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Abstract. This paper deals with the problem of the determination of the response of a viscoelastic
Bernoulli-Navier beam, which is resting on an elastic medium. Assuming uniaxial bending, the
displacement of the beam axis is governed by an integro-differential equation. The compatibility of the
displacements between the beam and the elastic medium is imposed through an integral equation. In
general and in particular in the case of a Boussinesq medium, the solution has to be pursued numerically.
On the contrary, in the case of a Winkler’s medium the compatibility equation becomes a linear finite
relationship, which allows finding an original analytical solution of the problem for both hereditary and
aging behavior of the beam. Some numerical examples complete the paper, in which a comparison is
made between the hereditary and the aging model for the creep of the beam. 
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1. Introduction

In structural mechanics, problems of coupling materials or elements with different behaviors are

frequently encountered, and such problems constitute a wide class: a bridge girder made from a

reinforced concrete slab and a T-shaped steel beams; a reinforced concrete or steel beam whose

supports are made from a polymeric material; a brick wall repaired by fibers of steel or of another

material; a reinforced concrete column encased by a steel jacket; a beam having a continuum

contact with a medium, and so on. The last problem will be analyzed in this paper.

The response of beams and plates resting on an elastic medium has been studied since the fifties.

Different models were considered such as Bernoulli-Navier and Timoshenko beams, Boussinesq’s,

Winkler’s, Kerr’s, and Pasternak’s media for both static and dynamic responses. Static analyses

were presented by Freudenthal and Lorsh (1957), Reissner (1958), Raymondi (1959), Lee and

Radok (1960), Pister and Williams (1960), Kuczma and witka (1990), Kuczma and Demkovicz

(1992), Morfidis and Avramidis (2002), Nobili and Tarantino (2005), and by Avramidis and

Morfidis (2006). Dynamic analyses were performed by Sun (2001, 2007), Elfesoufy and Azrar

(2005), Kargarnovin et al. (2005), Kim and Cho (2006), Muscolino and Palmeri (2007), Lancioni
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and Lenci (2010), and by Morfidis (2010).

The majority of the authors considered purely elastic beams and plates resting on a viscoelastic

medium with a bilateral contact: among the above cited authors only Lee and Radok (1960),

Kuczma and Demkovicz (1992), Nobili and Tarantino (2005) analyzed viscoelastic beams and

plates. Unilateral contact was assumed by Kuczma and witka (1990), Kuczma and Demkovicz

(1992), Nobili and Tarantino (2005), Lancioni and Lenci (2010). 

In the above cited references, the coupling problem is cast according to the structural mechanics

laws obtaining an analytical formulation. However, a few authors only find an analytical solution in

closed form. Often, the solution is numeric, and is obtained by discretizing the equations that

govern the problem. In some analyses such those by Morfidis and Avramidis (2002), Lancioni and

Lenci (2010), and by Morfidis (2010) resort is made to the finite element method. Ad hoc beam

elements are constructed: while Lancioni and Lenci consider Euler-Bernoulli beams, Morfidis and

Avramidis (2002) and Morfidis (2010) consider Timoshenko beams. The models used for the beam

or the plate, the medium, and the type of contact determine whether the solution is analytic or

numeric. In general, to have an analytic solution, the problem must be formulated or reconducted to

a differential form, and the constraint must be bilateral; otherwise, the solution is numeric.

A numeric solution for viscoelastic beams resting on Winkler’s type media was obtained by

Nobili and Tarantino (2005). They address the problem of the frictionless unilateral contact of an

aging visco-elastic Bernoulli beam with a viscoelastic soil; a compatibility inequality is formulated,

which gives raise to a numerical approach of solution: a finite difference method along the beam

axis and a step by step quadrature integration in time are used. The results are in terms of

displacements and contact pressures.

Lee and Radok (1960) analyze the general case of two viscoelastic bodies in contact as the

counterpart of the Hertz problem in elasticity; the solution is obtained from the corresponding

purely elastic solution. Kuczma and witka (1990) study the interaction between an elastic beam

and a Winkler-type viscoelastic foundation with unilateral constraint. The problem is formulated by

means of a variational inequality, and the solution is obtained by applying the finite element

method. Kuczma and Demkowicz (1992) generalize the previous work to the plates giving an

adaptive algorithm of solution that takes the viscosity of the beam and of the plate into account.

Reissner (1958) and Raymondi (1959) formulate the problem of the interaction in differential

form, the former for a plate on a viscoelastic medium, the latter for a Bernoulli beam on a

Boussinesq’s medium; both do not solve the differential equations governing the respective

problems. Other authors succeed in solving the governing equations, so attaining analytical

solutions. Freudenthal and Lorsch (1957) analyze an infinite elastic beam resting on a viscoelastic

foundation, for which the mechanical models of Kelvin, Maxwell, and Kelvin-Voigt are considered.

In any case the problem is cast in differential form so that analytic solutions are found. Kargarnovin

et al. too (2005) consider the response of infinite beams; these are supported by non linear viscous

foundations and are subjected to harmonic moving loads. The dynamic analysis is developed in the

frequency domain. Attention is mainly focused on the different responses of Bernoulli and

Timoshenko beams, while the evolution in time of the response quantities such as bending moment

and displacement is not addressed. Pister and Williams (1960) obtain an analytical solution for a

thin (Lagrange-Kirchhoff) plate resting on a viscoelastic foundation by means of the Laplace

transform method.

Sun analyses the dynamic responses of a Bernoulli beam (2001) and of a Kirchhoff’s plate (2007)

resting on a viscoelastic foundation. In the first study the viscoelasticity is described by the

Só
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Newton’s model, while in the second one by Kelvin’s model, and the solution is pursued by means

of Fourier transform and complex analysis, which yields an analytical solution.

Elfesoufi and Azrar (2005) make a unified treatise of the buckling, flutter and vibration of a

Bernoulli beam resting on an elastic foundation by using an integral formulation disregarding the

creep of both the beam and the foundation. Even Avramidis and Morfidis (2006) and Kim and Cho

(2006) do not consider the creep explicitly in a static and a dynamic analysis, respectively, of a

beam resting on a two or three-parameter soil (Kerr 1964, 1985, Pasternak 1954).

Muscolino and Palmeri (2007) determine the dynamic response of beams resting on

viscoelastically damped foundations acted by moving loads. They use a refined state space

formulation having the vehicle-track interaction in mind. The method is very attractive but may be

computationally heavy.

This paper addresses the problem of the interaction between a viscoelastic Bernoulli-Navier beam

and an elastic medium assuming that the contact is bilateral. An analytical solution is pursued,

which is surely more feasible than a numeric one, and more valuable for engineering analyses.

Thus, attention is focused on beam creep. In fact, many engineering materials exhibit constitutive

laws dependent on time, that is they have a viscous behavior. Among viscous materials there is

concrete, from which most foundation structures are made. Creep strongly influences the response

of concrete structures (Creus 1985, Bažant 1988) causing relevant differences with respect to a

purely elastic response. A notable case is that of a structure in which viscoelastics members are

coupled with elastic ones such as a concrete beam supported by steel columns: analytical solutions

were obtained for the redundant forces (Mola 1982). The present problem can be seen as that of a

structure with infinite redundant forces since the elastic constraint is distributed, and in every point

a force is exchanged. The constraint is assumed to be bilateral for some reasons: (1) as advanced,

an analytical solution is pursued; (2) the actual foundation beams are generally designed in such a

way to avoid detachments. 

After the Introduction the equilibrium equation for a beam resting on a medium is established. In

the following section the compatibility between the medium and the beam is imposed with

reference to both Boussinesq’s and Winkler’s media, then the analysis is restricted to the latter. The

fourth section treats the solution of the equibrium equation for a Winkler’s medium. The fifth

section presents the analyses, after which there are the conclusions, the Appendix, and the

references. For reader’s convenience, the fundamental laws of the linear viscosity are recalled in the

Appendix. 

Fig. 1 Beam on an elastic medium (left), and its cross section (right)
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2. Equilibrium of a viscoelastic Bernoulli-Navier beam 

The theory of the Bernoulli-Navier beam is based on the hypothesis of plane section (Fig. 1,

right), that is after the deformation caused by bending moment and shear force the cross-section

remains plane. Basing on this hypothesis, the normal stress on the section is (the Cartesian axes are

depicted in Fig. 1)

(1)

where both σz and My vary with time for the twofold reason that the load q (Fig. 1) varies with

time, and there is a viscous behavior (recalls on the linear theory of the viscosity are in the

Appendix).

Using Eq. (1) in the superposition integral that expresses the viscous strains (Eq. (61)), we have

(2)

where t0 denotes the instant in which the loading history begins. The instant t0 is in general different

from the instant in which beam construction is completed (for concrete the latter instant is that of

complete hardening of the cementitious mixture). However, it is recalled that in the notation used

for the aging model t0 is the first instant in which the material can be loaded.

As a consequence of plane section law the beam curvature is given by

(3)

where v(z, t) denotes the displacement of the beam axis in x direction. By using Eq. (3) in (2), we

have 

(4) 

Now, we take the derivative of Eq. (4) twice keeping into account that dMy /dz = Vx (Vx is the

shearing force), and dVx/dz = −qx(z)

(5) 

The load q on a beam having a continuous contact on a medium whichever is given by the

difference between the external load qx and the medium distributed reactive force r, that is

(6) 

Thus, Eq. (5) takes the first final form

(7)
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too. Recalling that  and  being L the viscous kernel, integration by

parts of Eq. (7) leads to the second form of the equilibrium equation of the beam 

(8)

Eqs. (7), (8) are linear integro-differential equations, whose solutions can be obtained once the re-

active force r is established. This must be such that the compatibility between the displacements of

the beam axis (v) and of the upper surface of the continuous medium (η) is preserved: see next

section.

3. Compatibility equation

A beam having a continuum contact with a medium can be considered infinitely redundant, being

the redundant forces the reactive forces r(z) that the medium exerts in every contact point; the

contact points constitute an infinite set (Fig. 2). To determine the redundant forces, compatibility

must be imposed between the beam and the medium. In other words, the beam deflection v(z, t)

equates the medium vertical displacement η(z, t). In order to express the previous equality, the

mechanical properties of the medium are necessary. Several models are used in literature to idealize

the soils and the other media on which a beam may lay: in this paper attention is restricted on linear

media such as Boussinesq's and Winkler’s ones (Boussinesq 1878, Flamant 1892, Winkler 1867,

Timoshenko 1970).

For linear media the compatibility of the beam axis and the superior surface of the medium

requires that the following integral equation is satisfied 

(9) 

In Eq. (9) the function  gives the surface displacement of the medium to a constant unit

pressure applied in t', and includes the viscous properties of the medium.

If the medium has no viscous deformation, Eq. (9) is replaced by

(10)

where L is beam length, and η the Green function or influence function of the medium, while the
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Fig. 2 Loads on the beam resting on elastic medium (left), influence function (right) 
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other quantities are defined in Fig. 2. The function  assumes different expressions according

to the specific model adopted for the medium. For a Winkler’s medium  being 

Dirac’s delta.

A Boussinesq’s medium is an isotropic and homogeneous elastic half space. Boussinesq himself

and Flamant found the stress and strain distributions as well as the displacement fields for both the

cases of point load and load uniformly distributed on an area A. In the case of point load the

Green’s function to be inserted in (10) is

(11)

where Es and νs are the elastic constants of the medium, while z and ζ are the abscissae of two

points on a line, which in this case is the beam axis. The shortcoming of Eq. (11) is that it diverges

when z → ζ: to avoid this, when z ≈ ζ Eq. (11) must be replaced by the Green’s function for the

case of a uniformly distributed load q on a rectangular area 

(12) 

where b1 is the smaller side of the rectangle, the point of abscissa z is the centroid of the rectangle,

while Iη is a numerical coefficient depending on the ratio  (see Timoshenko 1970, Bowles

1982). The necessity of varying the influence function renders the evaluation of the integral (10)

more cumbersome.

Thus, in the case of a Boussinesq medium the problem is governed by Eqs. (8), (10). Raymondi

(1958) showed that the problem can be reduced to a differential form. When the beam has viscous

strains, the solution can be found numerically: a specific algorithm has been developed by the

writers, and it is not reported here. In the following reference will be made to Winkler’s medium.

4. Solution of the equilibrium equation

4.1 Winkler’s medium, restrained beam

In order to derive the analytic solution of the integro-differential Eq. (8), the cases of beam with

restrained ends and of free ends must be treated separately. A restrained beam is depicted in Fig. 3.

Inserting the influence function of a Winkler’s medium into Eq. (10), it is obtained
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Fig. 3 Hinged-hinged beam on Winkler’s medium and its cross section



Analytic solution for the interaction between a viscoelastic Bernoulli-Navier beam 599

(13)

After substituting Eq. (13) in (8), this changes into

(14)

where 

Separating the variables, a series solution is expressed as

(15)

The functions  must satisfy the boundary conditions, and constitute a complete orthonormal

basis in L2. If the φk’s are such, the following properties hold
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where  is Kronecker’s delta, and λk are the eigenvalues. The eigenfunctions of the free vibrations

of the same beam enjoy this properties. Thus, the required φk’s are obtainable by solving the free

vibration problem for the same beam, which is given by Clough and Penzien (1982)

(18)

where  is the mass for unit length of the beam.
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(22-24)

dividing Eq. (21) by , this assumes the form

(25)

The integral Eq. (25) has the same form as the equation that gives the redundant forces of a once

redundant structure made from an elastic part and a viscoelastic one (Mola 1982). If there are N

redundant forces, the equations are N, while here the equations are infinite. In the analysis of a non

homogeneous once redundant structure a coupling parameter D is defined as  where δc

is the compliance of the viscoelastic part, and δe that of the elastic part. For analogy, Dk is named

the modal coupling parameter, and from inspection of Eq. (23) it is seen that has the same structure

as that of D. Like D, Dk near one denotes a situation in which the deformability of the viscoelastic

beam is prevailing, while, if Dk is small, the deformability is larger in the elastic medium.

Because of the linearity of Eq. (25), the solution is cut into two parts, that is . If the
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(31)

Thus, to obtain the problem solution, the integral Eq. (31) must be solved before. On the other

hand, that is not necessary if creep is described by both the hereditary model and the aging model.

By summing up the expressions of Xk and Yk, the analytical solution of Eq. (25) is

(32)

When the creep law is either hereditary or of pure aging type, the varied kernel  is simply

: looking at Eqs. (64), (68) of the Appendix, it is clear that the effect of multiplying by

Dk is to change the parameter ϕ
∞
 (see the Appendix at the foot of Eq. (64)). Hence, the reduced

relaxation function is immediate. The couples  and  are given below for the two basic creep

models 
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(36)

Unfortunately, the product creep laws, such as those that are proposed by some authors and codes

(Aroutiounian 1957, Bažant and Panula 1978, Bažant and Chern 1985, American Concrete Institute

1992, CEB 1984, 1993), do not enjoy this useful property: Eq. (31) has to be solved numerically,

and  results in a numerical form. This is why only the hereditary and aging creep models are

considered here.

If the load is constant in time, Eq. (32) reduces to 
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geotechnical engineering. The equilibrium equation is the same, but a partly different strategy is

necessary as a beam with free ends has rigid motions in its plane. In fact, the eigenfunctions of the

free vibrations of the same beam include the rigid motions, that is

  

(38)

where a0 and a1 are constant with respect to z. The other eigenfunctions have the form

(39)

In Eq. (39) λk are the eigenvalues that are obtained from solving the equation .

The two eigenfunctions of Eq. (38) are not orthogonal to the family (39). 

For that reason the solution is looked for in the form

(40)

 

where the functions  are given by Eq. (39). In order to exploit the expression (40), the load

must be decomposed in three parts, a uniformly distributed load, a linearly varying load, and a non

linearly variable load, that is

(41)

Because of the linearity of Eq. (14), the principle of superposition applies. Thus, the solutions to

the three load parts of Eq. (41) are computed separately, and the global solution is obtained by

summing up them. As regards the first part , which is constant along the z axis but variable in

t, the displacement  must be independent of z. Thus, the solution is clearly

 

(42)

The displacement  is independent of z so that it does not cause any internal force in the

beam, and, hence, any strain; it varies in time only if qm varies. As a consequence, creep strains

cannot develop. Nevertheless, this contribution must be taken into account in the deflection line

This finding is quite analogous to the case of a purely elastic Bernoulli beam on a Winkler soil

subject to a uniformly distributed load q: it has a constant deflection given by  and no

bending moment. 

As concerns with the load q1z, substituting the second term of (40) into Eq. (14), it becomes

(43)

where . Eq. (43) is evidently satisfied by 

(44)

Likewise in the previous case, any internal force and creep effect do not exist. Notice that

Eq. (44) is retrieved by solving the equilibrium equation of an elastic beam resting on a Winkler’s
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foundation subjected to a linearly varying load

By inserting  into Eq. (14), we have

(45)

in which the viscoelastic deflection due to  is denoted by , which is the only

responsible of bending moment, shear and creep effects. Eq. (45) has the same form of Eq. (14):

thus, one has to proceed in much the same way by using the eigenfunctions (39). The solution is

given by Eq. (32). The second and the third derivative with respect to z of the displacement 

yield the bending moment and the shear force, respectively, while, to obtain the total displacement it

is necessary to add the rigid contributions, that is the first and the second term in Eq. (40).

4.3 Beam subjected to partially distributed and concentrated loads

In previous analyses the beam is loaded by a distributed force acting along the whole beam axis. On

the other hand in many cases the load is distributed only on a part of the span, and in the limit it may

be a concentrated force. Thus, it is necessary to extend the previous results to such loading cases.

First, let us consider a constant load q acting from the abscissa a to the abscissa d = a + c (the

Cartesian axes are always those shown in Fig. 1). Mathematically, the load is expressed as 

(46)

This function is expanded in a cosine Fourier series 

(47)

where

(48, 49)
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Fig. 4 Fourier series expansion of a load distributed on 1/16 of the beam span centered at midspan: left
comparison among the expansions with increasing terms (blue 3 terms, green 8 terms, yellow 10 terms,
violet 16 terms, red 20 terms); right twenty term expansion
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The previous expansion is shown in Fig. 4, where both L and q are normalized to 1. It can be

seen that the convergence is lengthy, and not less than 20 terms are necessary to have an acceptable

matching.

A concentrated load in the abscissa z = a can be mathematically described by means of Dirac’s

delta translated in z = a, that is  (Gorman 2008). Its series expansion is

(50)

where (51)

The series (50) converges slower than the series (47), and not less than 30 terms are necessary to

acceptably reproduce the spike. The series (47) can be directly used in both Eqs. (32), (45), and the

term a0 gives the constant part of the load. Viceversa, the series (50) must be subjected to the

decomposition (41) before using Eq. (45). 

5. Applications

The solutions obtained in previous sections for the viscoelastic analysis of a Bernoulli-Navier

beam resting on a Winkler’s medium have been tested considering some examples. Suitable

programs have been written that perform the computations.

The beam (Fig. 5), which is made from concrete, has: L = 10 m, b = 1.00 m, h = 0.50 m, Ec =

35000 Mpa, denoting the beam length, width, height, and elastic modulus, respectively. The soil is

characterized by the elastic parameters, that is the elasticity modulus ES = 35 MPa and the Poisson

ratio ν = 0.3. From Ec and ν the Winkler’s constant k =18.27 MPa is obtained according soil

mechanics principles (e.g., see Bowles 1982). The parameters of the creep laws (Eqs. (63)-(65),

(67)-(69) of the Appendix) are: α = β = 0.0025 (days)−1, ϕ
∞
 = 3.5, t' = t0 = 0 days. In some

examples the length L and the loading instant t' vary.

As regards the beam with restrained ends, these are both hinged (Fig. 5(b)) so that the

eigenfunctions φk in Eq. (15) are  . The load is uniformly distributed

q z( ) P δ z a–( )⋅=

q z( ) P δ z a–( )⋅ bksin
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L
------z

k 1 3 5 …, , ,=

∑= =

bk
2P

L
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kπa

L
---------=

kπz/L( )sin k 1 2 … N, , ,=( )

Fig. 5 (a) Unrestrained beam, (b) hinged-hinged beam, (c) beam cross section 
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taking the value qx = 100000 N/m; it is constant in time and is applied at time t0, which is the

instant of complete drying of the concrete.

A uniformly loaded beam on a Winkler’s soil has no internal forces, and this fact has been

retrieved again in previous sections. Thus, the load on the beam with free ends is variable along the

span. For simplicity’s sake, the loading distribution is given by the sum of a constant part, the dead

load g, and a sinusoidal part in such a way the load is already decomposed according to Eq. (41)

with q1 = 0 

(52)

where g = 12262 N/m,  N/m.

5.1 Hinged-hinged beam with distributed load

The case of a hinged-hinged beam of length L = 10 meters, bearing a uniformly distributed load

will be treated in this section. When the load is applied, the solution is purely elastic, and is given

by the solution the classic differential equation of a beam on a Winkler’s soil (Winkler 1867,

Bowles 1982)

(53)

with boundary conditions . The elastic displacement of the beam

axis and the bending moment diagrams are in Fig. 6, where the negative signs in the graphs are

caused by the plotting routine that has been used as in all the following plots.

Both the hereditary and the aging model have been used in the analyses. The plots deriving from

the hereditary creep model are in Fig. 7. The deformed shape of the beam axis does not change

with time, and the largest deflection has a limited increase what is probably due to the continuous

restraint given by the Winkler medium. On the contrary, the bending moment changes sharply with

time. At loading it is rather flat with a largest value of 170000 N·m about, and it is quite similar to

the elastic solution of Fig. 6. As time passes, the central part of the span is unstressed with a

marked minimum of M, while two peaks form near the supports, which at 10000 days from loading

reach 300000 N·m about, that is a 90% increase with respect to the elastic solution of Fig. 6. This

qx z t,( ) g qM sin
π

L
---z⎝ ⎠
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qM 50000=

EIyyv
4

z( ) kv z( )+ qx z( )=

v 0( ) v L( ) v″ 0( ) v″ L( ) 0= = = =

Fig. 6 Hinged-hinged beam, elastic solution: vertical displacement (m) (left) and bending moment (Nm)
(right) 



606 Claudio Floris and Francesco Paolo Lamacchia

finding is important inasmuch as the safety coefficient of a concrete beam is only a bit larger than 2

(≈2.25 in many cases). Two explanations are possible. First, the deflection and hence its second

derivative, the bending moment, are given by the sum of sinusoidal eigenfunctions each of which

represents a deformed shape of the beam. The development of the viscous deformations causes the

activation of eigenfunctions of higher order that have more inflexion points. A physical explanation

is that the two largest values of M near the supports are caused by the reactive forces in the hinges.

The shear force increases in time in an analogous manner, but its diagram does not change shape. In

general, the displacement pattern is dominated by the first viscous mode, a sinusoid, while more

modes influence the bending moment and the shear force. This is due to the fact that the terms of

the series giving the moment and the shear are multiplied by  and  respectively so

that the weight of the successive modes is larger.

In Fig. 8 there are the diagrams obtained by using the creep aging model. As expected, they look

like the corresponding diagrams of Fig. 7: in fact, the parameters and the loading time are the same.

The effects of the loading time will be analyzed next.

Clearly, the presence and the type of the restraints at the beam ends influence both the

displacements and the diagrams of the internal forces, but the restraint effects become lesser and

lesser as the beam length increases. In order to highlight these effects, the analyses have been

repeated even for L = 5, 20 m, holding the constant in time and space loading distribution equal to

qx = 100000 N/m, being the load applied in t0 = 0. In Fig. 9 there are the time evolutions of the

kπ/L( )2 kπ/L( )3

Fig. 7 Hinged-hinged beam, creep hereditary model: time evolutions of the vertical displacement (m) (top
left), bending moment (N·m) (top right), shear force (bottom), loading at t' = 0; green line t = 0 days,
brown 100 days, blue 1000 days, black 10000 days
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Fig. 8 Hinged-hinged beam, creep aging model: time evolutions of the vertical displacement (m) (top left),
bending moment (N·m) (top right), shear force (N) (bottom), loading at t' = 0; green line t = 0 days,
brown 100 days, blue 1000 days, black 10000 days 

Fig. 9 Hinged-hinged beam with L = 5 m, creep hereditary model: time evolutions of the vertical
displacement (m) (top left), of the bending moment (N·m) (top right), and of the shear force (N)
(bottom), loading at t' = 0; green line t = 0 days, brown 100 days, blue 1000 days, black 10000 days 
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viscoelastic line, the bending moment, and the shear force for L = 5. For L = 20 m the first two

diagrams are reported in Fig. 10.

As regards the short beam, the increase in time of the quantities depicted in Fig. 9 is very marked:

roughly, the increase is a 150% about, which is larger than that of the 10 m long beam. The shapes

of the bending moment and shear force diagrams are more regular: for a short beam the higher

viscous modes are less excited.

The 20 m long beam has a behavior different from those of the other two beams (Fig. 10). The

deflections do not increase in time, and have a limited variation along the most part of the beam

span, which resents the effect of the end restraints little. In the midspan, the displacement

diminishes with time of a small amount. As regards the bending moment, it increases by a 150% in

10000 days when the asymptote of the viscous law is practically reached. There are two maxima

near the supports and three minima along the span, one exactly in the midspan, as expected since

the diagram must be symmetric with respect the midspan. In the vicinity of the minima the bending

moment stretches the upper fibers of the beam.

When the load is applied in t0, the first instant in which the concrete can be loaded, the analyses

performed by using the aging model yield results nearly coincident with those of the hereditary

creep model. The differences between the models are evident only if the load is applied in t' > t0,

when the material has already aged. Hereditary behavior means independence of the instant t' in

which the load is applied, and in any interval ∆t equal viscous strains are developed. After a given

time delay the hereditary model gives the same results, independently from the instant in which the

load begins. On the contrary, aging of concrete means that the farther from t0 is t', the lesser is

creep: hence there are less  viscous effects. Using the aging model, the analyses have been repeated

by varying the instant t' of application of the load: 100, 1000 days after the first instant t0 in which

the beam can be loaded. The diagrams are in Figs. 11, 12, respectively.

Examining the diagrams of Fig. 11, which refer to a load applied after a relatively brief time from

the hardening of concrete, 100 days, notable viscous deformations are still detected, especially for

the bending moment. The increase of the latter is important even if smaller than that for loading in

t0. If the beginning of loading is later (1000 days, Fig. 12), very few viscous deformations develop:

they are negligible with respect to the elastic initial ones, and both the displacements and the

bending moment increase of a very small quantity. This trend cannot be revealed by the hereditary

creep model. 

Fig. 10 Hinged-hinged beam with L = 20 m, creep hereditary model: time evolutions of the vertical
displacement (m) (left), and of the bending moment (N·m) (right), loading at t' = 0; green line t = 0
days, brown 100 days, blue 1000 days, black 10000 days
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5.2 Free-end beam

Now, the unrestrained beam with length L = 10 m is examined. It bears its dead load and a

sinusoidal loading distribution: the former load causes a rigid settlement of the beam without

internal forces, and, hence, no viscous strains. Since a linearly distributed load is absent, in Eq. (40)

 is zero. Thus, the viscoelastic deflection reduces to

(54)

The rigid settlement is easily calculated, and is , being g = 12262.5 N/m.

The variable part of the displacement is obtained by solving Eq. (45) under the sinusoidal load of

Eq. (52); both the hereditary and the aging viscous models are considered.

The plots deriving from the hereditary model are in Fig. 13, where there are the time evolutions

of the viscoelastic displacement, of the bending moment, and of the shear force. In this case, the

first eigenfunction, which is plotted in Fig. 14, is dominant on the other viscous modes as the first

modal load is 36 times larger than the third modal load, being the even modal loads zero. As

v1 z t,( )

v z t,( ) v0 t( ) φk z( ) Vk t( )⋅
k 1=
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∑+=

v0 t( ) g/k 0.0007 m= =

Fig. 11 Hinged-hinged beam with length L = 10 m, aging viscous model, loading in t' = 100 days: time
evolutions of the displacement (m) (left), and of the bending moments (right); deflections and
bending moment at loading (green), 100 days from loading (brown), 1000 days (blue), 10000 days
(black) 

Fig. 12 Hinged-hinged beam with length L = 10 m, aging viscous model, loading in t' = 1000 days: time
evolutions of the displacement (m) (left), and of the bending moments (right); deflections and bending
moment at loading (green), 100 days from loading (brown), 1000 days (blue), 10000 days (black) 
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regards the displacements, already at the application of the load limited portions of the beam near

the ends are subjected to tensile forces that can be transmitted because of the hypothesis of bilateral

restraint. The development of the viscous strains amplifies the deformed line: the largest deflection

increases from 0.0011 m to 0.0015 m, while the parts with tensile forces are enlarged, and the beam

ends rise. Clearly, in real beams the transmission of tensile forces is not possible, but equally the

lateral parts of the beam uplift, which must be avoided in engineering practice.

The bending moment (right plot of Fig. 13) has a more marked increase in time, from 50000 N·m

to 90000 N·m about 10000 days after the loading. The moment diagrams are bell-shaped in any

Fig. 13 Free end beam, creep hereditary model: time evolutions of the vertical displacement (m) (top left),
bending moment (N·m) (top right), shear force (bottom), loading at t' = 0; green line t = 0 days,
brown 100 days, blue 1000 days, black 10000 days

Fig. 14 First eigenfunction of the free-end beam (Eq. (56))
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instant. The variation in time of the shear force (bottom plot of Fig. 13) is quite similar to that of

the bending moment. The shear force diagrams too are regular. Note that at 1000 days after the

loading the final values of all the quantities are nearly reached.

The same analysis has been performed adopting the aging creep model. For t0 = 0 the results

deriving from the aging model are similar to those of the hereditary model, and they are not shown.

The final values of the three quantities under consideration are a few larger, even if the loading time

is the same.

In order to highlight the differences in the responses for loading times t' > t0 = 0, the analyses

have been repeated for t' = 100, 1000 days using the aging model. In Figs. 15, 16 there are the

plots of the displacements and of the bending moment, respectively. When the beam is loaded in

t' = 100 days, viscous strains still develop, so that both the diplacements and the bending moment

increase, more markedly the latter. For loading in t' = 1000 days the viscous strains are small; after

loading the deflected line varies negligibly. On the other hand, the bending moment is still affected

by the creep, and it has a 15% about increase. Similar comments can be made regarding the

evolution in time of the shear force that is not reported for brevity’s sake.

It is evident that the specific features of the diagrams of both the kinematic and static quantities of

a beam depend on the load and the restraints. Thus, not all that has been shown here can be

generalized. On the other hand, some general conclusions can be drawn. If a concrete beam is

Fig. 15 Free end beam, creep aging model: time evolution of the displacement (m) for loading in t' = 100
days (left), and in t' = 1000 days (right); green line t = 0 days after loading, brown 100 days after
loading, blue 1000 days, black 10000 days 

Fig. 16 Free end beam, creep aging model: time evolution of the bending moment (N·m) for loading in t' =
100 days (left), and in t' = 1000 days (right); green line t = 0 days after loading, brown 100 days after
loading, blue 1000 days, black 10000 days 
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loaded in early ages from hardening, there are more viscous deformations, and the hereditary and

aging models for creep are both appropriate, even if the former is perhaps preferable. As the loading

time is delayed, the viscous effects are lesser, what cannot be seized by the hereditary creep model.

Thus, the use of the aging model for creep is compulsory. Moreover, as is can be noted in the

previous plots, the final deflections and internal forces are smaller if the load is applied later.

5.3 Hinged-hinged beam with concentrated load

Now, let us consider a hinged-hinged beam with a concentrated force P in its midspan. In order to

analyze this case, the concentrated force is expanded in a sine series according to Eqs. (50), (51), in

which the first 35 odd terms are retained. Since the load is constant in time, the viscous modes are

given by Eq. (37). In Eq. (15), which expresses the deflection, there are only the odd terms: in fact,

in the expression (20) of the modal loads the integral in the numerator is zero when the

eigenfunction  is even, while it alternately takes the values L/2, −L/2 times the constant

 for every odd eigenfunction. The denominator of Eq. (20) is always worth L/2 so that the

odd modal loads are

, , , (55)

The eigenvalues, kπ/L, the coupling paremeters Dk, and the coefficient , which is worth

19.9553 for any mode, are the same as those of the beam with uniformly distributed load. The
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Fig. 17 Hinged-hinged beam with concentrated load P: viscoelastic diagrams of the displacements (top left)
(m), of the bending moment (top right) (N·m), and of the shear force (bottom) (N) with the aging
model; t = 0 days green, t = 100 days brown, t = 1000 days blue, t = 10000 days black
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computations are performed for P = 1000 kN, while the other parameters are those of the previous

examples. The rheological model is the aging one.

The diagrams of the displacement and of the internal forces are in Fig. 17, where the signs are

opposite to the usual conventions for these quantities because of the computer program used to

draw them. One can note: (1) the viscous deformations cause marked increases of all the quantities;

(2) at 10000 days after loading the deflection increase is a 50%, the bending moment almost

quadruples, while the shear force increase is even larger; (3) the first viscous mode is dominant on

the deflected line, while other two modes are important for both the bending moment and shear

force; (4) the actual load is a concentrated force, which is replaced by a truncated Fourier series,

which is a continuous functions so that the cusp of the bending moment and the jump of the shear

force are absent. Nevertheless, the bending moment diagram is not much far from the actual one.

On the contrary, in order to reproduce the jump, the series (50) should retain much more than the

35 terms that have been used, which would make the computations more involved. However, the

shear values are acceptably matched.

6. Conclusions

This paper is aimed at studying the interaction between a viscoelastic beam and an elastic

medium. Such a type of coupled problem is found in analyzing the foundation beams. The

equations that govern the problem are established basing the analysis on the assumption that the

beam and the medium have a bilateral contact. This assumption is the first requirement to obtain an

analytic solution. This type of solution is pursued as it is considered more suitable even for the

engineering purpose.

From a theoretical point of view the medium that the beam is resting on may have any

constitutive law. However, out of the elastic models an analytic solution is hardly conceivable. The

most relevant elastic models that have been used to idealize a soil are due to Boussinesq and to

Winkler, respectively. Boussinesq’s model idealizes a soil as a homogeneous isotropic linearly

elastic half space: in this way, a force acting in a point on the boundary of the half space causes

effects - stresses, strain, displacements - to the infinity. Viceversa, Winkler’s model is a local one:

the medium becomes an ensemble of elastic springs, ideally being a spring present in any point of

the boundary; the springs are independent so that there is no transmission of shear, and the effects

of a force are localized in the point where this acts. Clearly, in any contact point the respect of the

displacement compatibility is required.

The equilibrium equation of the beam is obtained by combining plane section law with the

uniaxial viscous stress-strain relationship: it results as an integro-differential equation. In the case of

an elastic medium, the compatibility may be expressed in integral form (Eq. (10)) by means of

specific Green functions. Thus, the problem is governed by an integro-differential and an integral

equation. 

The Green’s function of a Winkler's medium is a Dirac delta so that the integral expressing the

compatibility becomes an algebraic expression, which is easily substituted in the beam equilibrium

equation. An analytical solution having the form of an infinite series is found for both the cases of

beam with restrained ends and of free-end beam. The deflection along the beam axis is given by the

eigen-functions of the free vibrations of the same beam, while the variation in time is led by the so

called reduced relaxation function. This function is associated with the varied creep kernel, that is
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the ordinary creep kernel multiplied by a parameter Dk, which measures the relative compliance

between the beam and the elastic medium in the k-th term of the series. The reduced relaxation

function exists in analytical form for both hereditary and aging viscous models, while it results in

numerical form for the creep kernels given by the product of a hereditary function times an aging

one. In any case, the reduced relaxation function decreases with time so that the response increases.

The applications regard a concrete beam resting on a Winkler’s soil. The restrained beam is

hinged-hinged at the boundaries. Otherwise, the beam has free ends. Either hereditary and aging

viscous models have been used in the analyses.

When the load is applied in early ages, it is found that creep causes the displacements and the

internal forces to increase notably in time, which is very important from an engineering point of

view. As the loading time is delayed, the viscous effects become lesser and lesser. The hereditary

model cannot seize this behavior since the material properties are constant in time in this model.

Thus, if the load is applied in advanced times, the use of the aging creep model is compulsory.

However, by assuming the elastic modulus constant in time as it is customarily made, the

computations are not more involved with respect to those of the hereditary model. In both cases, all

formulae are analytic, and can be easily evaluated on a personal computer. The computations are

longer and more involved only in the case of concentrated or partially distributed loads, particularly

when the beam has free ends because such loads must be expanded in Fourier series, many terms of

which are to be retained. 
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Appendix - Recalls on the viscosity

For the reader’s convenience, the fundamental principles of the linear viscosity are recalled. Papers and
books on the viscoelasticity are very numerous: reference can be made to Aroutiounian (1957), Nowacki
(1970), Creus (1985), Bažant (1988).

As an isotropic elastic continuum is characterized by two constants, the Young’s modulus E and the Poisson
ratio ν or the Lamé’s constants λ and µ, an isotropic viscoelastic continuum is characterized by two functions,
which are the volumetric  and the deviatoric  creep functions. In engineering notation, these
functions can be replaced by the uniaxial creep function  and the viscous Poisson ratio .
Clearly, in the case of a homogeneous and isotropic beam, these two functions are required even though the
plane section law is assumed, and the shear deformability is disregarded. However, for many materials exhib-
iting creep the Poisson ratio can be considered independent of time as will be assumed here. For concrete this
statement holds true if the water content has negligible changes in time (Bažant 1988). Under this assumption,
the viscous properties are fully characterized either by the creep (compliance) function J(t, t') or by the relax-
ation function R(t, t'), where: 

- J(t, t') represents the strain per unit stress, i.e., the response at time t to a sustained constant unit imposed
stress applied at time t'; 

- R(t, t') is the stress response at time t to a sustained constant unit imposed strain applied at time t'.
Hence, the stress-strain relationships for constant stress or strain are written as 

 (56, 57)

The functions J(t, t') and R(t, t') are not independent: were they independent, the hypothesis of viscous
properties described by only a function would be contradicted. They are related by a Volterra integral equation
that can be expressed in the following equivalent forms 

(58)

(59, 60)

If the applied stress or strain is variable in time, in the linear theory of viscoelasticity the superposition
principle in time is postulated. Thus, the strain or the stress at time t for loading starting in t0 are, respectively

(61)

(62)

where εn(t) is a stress-independent inelastic strain such as shrinkage or thermal strain;  and  are the
initial values for t' = t0 of the stress or the strain, respectively.

As a principle, the function J (or R) should be established on the basis of experimental measurements pre-
serving some thermodynamical requirements. However, these models have some shortcomings, and in engi-
neering practice is often customary to use two theoretical models, the hereditary model (Kelvin-Voigt) and the
aging model (Krall-Dishinger-Whitney).

In the hereditary model the elastic and rheological properties of a material do not vary in time so that the
elapsed time (t − t') only determined the response. The principal functions of this model are 

(63)

(64)
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(65)

In previous equations a measures the creep velocity (s-1 or days-1), while ϕ
∞
 is ratio between the final

viscous strain (t = ∞) and the initial elastic strain . L(t, t') is defined as the viscous kernel.

Analogously, a relaxation kernel is given by .

In Fig. 18 the two fundamental features of the hereditary model are shown: (1) the creep curves are parallel
in horizontal; (2) if a stress σ0 is applied in t0 and removed in t, in this instant the elastic strain  is
recovered, then the creep strains developed between t0 and t are gradually recovered, and for t =  the
material is unstrained (due to the exponential behavior of the functions (66)-(68) zero strain is practically
reached in a finite time).

In the classic aging model it is assumed that the curves giving the viscous strains for different loading
instants  are parallel in vertical (Fig. 19, left), that is

(66)

where the function  gives the viscous strain for unit applied stress. As a consequence of this hypothe-
sis the kernels depend on t' only and not on t, while t0 becomes a parameter, the first instant in which the
material can be loaded.

The principal function of the classic aging model are 

(67)

(68)

(69)
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Fig. 18 Loading curve (left) and loading-unloading curve (right) of the hereditary model (left)

Fig. 19 Loading (left) and loading-unloading (right) curves for the aging viscous model
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In Eq. (67) E0 is a reference value of the elastic modulus. Very often in the applications the variability in
time is disregarded, and a constant value E of the elastic modulus is used as in Eqs. (68), (69). If the material
is loaded in t0, the changes in Eqs. (67)-(69) are straightforward.

In the right plot of Fig. 19 a fundamental feature of the aging model is depicted: if an aging visco-elastic
material is subjected to a loading path with the application of σ0 in t0 and the removal of it in t1, in this
instant the elastic strain σ0/E(t1) is recovered. Since the creep curves are parallel in vertical, after t1 the strain
remain constant, which means that the aging viscous model is viscoplastic.

On the other hand, the real materials show neither a purely hereditary behavior or a purely aging one, but
they behave in an intermediate fashion. Thus, after removing the stress qualitatively the strain changes like in
the dashed curves of Fig. 19 (right). In order to seize the actual behavior of the materials, since many years
the so-called viscous product models were proposed (Aroutiounian 1957, Bažant and Panula 1978, Bažant and
Chern 1985, American Concrete Institute 1992, CEB 1984, 1993). They have the form 

(70)

in which Jh is a hereditary function and Ja an aging one. Unfortunately, none of the product models leads to
an analytical solution of the integral Eqs. (58)-(60), which results in numeric relaxation functions. A numeric
R(t, t') is not suitable for engineering computation: thus, the classic hereditary and aging models are still in
use, and in the final step of the present theoretical study reference is made to them.

J t t′,( )
1

E t′( )
------------ 1

E t′( )
------------Jh t t′–( ) Ja t′( )⋅+=




