapted as 

(6)

The sudden removal of a column is simulated by the sudden release of the resultant end forces of

the removed column. A first static analysis is therefore performed for the complete model (i.e., no

removed column), to determine the end forces of the ground column to be removed. Subsequently,

the model with the removed column is analysed statically with the end forces of the removed

column and the dead and live loads applied, to obtain the displacement configuration at the onset of

the column removal. The dynamic part of the analysis then starts from this configuration, with the

gravity loads maintained constant. Equal but opposite end forces are applied at t = 0 at the top end

node of the removed column, thus simulating the sudden column removal. A similar dynamic

simulation strategy was also used in (Lee et al. 2009, Sasani and Sagiroglou 2008, Marjanishvili

and Agnew 2006, Sasani 2008).

Note that for the sake of comparison with previous works, the computations this paper, are

performed using geometrically linear formulation. In order to account for section plastification and

stress redistribution, lumped plastic hinges with plastification in bending using a rigid-perfectly

plastic behaviour law are used to connect linear elastic Euler-Bernoulli beam elements. An

extension to plastification with interactions between bending and axial straining may however be

considered, although the implementation is then more complex since composite yield surfaces have

then to be identified, as well as the numerical length of the plastic hinge. This constitutive setting is

similar to the one in (Menchel et al. 2009). No strain-based criterion is considered (i.e., no limit is

imposed on the plastic rotations during computation), and since a geometrically linear formulation is

used, it is assumed that these hinge elements provide the correct plastic strains, enabling to estimate

the required connection ductility. 

In the following sections, comparisons between pushover analyses results and reference solutions

are performed. Although various quantities may be compared, it is proposed to systematically

compare the plastic rotations for all plastic hinges detected by the dynamic analysis for the

considered structure. In spite of the fact that within a geometrically linear analysis the plastic

rotations would not reach values such that particular ductility requirement should be checked,

obtaining a satisfactory accuracy for these quantities ensures that the plastic hinge locations are

detected correctly, and in the correct sequence by the quasi-static procedure.

4. Central ground floor column removal

4.1 Proposed loading pattern

In this section, all structures are analysed for the case of a central ground floor column removal

(i.e., the column located on the structure’s axis of symmetry in the case of an odd number of

columns, or the one closest to the symmetry axis when the number of columns is even). The

ρb ρ
P

9.81Ωb

-----------------+=
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loading pattern offering the best compromise between accuracy and generality for all structures is

the following. A first static analysis is used to determine the resultant end forces at the top of the

removed column. Following the column removal, the proposed loading pattern is applied in three

steps :

1. Apply the dead and live loads and the end forces at the top of the failing column (marked 1 on

Fig. 2).

2. Maintain the dead and live loads constant, and gradually decrease the end forces of the

removed column by adding increasing equal-but-opposite end forces (marked 2 on Fig. 2), until

these end forces disappear. This quasi-static computation allows the computation of both terms

in Eq. (4) (see the Appendix for more details).

3. Start gradually increasing the dead and live loads on the two bays adjacent to the removed

column (marked 3 on Fig. 2), maintaining the loads on the other bays constant. This quasi-static

computation allows the continued computation of both terms in Eq. (4) (as explained in the

Appendix). Keep on increasing these loads until the zero kinetic energy criterion approximated

by Eq. (4) is verified.

4.2 Plastic hinges rotations comparison

Having analysed 49 structures for five different bay lengths, for different load levels as well as for

different structural resistance levels (coefficient α in Section 3.1), an extensive presentation of the

results is prevented by obvious length restrictions. In order to better classify the results, let us first

define an indicator of structural strength in the context of this paper. The plastic reserve strength

indicator (henceforth written as PRSI) of a structure with respect to the removal of a given column

will be defined here as the maximal load factor which can be applied to the dead and live loads

when applied statically on the structure from which the considered column has been removed. It can

be estimated by a computation with the following steps:

1. Remove a column form the model

2. Apply the dead and live loads statically, multiplying them by an increasing factor Fr

3. When stresses can no longer be redistributed having followed this loading pattern, Fr is the

PRSI of the structure.

The PRSI is assumed to offer a measure of the resistance reserve of a structure with respect to

the loads applied to it, and for the removal of a specific column. Note that this definition is by no

means intended as general and is only used in the context of the present work. The loading

Fig. 2 Load pattern for central ground floor removal
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sequence used to define Fr are not the loading pattern proposed for the pushover analyses.

Fig. 3 compares, as illustration, the deformed structures corresponding to the instant of minimal

kinetic energy during the ‘real’ dynamic process (reference solution in red), and the one obtained

with the pushover procedure proposed here (blue). The figures correspond to a structure with 8 bays

and 7 floors. A good correspondence between the dynamic and the pushover procedure deflections

can be observed. Note that the displacements have been artificially enhanced for the plot. Fig. 3

also shows the plastic hinge locations, the numbers indicating plastic rotation magnitudes: ‘1’

corresponds to the largest plastic rotation, ‘10’ to the lowest. Identical plastic hinge locations and

plastic rotation sequences are obtained with the dynamic analysis and with the pushover procedure

for this case.

Table 1 illustrates quantitatively the plastic rotations obtained by the pushover and their relative

errors w.r.t. dynamic computations, for structures with seven floors, and bay numbers ranging

from four to ten. All structures were calibrated to have a PRSI of 1.64, and a bay length of 6.1

m. The results in each column of the table are sorted by decreasing plastic rotations magnitude

based on the dynamic computation. In the second part of the table, each cell is divided into two

parts : the left one provides the relative error on the plastic rotation, the right one provides the

position of the plastic hinge in the sequence detected by the pushover analysis. The caption ‘nil’

refers to a hinge which plastified during the dynamic computation, but not during the pushover

analysis.

The comparison criterion, as explained in Section 3.2, consists in comparing the plastic rotations,

with a view to ensuring a correct location and sequence detection by the pushover analysis. Table 1

shows a good agreement for the hinges with the larger plastic rotations (first few cells in each

column). The mean relative error for the first six plastic rotations for all 49 structures with a 6.1 m

bay length is of 8.1% with a standard deviation of 5.9%. Mainly, the table shows that the plastic

hinges are detected in nearly all cases, and that the sequence appearance is well estimated, in spite

of the larger errors for the hinges showing the lower plastic rotations. The alternate load path taken

by the loads following the column removal is therefore well represented by the pushover procedure,

Fig. 3 Deformed structures obtained with a dynamic and the pushover analyses (left), plastic hinge locations
and plastic rotation magnitude sequence (right) 
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Table 1 Relative errors on the plastic rotations in %, for seven floor structures, central ground floor column
removal, bays numbers ranging from 4 to 10, robustness = 1.64, bay length = 6.096 m 

Number of bays 4 5 6 7 8 9 10

Plastic rotations 
in mrad

 (reference 
solution)

6.3 6.3 6.1 6.1 6.2 6.2 6.2

6.3 6.1 6.1 6.1 6.2 6.1 6.2

5.3 5.3 5.3 5.3 5.3 5.3 5.3

5.3 5.3 5.3 5.2 5.3 5.3 5.3

3.8 3.8 4.2 3.9 4.0 3.8 3.7

3.8 3.8 4.2 3.8 4.0 3.7 3.7

2.5 2.6 2.7 2.8 2.9 2.5 2.6

2.5 2.4 2.7 2.7 2.9 2.3 2.6

1.7 1.8 1.7 2.0 2.0 1.8 1.7

1.7 1.8 1.7 1.8 2.0 1.7 1.7

1.7 1.7 1.7 1.8 1.7 1.6 1.7

1.7 1.6 1.7 1.7 1.7 1.5 1.7

1.6 1.6 1.5 1.4 1.4 1.2 1.1

1.6 1.4 1.5 1.3 1.4 1.1 1.1

0.45 0.50 0.44 0.50 0.62 0.34 0.33

0.45 0.29 0.44 0.27 0.62 0.33 0.33

0.14 0.25 0.32 0.23 0.27 0.15 0.12

0.14 0.24 0.32 0.05 0.27 0.07 0.12

0.19 0.10 0.15

0.10 0.15

0.10

0.10

Plastic rotations 
relative errors 

(%)

-1.5 1 -0.8 1 2.9 1 2.4 1 1.6 1 1.4 1 1.4 1

-1.5 2 2.8 2 2.9 2 3.2 2 1.6 2 1.6 2 1.4 2

-1.2 3 -0.8 3 0.2 3 1.2 3 1.2 3 1.3 3 1.5 3

-1.2 4 2.0 4 0.2 4 1.9 4 1.2 4 1.3 4 1.5 4

13.4 5 18.3 5 5.9 5 13.5 5 12.0 5 17.8 5 18.3 5

13.4 6 14.6 6 5.9 6 14.8 6 12.0 6 18.5 6 18.3 6

37.9 7 40.2 7 31.8 7 26.6 7 23.7 7 45.1 7 36.4 7

37.9 8 42.7 8 31.8 8 32.5 8 23.7 8 56 8 36.4 8

53.8 9 41.4 11 40.6 11 44.7 9 40.9 9 38.8 11 63.5 9

53.8 10 61.2 9 40.6 12 35.3 11 40.9 10 71.2 9 63.5 10

14.3 11 15.5 13 68.9 9 51.4 10 41.6 11 46.3 12 43.5 11

14.3 12 20.9 14 68.9 10 40.7 12 41.6 12 83.2 10 43.5 12

38.2 13 68.4 10 29.9 13 39 13 41.2 13 56.2 13 70.9 13

38.2 14 53.9 12 29.9 14 48.3 14 41.2 14 70.2 14 70.9 14

132 15 110 15 Nil 108 15 65.1 15 195 16 203 15

132 16 261 16 Nil 9.8 17 65.1 16 203 15 203 16

129 17 19.1 19 226 15 334 16 120 17 69.2 18 120 17

129 18 170 17 226 16 419 18 120 18 270 17 120 18

64.7 18 193 19 74.7 19

193 20 74.7 20

470 17

470 18
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allowing for a correct design of the structure. The degree of validity of the approximate pushover

procedure may however only be considered satisfactory provided the same level of accuracy on the

plastic rotations is kept for variations of the design variables, i.e., PRSI, bay lengths, or load levels.

Such variations are therefore scrutinised next.

The dynamic computations providing the reference solutions can be performed for structures of

various PRSI levels, provided a minimal value of the PRSI is kept. Indeed, when solving the

equation of motion, computations do not necessarily stop when the tangent stiffness becomes non-

invertible; and unloading may occur due to the dynamic oscillations, so that not all hinges are

necessarily in a ‘plastic’ loading state simultaneously. As a result, for lower levels of robustness

inducing the appearance of a higher number of plastic hinges during the dynamic computations, it

may become impossible to find a static load pattern inducing the appearance of all hinges : the

formation of a mechanism would prevent the static computation from reaching the point where all

‘dynamic’ hinges are detected. For instance, for the removal of a central column, it is not possible

to statically induce the appearance of all dynamically detected plastic hinges for PRSI levels lower

than 1.52.

This implies that a practitioner designing a structure for progressive collapse using such a quasi-

static pushover analysis procedure would produce designs with robustness levels that are not lower

than 1.52. For such a design, the pushover analysis shows that Eq. (4) is verified at the onset of the

formation of a mechanism (beyond which point the load controlled pushover analysis cannot be

carried). Assuming that safety margins are already adopted for the loads and material resistance,

there would be no need to design the structure with an extra safety margin. However, a practitioner

would generally produce a final design with some additional safety margin, since the various beams

and columns need to be chosen from an existing producer’s catalogue.

Table 2 shows the mean relative error and the standard deviation for the first six hinges (six

largest plastic rotations), for sets of 49 structures with varying PRSI levels, and a bay length of

6.1 m. The second row of Table 2 (Resistance reserve) shows the mean relative difference between

the load factor for which, using the pushover loading pattern, Eq. (4) is verified, and the one for

which a mechanism is formed. It is shown that a good accuracy on the plastic rotations is

maintained, which implies that the pushover analysis provides accurate results whatever the realistic

robustness level for the final design.

Construction codes in different countries or organisations may specify different service loads for

progressive collapse situations. For instance, the progressive collapse mitigation guidelines issued by

(USA-GSA 2003) specify a load factor of 25% on the service loads, while the guidelines developed

by (USA-DOD 2005) specify a load factor of 50%. Obviously, the higher the load, the stronger the

structure should be, but the robustness levels (i.e., loads versus structural resistance) should remain

roughly the same for the final designs. Table 3 compares the accuracy of the plastic rotations

obtained by the pushover procedure for different designs corresponding to different levels of service

Table 2 Mean relative errors on the six largest plastic rotations in %, for varying PRSI levels 

PRSI 1.52 1.58 1.64 1.69

Resistance reserve (%) 0.59 2.2 4.0 6.0

Mean relative error on the
plastic rotations (%)

6.6 6.9 8.1 8.3

Standard deviation (%) 4.6 5.3 5.9 6.7
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loads. It shows the mean relative error and the standard deviation for the six largest plastic rotations,

for sets of 49 structures for various percentages of the load P specified in Fig. 1 (to which all

previously presented results correspond). All structures are designed to have a PRSI level of 1.64.

All results presented so far correspond to structures with regular bay lengths of 6.1 m. Table 4

shows the mean relative error and the standard deviation for the six largest plastic rotations, for sets

of 49 structures for various regular bays lengths, as indicated in Fig. 1.

For the specific loading pattern associated to the case of a central ground floor column failure,

these results show that the plastic rotations obtained from the pushover analysis and the non-linear

dynamic reference solutions are in good agreement for the plastic hinges showing the larger plastic

rotations. Furthermore, this accuracy remains reasonably independent of the PRSI level of the final

design, of the specified load levels and of the size and geometrical shape of the building in the

considered set of structures. The pushover procedure thus yields correct plastic hinge locations and

appearance sequences. When associated with the proposed loading pattern and the zero kinetic

energy criterion, it allows to properly estimate the ability of the structure to redistribute loads

further to the loss of a column, irrespectively of the above mentioned design parameters.

5. Lateral ground floor column removal

5.1 Proposed loading pattern

Applying the same loading scheme for the case of a lateral column removal yields less accurate,

all plastic rotations being overestimated (the smallest relative error then varies between 20 and 30

percents). To further improve these results, a different loading pattern is proposed for the case of a

ground floor lateral column failure, followed by a discussion relative to the accuracy of the results

with respect to the design parameters.

The loading pattern offering the best compromise between accuracy and generality for all

structures is the following. A first static analysis is used to determine the resultant end forces at the

top of the removed column. The proposed loading pattern is applied in three steps depicted in

Fig. 4:

Table 3 Mean relative errors on the six largest plastic rotations in %, for varying load levels

Load (% of P) 76 93 96.5 100 103.5 107 124

Mean relative error on the 
plastic rotations (%)

5.8 7.4 7.8 8.1 8.4 8.9 9.1

Standard deviation (%) 4.1 5.3 5.6 5.9 6.1 6.2 6.7

Table 4 Mean relative errors on the six largest plastic rotations in %, for varying regular bay lengths 

Bay length in m (ft) 4.3 (14) 5.2 (17) 6.1 (20) 7.0 (23) 7.9 (26)

Mean relative error on the 
plastic rotations (%)

11.4 9.8 8.1 6.5 5.3

Standard deviation (%) 7.0 6.1 5.9 5.2 4.2
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1. Apply the dead and live loads and the identified end forces at the top of the removed column.

2. Maintain the dead and live load constant, and gradually decrease the end forces of the removed

column (by adding increasing equal but opposite end forces for instance), until these end forces

vanish. This quasi-static computation allows the computation of both terms in Eq. (4) (see the

Appendix for more details).

3. When the end forces disappear, keep on adding the opposite end forces, multiplying them by an

increasing factor µ1. Simultaneously, decrease the dead and live loads applied to the adjacent

bay (i.e., penultimate bay), by adding a uniform load equal but opposite to the dead and live

loads, multiplied by a factor µ2. This quasi-static computation allows the continued computation

of both terms in Eq. (4). Follow this loading pattern until the zero kinetic energy criterion

approximated by (4) is verified.

The dead and live load decrease on the adjacent bay specified in step 3 enables, through a lever

arm effect, a reduction of the overestimations of the plastic rotations in the lateral bay.

In order to apply step 3, it is necessary to specify the ratio R between the relative increase rates of

µ1 and µ2, defined as

(7)

This ratio has an influence on the accuracy of the obtained results. To find the optimal ratio R

potentially different for each structure, a Newton-Raphson procedure is used, with the condition that

the error on the hinge showing the largest plastic rotation vanishes. A parametric study by varying

one single parameter at a time (floor number, bay number, robustness, bay length…), is next used to

analyse the different optimal values obtained for each structure. This allows assessing whether the

optimal ratios are close to one another, so that the mean value of these optima may be used for all

structures; or conversely whether a relationship between R and one of the design parameters needs

to be established.

5.2 Plastic hinges rotations comparison

Varying the floor and bay numbers from four to ten, for structures with a regular bay length of

6.1 m, under the load P (see Fig. 1) and for a PRSI of 1.467, leads to a mean value for the optimal

ratios R of 0.277. Table 5 gives the plastic rotations and their relative errors for structures with

seven floors, and bay numbers ranging from four to ten, all pushover analyses being performed with

the above mentioned mean value for the ratio R. The results are sorted by decreasing plastic

rotations magnitude obtained from the dynamic computation. It can be concluded that using the

R
µ2d

µ1d
--------=

Fig. 4 Load pattern for lateral ground floor removal
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Table 5 Relative errors on the plastic rotations in %, for seven floor structures, lateral ground floor column
removal, bays numbers ranging from 4 to 10, robustness = 1.467, bay length = 6.096 m 

Number of bays 4 5 6 7 8 9 10

Plastic
 rotations in 

mrad 
(reference 
solution)

12.6 12.2 12.1 11.7 11.5 11.5 11.5

10.5 10.1 10.3 9.9 9.9 9.8 9.8

9.4 9.2 9.4 9.3 9.3 9.3 9.2

8.5 8.6 8.6 8.6 8.6 8.6 8.5

7.7 8.1 8.2 8.1 7.9 8 7.9

7.2 7.7 7.5 7.6 7.7 7.7 7.7

5.6 5.5 5.3 5.5 5.6 5.6 5.6

5.5 5.2 5.3 5.2 5.3 5.4 5.4

3.5 3.7 3.6 3.7 3.7 3.7 3.7

1.8 2.1 2.3 2.4 2.4 2.4 2.4

1.5 1.8 2.3 2 1.5 1.9 1.8

1.5 1.4 1.3 1.2 0.6 1.2 0.8

0.5 0.2 0.4 0.3 0.2 0.1 0.1

Plastic
 rotations

 relative errors 
(%)

5.5 1 1.6 1 -1.9 1 -0.8 1 -1.5 1 -2.6 1 -3.5 1

13.6 2 11.2 2 4.8 2 5.7 2 4.1 2 3.3 2 2.3 2

21.0 3 16.1 3 9.9 3 8.4 3 6.6 3 5.4 3 4.4 3

24.2 4 16.1 4 11.7 4 9.1 4 7.5 4 6.2 4 5.3 4

30.3 5 16.5 5 12.2 5 10.6 5 11 5 8 5 8.6 5

32.1 6 16.7 6 16.1 6 11.5 6 7.8 6 5.9 6 4.5 6

30.8 7 18.6 8 14.1 8 4.9 8 -0.8 8 -4.6 8 -7.0 8

27.7 8 25.6 7 16.2 7 14.2 7 10.0 7 5.8 7 4.6 7

61.1 9 41.5 9 35.1 9 28.9 9 24.3 9 22.4 9 21.1 9

172 10 118 10 90.5 10 77.4 10 71.6 10 67.7 10 66.4 10

201 11 128 11 75.9 11 89.1 11 152 11 91.9 11 103 11

201 12 181 12 179 12 197 12 465 12 184 12 291 12

360 13 749 13 206 13 214 13 264 13 526 13 508 13

Table 6 Mean values of the optimal ratios R, for varying regular bay lengths 

Bay length in m (ft) 4.3 (14) 5.2 (17) 6.1 (20) 7.0 (23) 7.9 (26)

Mean value of the optimal 
ratios R

0.273 0.278 0.277 0.274 0.274

Table 7 Mean relative errors on the three largest plastic rotations in %, for varying load levels

Load (% of P) 77 92 96 100 104 108 123

Mean relative error on the 
plastic rotations (%)

5.3 6.0 6.5 6.5 7.1 7.2 8.2

Standard deviation (%) 4.2 4.9 5.1 5 .0 5.5 5.4 5.9
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mean value of the optimal ratios R for all structures of this set allows for the detection of all plastic

hinges, and yields accurate results for the first few ones (the mean relative error for the three largest

plastic rotations for all 49 structures of this set is of 6.9%, with a standard deviation of 5.3%). This

means that R can be assumed independent from the number of floors and bays.

A variation of bays length is scrutinised in Table 6 showing the corresponding mean values of the

optimal ratios R. These mean values are very close to one another, their standard deviation being

less then one percent of their mean value. This implies that if their global average (= 0.275) had

been used for the pushover analyses of all structures of the five sets (five bay lengths), the results

would have been almost unaffected, and the accuracy level indicated by Table 5 would have been

maintained. Again, this means that R can be considered independent from the design loads.

Table 7 shows the mean relative error and the standard deviation for the three largest plastic

rotations, for sets of 49 structures for seven different fractions of the load P specified in Fig. 1. All

structures have a PRSI level of 1.467. The mean value of the optimal ratios R calculated for

structures submitted to 100% of P was used for all structures of all seven sets, showing that R can

be considered independent from the design load.

All the results presented so far in this section were obtained for structures with a fixed PRSI of

1.467. This value leads to mechanisms having nearly formed at the end of the pushover analyses,

which means that the structures have almost no resistance reserve left when Eq. (4) is verified. It

should therefore be expected that a practitioner using the mean value specified above (Table 6) for

the load ratio R would design structures with a PRSI level close to 1.467. It is however not possible

to predict the exact PRSI of the final design, as explained above since it depends among others on

the available beams in a producer’s catalogue.

For the removal of a central column, the accuracy of the pushover results was found almost

independent of the PRSI level. For the removal of a lateral column however, the results show that if

the mean value of the ratios in Table 6 is used, the accuracy of the results varies significantly with

the PRSI, even for quite small variations of this indicator. The optimal ratio R of the loading

scheme therefore depends on the PRSI level. Fig. 5 shows the mean optimal ratios obtained for sets

of structures with varying PRSI levels (for a fixed bay length of 6.1 m). The points on Fig. 5

indicate an almost linear relationship, with a best fit straight approximation (dotted line) given in

Eq. (8). Using ratios given by Eq. (8) allows to recover the accuracy level indicated by Tables 5

to 7.

Fig. 5 Ratio R between µ1 and µ2 as a function of the PRSI level
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(8)

The use of Eq. (8) therefore leads to the following design process for a lateral ground floor

column removal:

1. Use the pushover analysis described in Section 5.2 with a ratio Rinit of 0.275 to design the

structure.

2. Calculate the PRSI for the obtained design, as well as the corresponding new ratio Rupdated given

by Eq. (8).

3. If the new ratio R2 is lower than R1, the structure needs to be checked and potentially

redesigned: return to step 1 using the new ratio R2. If not, the structure is well designed as far

as moments redistribution is concerned, but a more optimal design can be obtained by restarting

from step one, using the new ratio.

4. Repeat steps 1 to 3 until Rupdated is equal to or larger than Rinit.

For the specific pushover loading pattern associated to the case of a lateral ground floor column

failure, comparisons with the plastic rotations obtained through the non-linear dynamic reference

solutions show a good agreement for the plastic hinges with the larger rotations. The parameter on

which the pushover loading pattern depends, the load ratio R defined in Eq. (7), is independent of

the specified loads and of the bay lengths, but depends on the PRSI level of the final design, and

Eq. (8) provides the required relationship.

6. Discussion

The results obtained here can first be compared to the general prescriptions given in design codes.

For instance, both the (USA-GSA 2003) and (USA-DOD 2005) have issued guidelines for

progressive collapse mitigation. The GSA guidelines describe in details what is referred to as a

static linear procedure, although static non-linear and dynamic non-linear computations are allowed.

The DoD describes procedures which match these three categories as well.

A direct comparison between the pushover procedure presented here and (USA-GSA 2003, USA-

DOD 2005, Kim and Kim 2009) is impossible because both sets of guidelines allow for the failure

of portions of the structure, referred to as the allowable collapse region. This region usually

corresponds to the bays directly concerned by the failing column. Since in the present approach,

structures are designed so that the concerned bays do not collapse, the acceptability criterion is not

the same and it is difficult to compare the resulting safety margins.

However, the loading pattern specified in (USA-GSA 2003, USA-DOD 2005) is similar to the

one in the definition used for the PRSI level (first remove the failing column from the model, then

apply the dead and live loads). In both guidelines documents, a load factor of 2 to be applied to

both dead and live loads is specified for static computations, to account for dynamic inertial effects.

Yet, the examples shown here indicate that PRSI levels around and close to 1.5 are sufficient. If

dynamic computations are performed, even lower PRSI levels could still allow the structures to

prevent collapse, provided the higher sectional (and connection) ductility demands can still be met.

The dynamic load factor of 2 specified in (USA-GSA 2003, USA-DOD 2005) thus appears highly

conservative as already commented elsewhere based on the analysis of specific structures.

A second comment needs to be raised concerning the PRSI dependency of the identified loading

R 0.448PRSI– 0.934+=
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schemes. The PRSI is used, in the present context, as measure of a structure’s strength with respect

to the loads it is submitted to (for a given missing column), with a view to relate this parameter to

the pushover loads. The pushover loads could indeed be expected to be dependent on a measure of

the structure’s robustness. For example, a structure such that no plastic hinge appears following a

column loss (i.e., linear elastic behaviour) has a dynamic load factor of roughly 2 (and therefore a

PRSI larger than 2). On the other hand, structures which do show plastification following the

column loss, such as those studied here, have lower PRSI’s and lower dynamic load factors. It is

therefore important to link these two notions. For the case of a central column removal, the

procedure’s accuracy is independent of the PRSI, thus showing that the zero kinetic energy criterion

naturally takes into account the influence of the latter, leading to a corresponding amplification of

the static loads. In order to maintain a good accuracy for a lateral column failure, it was necessary

to integrate the influence of the PRSI on the parameters of the computational procedure, specifically

the ratio R introduced by Eq. (7) in Section 5. This implies that an approximation is introduced

when a single dynamic load factor is specified, constant for all structures, as is the case for the

(USA-GSA 2003, USA-DOD 2005) procedures.

Finally, the systematic nature of the parametric study presented here, which incorporates load, bay

length and PRSI variations, implies that the studied structures had to be redesigned very often. The

automation of the design process was achieved through the introduction of a single coefficient in the

data set (α coefficient, Section 3.2.1), relating the plastic moments to the inertias and section areas.

The question is therefore raised of the extension of the pushover procedure presented here for other

construction materials, such as reinforced concrete as performed in Almusallam et al. (2010). The

same comment can be made for the incorporation of catenary effects which will be examined in a

subsequent work. However, the obtained results is a strong encouragement to extend the study to

other materials, as well as to three dimensional structures.

7. Conclusions

In order to study dynamic inertial effects during structural progressive collapse, a zero-length

plastic hinge element accounting for inelastic rotations was used. Non-linear dynamic computations

were carried out on various sets of two-dimensional beam-column structures to provide reference

solutions. An equivalent pushover static analysis, based on carefully selected static equivalent

loading schemes, coupled with a zero kinetic energy criterion was proposed to simulate the inertial

dynamic effects without the need to perform full non-linear dynamic computations. In the case of a

central ground floor column failure, the load pattern to apply is independent of design parameter,

i.e., the number of floors, number of bays, bay length, loads and of a proposed measure of the

structural strength reserve. The use of this load pattern for the case of lateral ground floor column

failure, however, leads to slightly less accurate results. To further improve the accuracy in this case,

a different specific load pattern is proposed, the main difference with the central ground floor

column failure loading pattern being that it depends on the PRSI (plastic reserve strength indicator)

level of the final design.

Due to the identification of specific load patterns, the obtained results offer a very good accuracy

in the detection of the plastic hinge locations and appearance sequences, and therefore by extension,

the structure’s ability to redistribute loads following the loss of a vertical support member is well

represented. This feature of the structural behaviour is key for the structural design in the
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geometrically linear range, where ductility requirements would probably not play a major role.

Since the pushover procedure is designed for geometrically linear analyses, it is important to design

the structure in accordance with this assumption when using the pushover procedure described here.

The analysis of the results shows that the dynamic load factor of 2 specified by the GSA and

DoD (USA-GSA 2003, USA-DOD 2005) appears to be strongly conservative, as is also reported in

(Vlassis 2007, Izzuddin et al. 2008, Ruth 2006).

Finally, the zero kinetic energy criterion is expressed mathematically through one equation with as

many unknowns as there are degrees of freedom in the model. Such a weak constraint cannot be

expected to yield accurate results on its own. In order to obtain accurate results, it needs to be

coupled to a proper loading pattern. It can also be argued that there is nothing particular about the

zero kinetic energy configuration, and the proper loading pattern only serves to cover up the

deficiencies of the zero kinetic energy criterion. One might therefore as well look for the right

loading pattern and associated loading level, and not use the zero kinetic energy criterion as the

indication of when the quasi-static pushover analysis should be stopped.
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Appendix - Cumulated internal and external forces work

The computation of both terms in Eq. (4), during the application of the loading patterns identified in Sec-
tions 4 and 5, is described below.
Let us call fd a vector in which the nodal loads corresponding to the loads actually applied to the structure

(i.e., the gravity and service loads) are collected. These loads are constant through the dynamic process.
Since the static pushover analysis is a non-linear one, a stepwise application of the loads is necessary. The

subscript n in the following terms and equations refers to the step n of the stepwise load application inherent
to any static non-linear analysis (i.e., not to stages 1, 2 or 3 of the loading patterns specified in Sections 4 and
5). Let us call fs,n a vector in which the nodal loads corresponding to the static pushover procedure (see Fig. 2
and 4) at the load step n are collected. 
Stage 1 in the loading patterns described in Sections 4 and 5 does not yet correspond to the dynamic col-

lapse process, so that at the end of this step, the cumulated internal and external forces works are considered
equal to zero. At the beginning of Stage 2 of the loading patterns, we therefore have

(9)

where Ti, 0 and Te, 0 respectively represent the cumulated internal and external forces works as of the removal
of the failing element at the end of Stage 1 of the loading patterns, and correspond respectively to the left and
right terms in Eq. (4).
At the end of step n of the stepwise application of the pushover loads, we then have

(10)

where qs, n represents a vector in which the displacements obtained at step n are collected, and qs, 0 corre-
sponds to the displacements obtained at the end of Stage 1 of the loading patterns. 
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