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Abstract. The present work deals with obtaining the critical buckling load and the natural frequencies
of clamped, orthotropic, rectangular thin plates subjected to different linear distributed in-plane forces. An
analytical solution is proposed. Using the Ritz method, the dependence between in-plane forces and
natural frequencies are estimated for various plate sizes, and some results are compared with finite
element solutions and where possible, comparison is made with previously published results. Beam
functions are used as admissible functions in the Ritz method. 
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1. Introduction 

Exact solutions for the free vibration and buckling of rectangular plates based on the classical thin

plate theory are known for plates with two opposite edges simply supported when the loads are

applied at these edges. Most of them for isotropic plates of uniform thickness subjected to constant

in-plane loads. Leissa and Kang (2001, 2002), found exact solutions for linearly varying loads,

Xiang and Wang (2002) and Xiang and Wei (2004) found exact solutions for stepped plates.

Approximate solutions are also available: Dickinson (1971) has used the Ritz method to study the

free lateral vibrations of simply supported rectangular plates subjected to various in-plane force

conditions. Bassily and Dickinson (1972) and Kaldas and Dickinson (1981) proposed a series

composed of multiplications of beam functions in the Ritz method for vibrating rectangular plates

subjected to arbitrary in-plane stresses. In 1978 Laura and his co-workers determined the

fundamental frequency of transverse vibrations of rectangular plates subjected to in plane-loads.

(Diez et al. 1978). In a paper by Dickinson (1978) a simple approximate formula for the natural

frequencies of flexural vibration of isotropic plates, originally developed by Warburton using

characteristic beam functions in Rayleigh’s method, is modified to apply to orthotropic plates and

extended to include the effect of uniform, direct in-plane forces.

Later Gorman (1990) used the superposition method subdividing the clamped orthotropic plate
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problem into building blocks and superposing the resulting solutions. Shi (1990), developed a

numerical solution technique by means of the boundary element method for flexural vibration and

buckling analysis of orthotropic plates. Wang et al. (2006) reproduced the exact values of Leissa and

Kang (2002) using the Differential Quadrature method. Tripathy and Suryanarayan (2008), used a

flexibility function approach to solve buckling and vibration characteristics of weld-bonded

rectangular plates. Singhatanadgid and Sukajit (2011) investigated the use of a vibration correlation

technique to identify the buckling load of a rectangular thin plate, they proposed that the buckling

load can be determined experimentally using the natural frequencies of plates under in-plane loading.

In the present study, rectangular orthotropic clamped plates, with distributed normal forces of

linear variation applied to all edges are considered.

As it is known, laminated composite panels are increasingly required in modern technological

applications. Consequently, modeling the structure as an orthotropic element is worthy of

consideration. Certainly, fiber reinforced composite materials are used as structural materials, in

shipbuilding, aircraft, automotive industries and in civil engineering. Plates of high-strength fiber

reinforced concrete are used in many technological situations (Ramadoss and Nagamani 2009).

However, to our best knowledge, there are not many results available in the literature for the case

of clamped orthotropic rectangular plates subjected to different linear distributed in-plane forces. 

An approximate solution is obtained by means of the Ritz method and beam functions are used in

the deflection approximation, since they satisfy the essential boundary conditions at the outer edge

of the plate.

In some cases an independent solution is also obtained using a finite element code (ALGOR 23.1

2009). Numerical results are presented for critical loads and natural frequencies for fully clamped

plates and where possible, comparison is made with previously published results. 

 

2. Approximate solution

The small deflection motion of a vibrating thin rectangular orthotropic plate loaded by in-plane

normal forces varies harmonically with time t

where ω is the circular natural frequency of the plate and W is the deflection amplitude. Fig. 1. 

The functional associated with the orthotropic vibrating plate is given by
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where a, b, are the plate dimensions and h is the plate thickness; ,

, and  are bending and twisting rigidities for principal

directions of elasticity for orthotropic plates, E1 and E2 are Young’s moduli, G12 is the shear

modulus and the Poisson’s ratios are: ν1 and ν2. Poisson’s ratios and Young’s moduli are related by

the reciprocal relation: . ρ is the material density, ;  are the spatial

dimensionless coordinates and Nx, Ny are the compressive in-plane forces per unit width written in

dimensionless form. The forces are distributed according to a linear law. 

The principal directions of elasticity 1 and 2 coincide with the directions of axes x and y.

The deflection W is assumed as a solution of the form

(2)

where Aql are undetermined coefficients and ,  are beam functions for clamped-clamped

conditions 

(3)

with

; (4)

where kq and kl are obtained from the characteristic equation

(5)
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  Fig. 1 Clamped orthotropic rectangular plate under linear distributed in-plane forces 
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Applying the Ritz minimization condition for each of the generalized coordinates Aql, it is

obtained

(6)

which is a set of ( ) linear homogeneous equations.

Using non dimensional variables, Eq. (6) becomes

(7)

The in-plane forces are described by the linear expressions

(8)

where ; ; c; d are constants.

The frequency coefficients  are determined with the minimization condition (7)

for different values of , where  is the critical buckling value, for each ratio

. 

The buckling problem is treated simply by equating the frequency expression derived by the

present analytical method to zero. 

 

3. Numerical results

In the numerical analysis, the Mathematica software was employed to obtain the results; its

eigenvalue solver was used to compute the natural frequencies and the critical loads.

Tables 1 to 4 exhibit buckling and vibration dimensionless results for square and rectangular

orthotropic plates for loads only in x-direction ( ). Fig. 2. Uniform and linear varying

forces are considered. 
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Table 1 Frequency coefficients  for clamped orthotropic square plates, a/b = 1, subjected to
uniform distributed in-plane forces. Nx = N1; Ny = 0. Critical buckling: = 148.251.
D2/D1 = 2, ν2 = 0,3, Dk /D1 = 0,85

 N1/Ncrit Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

 0  45.6390  83.4289  101.124  139.749  142.014  184.870

 45.6426  83.4394  101.132  139.778  142.034  184.883  FEM

 45.640  83.440  ---  139.76  142.00  184.88  Gorman (1990)

 0.30  39.3549  70.2159  98.6213  125.606  132.536  183.560

 0.50  34.3101  59.6288  96.8971  113.315  127.465  180.356

 33.9112  59.3743  96.4218  113.128  127.191  180.085  FEM

 0.80  23.9052  38.0563  91.8567  94.2093  119.384  167.814

 0.95  14.8504  19.1376  79.1148  92.8101  115.090  156.589

 1  0  9.42795  74.4531  92.3340  113.616  152.482

 0.10453  9.38576  74.5186  92.3389  113.650  152.605  FEM

Ωi ρh/D1a
2

ωi=
Ncrit Ncritb

2

/D1=

The following  Tables 3 and 4 present the orthotropic rectangular plate, with a/b = 2, and the

same two cases of distributed in-plane loads.

Table 2 Frequency coefficients  for clamped orthotropic square plates, a/b = 1, subjected to
linear distributed in-plane forces. ; . Critical buckling: =
281.778. D2/D1 = 2, ν2 = 0,3, Dk /D1 = 0,85

N1/N1crit Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

0 45.6390 83.4289 101.124 139.749 142.014 184.870

45.6426 83.4394 101.132 139.778 142.034 184.883 FEM

45.640 83.440      --- 139.76 142.00 184.88 Gorman (1990)

0.30 39.6547 70.7304 98.7504 126.114 132.951 183.624

0.50 34.8384 60.3707 97.1121 113.820 128.237 181.603

34.8353 60.3785 97.1192 113.855 128.269 181.677 FEM

0.80 24.8888 38.8481 91.1870 94.9349 120.832 167.352

0.95 16.2482 19.6268 77.6335 93.4356 116.942 154.457

1 0 11.2387 72.5095 92.9846 115.610 149.864

0 11.2048 72.5815 92.9899 115.643 150.005 FEM

Table 3 Frequency coefficients  for clamped orthotropic rectangular plates, a/b = 2,
subjected to uniform distributed in-plane forces. ; . Critical buckling: 
= 119.580. D2/D1 = 2, ν2 = 0,3, Dk /D1 = 0,85

N1/Ncrit Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

0 137.035 168.852 222.347 297.234 360.964 393.005

137.036 168.856 222.359 297.250 360.961 393.098 FEM

137.032 168.800 222.337    --- 360.907 393.038 Gorman (1990)

0.30 130.933 148.741 188.145 252.636 341.514 358.844

0.50 126.328 133.068 161.017 217.709 302.264 357.415

126.326 133.065 161.027 217.744 302.342 357.418 FEM

0.80 101.166 101.942 121.929 151.724 231.400 339.844

0.95 52.5642 65.9825 111.971 116.06 187.069 297.740

1 0 36.7066 99.9207 113.760 170.362 282.398

0 36.7491 99.9315 113.762 170.477 282.565 FEM
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2

/D1=

Ωi ρh/D1a
2

ωi=
Nx N1= Ny 0= Ncrit Ncritb

2

/D1=



120 D.H. Felix, D.V. Bambill and C.A. Rossit

Table 4 Frequency coefficients  for clamped orthotropic rectangular plates, a/b = 2,
subjected to linear distributed in-plane forces. ; . Critical buckling:

= 231.536. D2/D1 = 2, ν2 = 0,3, Dk /D1 = 0,85

N1/Ncrit Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

0 137.035 168.852 222.347 297.234 360.964 393.005
137.036 168.856 222.359 297.250 360.961 393.098 FEM
137.032 168.800 222.337     --- 360.907 393.038 Gorman (1990)

0.30 131.126 149.335 189.038 253.629 342.476 358.916
0.50 126.676 134.068 162.349 218.904 303.073 357.534

126.674 134.064 162.357 218.937 303.149 357.435 FEM
0.80 102.746 103.636 122.429 151.909 229.945 337.005
0.95 53.8684 65.9847 111.306 116.424 182.774 291.555
1 0 32.4642 99.4352 113.904 164.756 274.679

0 36.7491 99.9315 113.762 170.477 282.565 FEM

Ωi ρh/D1a
2

ωi=
Nx N1 1 y–( )= Ny 0=

Ncrit Ncritb
2

/D1=

Tables 5 and 6 show the frequency parameters of biaxially compressed clamped orthotropic plates. 

The first six frequency coefficients of transverse vibration and the critical buckling have been

computed, for three different cases of in-plane forces with . Q L× 225=

Table 5 Frequency  coefficients of clamped orthotropic square plates, a/b = 1, subjected to
linear distributed in-plane forces. ; . Critical buckling:  =
112.350. D2/D1 = 2, ν2 = 0,3, Dk /D1 = 0,85

N/Ncrit Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

0 45.6390 83.4289 101.124 139.749 142.014 184.870
45.6426 83.4394 101.132 139.778 142.034 184.883 FEM
45.6400 83.4400     --- 139.760 142.000 184.880 Gorman (1990)

0.30 38.3966 76.1610 92.1626 131.444 134.591 175.113
0.50 32.5893 70.8275 85.6338 125.594 129.324 168.286

32.5921 70.8417 85.6467 125.632 129.355 168.314 FEM
0.80 20.7662 61.8144 74.7125 116.261 120.848 157.483
0.95 10.4287 56.6813 68.5682 111.300 116.301 151.790
1 0 54.8474 66.3884 109.597 114.733 149.845

0 54.8684 66.4089 109.645 114.779 149.890 FEM

Table 6 Frequency coefficients  for clamped orthotropic rectangular plates, a/b = 2,
subjected to linear distributed in-plane forces. ; . Critical buckling:

 = 83.6822. D2/D1 = 2, ν2 = 0,3, Dk /D1 = 0,85

N/Ncrit Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

0 137.035 168.852 222.347 297.234 360.964 393.005
137.036 168.856 222.359 297.250 360.961 393.098 FEM
137.032 168.800 222.337     --- 360.907 393.038 Gorman (1990)

0.30 115.189 146.405 199.451 274.039 333.551 369.590
0.50 97.6930 129.093 182.439 257.270 313.855 350.836

97.7352 129.215 182.637 257.525 313.885 350.891 FEM
0.80 62.1556 97.0345 153.090 229.546 281.566 320.027
0.95 31.1828 75.7653 135.864 214.188 263.855 303.387
1 0 67.1312 129.580 208.791 257.666 297.623

0 67.6081 130.129 209.407 257.741 297.763 FEM

Ωi ρh/D1a
2
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Nx N 1 y–( )= Ny N= Ncrit Ncritb

2
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Table 7 Critical buckling  for clamped orthotropic rectangular plates, subjected to
different linear distributed in-plane forces. D2/D1 = Dk /D1= 1/2 and v2 = 0.3

Nx = N;
Ny = 0

Nx = N(1 − y);
Ny = 0

Nx = N(1 − 2y);
Ny = 0

Nx = N;
Ny = N

Nx = N(1 − y);
Ny = N

Nx = N(1 − 2y);
Ny = N

0.40 278.853 466.043 754.479 264.919 301.578 343.711

0.50 192.196 337.846 610.187 157.115 200.370 232.062

2/3 123.334 235.318 502.075 90.660 119.657 140.290

1.00 88.695 170.058 440.299 46.122 59.983 74.328

1.50 77.785 148.662 388.013 29.128 34.070 40.379

2.00 70.573 136.391 370.420 24.305 26.750 29.602

2.50 67.747 130.775 362.833 22.384 23.850 25.461

3.00 66.659 128.867 358.814 21.453 22.431 23.470

N Ncrit Ncritb
2

/D1= =

Ncrit

Ncritb
2

D1

--------------=

λ
a

b
---=

Table 8 Natural frequency coefficients of square clamped plates under hydrostatic loads, Nx = Ny = N, for
various relations of orthotropy

Nx = Ny      Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

D2/D1 = 1; Dk/D1 = 0.85; ν2 = 0.30

0 39.6993 80.0811 80.0811 125.0430 139.4600 140.1900

39.696*

4.π2 25.0910 64.5644 64.5644 110.2270 122.8750 123.9100

25.082*

D2/D1 = 2; Dk/D1 = 0.85; ν2 = 0.30

0 45.6386 83.4274 101.1220 139.7410 142.0110 184.8650

45.642*

4.π2 33.6351 68.5811 89.2944 125.8145 126.5466 172.7617

33.638*

The results agree with those obtained by the finite element method (FEM), for N/Ncrit = 0, 0.50

and 1. Those calculations have been performed using a well known finite element code, Algor

(2009). The mesh employed for the square plate has 10000 (100 × 100) quadrilateral elements and

for the rectangular one that has 20000 (200 × 100) quadrilateral elements.

Table 7 presents the dimensionless critical buckling loads of rectangular orthotropic plates for

various cases of in-plane-loads and a range of plate aspect ratios: .

The critical buckling coefficients have been computed with . 

Table 8 shows the frequency parameters of square clamped plates under hydrostatic in-plane

forces, having various degrees of orthotropy. It is seen that the present results agree well with

fundamental frequency coefficients given by Dickinson (1978). These results were obtained with

.
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4. Conclusions

Frequency of vibration and critical buckling load often constitute an important part of design for

thin plates or structures made of thin plates. 

The paper presents analytical results for free vibrations of clamped orthotropic rectangular plates

subjected to linearly varying in plane forces, by the use of the Ritz method. Letting the natural

frequency be zero here led to critical buckling condition. Numerical calculations were performed for

the first six natural frequencies for different in-plane loads and examples of critical buckling loads

are presented.

As it was expected, the frequency coefficients decrease as the in-plane force ratio N/Ncrit

increases, and the fundamental frequency approaches to zero as N/Ncrit approaches to 1.
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Table 8 Continued

Nx = Ny      Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

D2/D1 = 4; Dk/D1 = 0.85; ν2 = 0.30

0 55.5693 89.4221 133.5592 145.8528 164.9011 218.1049
55.566*

4.π2 46.1901 75.6921 124.8269 130.0883 153.8170 204.8409
46.186*

D2/D1 = 1; Dk/D1 = 0.35; ν2 = 0.30 (isotropy)

0 35.9852 73.3939 73.3939 108.2166 131.5808 132.2049
35.985*

4.π2 28.5729 65.2244 65.2244 99.6993 123.0059 123.7737
28.573*

D2/D1 = 2; Dk/D1 = 0.35; ν2 = 0.30

0 42.3969 76.8437 95.8804 124.6758 133.9704 176.4467
42.400*

4.π2 36.2961 69.0445 89.7686 117.3172 125.5817 168.2671
36.340*

D2/D1 = 1; Dk/D1 = 0.10; ν2 = 0.30

0 33.9120 69.6829 69.6829 98.4322 127.3822 127.8355
33.910*

4.π2 30.1519 65.4649 65.4649 93.7736 123.0127 123.5229
30.149*

*Dickinson (1978).
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