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Abstract. Comprehensive and accurate analysis of a finite foundation beam is a challenging
engineering problem and an important subject in foundation design. One of the limitation of the
traditional Winkler elastic foundation model is that the model neglects the effect of the interface resistance
between the beam and the underneath foundation soil. By taking the beam-soil interface resistance into
account, a deformation governing differential equation for a finite beam resting on the Winkler elastic
foundation is developed. The coupling effect between vertical and horizontal displacements is also
considered in the presented method. Using Galerkin method, semi-analytical solutions for vertical and
horizontal displacements, axial force, shear force and bending moment of the beam under symmetric loads
are presented. The influences of the interface resistance on the behavior of foundation beam are also
investigated. 

Keywords: foundation beam; Winkler model; deformation-coupling; interface resistance; nonlinear anal-
ysis; Galerkin method.

1. Introduction

Various engineering construction problems can be modeled as beams resting on elastic supports,

so the theory for a beam on an elastic foundation is used widely in engineering, such as

construction foundations, roadbed, railway and various pipelines (Ghosh and Madhav 1994,

Cojocaru et al. 2003, Iimura 2004, Mallik et al. 2005, Zhang et al. 2009). 

More recent work has been undertaken on the study of a beam on an elastic foundation from

different aspects and many theoretical methods have been proposed (Aydogan 1995, Huang and Shi

1998, Onu 2000, Zhang and Murphy 2004, Hsu 2005, Ruge and Birk 2007, Sato et al. 2007,

Fabijanic and Tambaca 2009, Kim 2009). The Winkler elastic foundation model and the Pasternak

shearing model are the two simple foundation models used extensively to analyze the complicated

beam-soil interaction problems. The Winkler elastic foundation model (Winkler 1867) is the one-
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parameter model based on pure bending beam theory. This model consists of infinitely many closely

spaced but separate linear springs, has an advantage in obtaining fast solutions to the complicated

structure-soil interaction problems, but has a limitation on representing the continuity of the soil

deformation. The Pasternak shearing model (Pasternak 1954) is the two-parameter model based on

the assumption of pure shear of the beam. In the Pasternak model, the interactions between the

springs are considered, but no bending is taken into account and the vertical displacement of the

beam is totally controlled by shear deformation.

Both the Winkler model and the Pasternak model do not consider the influences of interface

resistance between beam and the soil below and the beam bending moment. However, recent studies

demonstrate that the influence of this beam-soil interface resistance on the behavior of the beam

should not be neglected. Tan (1997) proposed the partial solution of the infinite beam on elastic

foundation with consideration of the effect of the interface resistance between the beam and the soil

below. The study indicated that the interface resistance was indispensable when assess the response

of the foundation beam under applied loads. Zhou and Du (2004) developed a modified Winkler

foundation model by employing an individual elastic horizontal spring system into beam-soil

interaction system. Zhao et al. (2008b) and Zhang et al. (2009) proposed power-series semi analytic

solutions for a finite geocell reinforced beam on Winkler foundation with consideration of the effect

of the horizontal resistance. On the assumption that no coupling effect was existed between

horizontal and vertical displacements, Zhao et al. (2008a, 2009a) presented a fractional-steps method

for a foundation beam with taking the influence of the beam-soil interface resistance into account.

Furthermore, Yin (2000a, b) presented governing ordinary differential equations for a reinforced

Timoshenko beam on an elastic foundation. An analytical solution for a reinforced beam subjected to

a point load, closed solutions for the beam subjected to any pressure loading, and a particular

solution for uniform pressure loading at any location of the beam were obtained. But among all the

above methods, less attention is paid to consider the nonlinear deformation characteristic and vertical-

horizontal coupling of deformation of the beam. Based on the Euler-Bernoulli theory with taking the

geometric nonlinearity of the beam into account, Zhao et al. (2009b, c) proposed a method to assess

of the behavior of an elastic foundation beam under various applied loads.

The purpose of this study is to show the beam-soil interface resistance effect on the behavior of a

finite beam on an elastic foundation. A coupling governing differential equation in terms of beam

deformation is established. The Galerkin method is introduced to obtain solutions for the internal

forces and displacements of the beam subjected to symmetrical applied loads.

2. Basic equations

The analysis model of a finite beam resting on a Winkler elastic foundation with length l, width b,

height h and elastic modulus E is illustrated in Fig. 1. The beam is subjected by symmetric loads

including distributed loads q and concentrated loads P, The horizontal and vertical soil reactions qx

and qz are expressed as

(1)

where kx and kz are the coefficients of horizontal and vertical soil reactions, respectively. Negative

qx kxu–=

qz kzw–=
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sign here implies that the direction of the force and the displacement is opposite.

Based on the basic hypothesis of the Euler-Bernoulli theory, the expressions of horizontal and

vertical displacements u and w are as follows 

(2)

where u0(x) and w0(x) are the horizontal and vertical displacements on the neutral axis of beam,

respectively.

Substituting Eq. (2) into Eq. (1), the expressions of qx and qz become

(3)

By using the Euler-Bernoulli theory extending to problems involving moderately large rotations

provided that the strain remains small, the horizontal strain εx of the beam is 

(4)

where  is the strain on the neutral axis of beam; and χ is a nonlinear coefficient, if geometric

nonlinearity of the beam is taken into account, χ = 1, otherwise, χ = 0.

For an elastic material, following relationship is existed

 (5)

where σx is the horizontal stress of beam.

Substituting Eq. (4) into Eq. (5) gives
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Fig. 1 Schematic illustration of foundation beam model



576 L. Zhang, M.H. Zhao, Y. Xiao and B.H. Ma

The relationships between the internal force and the stress at the cross section of the beam are

(7)

where A is the cross-sectional area of beam; N is the axial force of beam with pulling force as

positive; and M is the bending moment of beam.

Substituting Eq. (6) into Eq. (7) gives

(8)

where S and I are the static moment and inertia moment revolved around axis y, respectively. Since

x-axis is a centroidal axis, so S = 0, then Eq. (8) can be reduced to 

(9)

All forces from the x-cross section to the right end of the beam are illustrated in Fig. 2. The

relationship among the internal forces (such as axial force N, shear force Q and bending moment M)

and external loads (such as distributed load q, concentrated load P, soil reactions qx and qz) are
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Fig. 2 Right part of the beam from x-cross section with all internal and external forces
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shown as follows

(10)

Assuming that the displacements u0 and w0 own the following functions, respectively 

(11)

where  and Wm are the displacement vectors to be determined; and  and  are

displacement shape factors.

Substituting Eqs. (10) and (11) into Eq. (9) yields the governing differential equations of the beam

as follows 

(12)

(13)

Substituting the second equation in Eq. (11) into the second equation in Eq. (10) and considering

force equilibrium in z direction, the following equation can be obtained 

(14)

Eqs. (12) to (14) are the basic governing equations of the beam in the terms of displacement

functions.
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3. Boundary and continue conditions

According to the symmetry, the horizontal displacement u0 and rotation angle θ ( ) at

the mid point x = 0 are both zero. In this study, only the beam with free-ends is considered, so the

axial force N and bending moment M at the beam right end x = l/2 are both zero too. Then, the

following boundary conditions are existed

and (15)

where P0 and Pl are the concentrated loads acting at the points x = 0 and x = l/2, respectively. If

there is no concentrated load acting at any of these two points, the corresponding concentrated load

is zero. For example, if there is no concentrated load at the point x = 0, then, P0 = 0.

Based on the concept of Euler-Bernoulli theory, the deformation of the beam at every point is

continuing.

4. Solutions of equations

4.1 Assumptions of shape functions

In order to get higher calculation accuracy, the displacement shape factors  and  are

assumed to be expressed by a function combined with hyperbolic functions and trigonometric

functions as shown below 

(16)

where αm and βm are the undetermined coefficients. As the trial functions in Eq. (11) should satisfy the

above boundary and continuity conditions, the following transcendental equation can be obtained 

(17)

where

 (18)

An approximate solution of Eq. (17) is given below

 (19)

4.2 Solutions of equations by using Galerkin method
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(20)

(22)

It is observed that Eqs. (20) to (22) are too complex to solve directly. The Galerkin method is

employed herein to solve this equation system. And the kth step of the Galerkin method is

introduced as follows.

(1) Multiplying every term in Eq. (20) by the primary function , and integrating in the range

of , the following matrix expression can be obtained 

(23)

where, {U} and {W} are  matrices; B and C(k) are  matrices with elements shown

below

(24)

where

(25)
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The superscript (k) in C(k),  and  means these matrixes or matrix elements are obtained

in the kth iteration step; the superscript “ ” in , which is a part of the integrand

function in second equation in Eq. (26), means the value of Wn can be obtained in the previous (k-1)th

iteration step.

(2) Multiplying every term in Eq. (21) by the other primary function  and integrating in

, the following matrix expression can be obtained 

(27)

where, g and d are  matrices; T and  are  matrices; elements in g, d, T and  are

(28)

where

(29)
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The superscripts (k) and  have the same meanings as explained above.

(3) Transforming Eq. (22) into

(30)

where H is a  matrix with element ; and

(31)

Combining with Eqs. (23), (27) and (30), the following system with 2m + 1 equations in the kth

iterative step is derived

(32)

The elements in the above matrix equation with the superscript (k) means the values of these

elements should be regenerate in every iterative step, while the other elements without the

superscript (k) means the values of these elements remain constant in every iterative step. 

Then the 2m + 1 numbers of undetermined coefficients as  can

be determined by the above equations set Eq. (32). The detailed iterative step to obtain

 through solving the nonlinear equations set Eq. (32) is

introduced as follows:

(1) In the first iterative step, . Assuming  in (shown in Eq. (29)) and

 in ,  and   (shown in Eqs. (26) and (29), respectively) are zero,

and substituting , ,  and  with  and 

into Eqs. (24) and (28) obtains  and , respectively. Then substituting  and

 into Eq. (32) and solving Eq. (32), obtains  in the first

iterative step, and designates them as {U(1)},  and {W(1)}.

(2) In the second iteration step, , substituting , {U(1)},  and {W(1)} into
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(3) The rest may be deduced by analogy, until the following inequalities

 (33)

are satisfied, where ζ is an assumed convergence error.

If in the kth step, the above inequalities set (33) are satisfied, then, {U(k)},  and {W(k)}  are

the desired values. 

5. Calculation of deformations and internal forces

Substituting U1, U2, 
…, Um, W0, W1, W2, 

…, and Wm from the matrices {U(k)}, {W0
(k)} and {W(k)}

into Eq. (11), the displacements u0(x, z) and w0(x) of beam can be obtained. Substituting these

displacements into Eq. (2), the displacements at any point of the beam can be obtained. Then,

substituting the expressions of u0(x, z) and w0(x) into Eq. (10), the internal forces including the axial

force, N, shear force, Q, and bending moment, M, at any cross-section of beam can be obtained.

A computer program based on the above equations has been developed to obtain the final

solutions.

6. Numerical validation of analysis

6.1 Case 1

In order to validate the solutions proposed in this paper, the same beam shown in Fig. 3 and

analyzed by a finite element method (FEM) proposed by Ma and Ai (2002) were employed herein.

The detailed information about the FEM in Ma and Ai’s study can be found in Appendix A. The

analysis foundation beam is 29.0 m long, 3.0 m wide, 1.0 m high, and the other parameters were

chosen to be the same as those in Ma and Ai’s study and they are: flexural rigidity EI = 5.125 × 106

kN·m2; horizontal coefficients of foundation reaction kx = 7.5 × 103 kN/m3; and vertical coefficients

of foundation reaction kz = 5 × 103 kN/m3. In the performed numerical computations of current

method, to minimize the numerical errors, a convergence study has been carried out and it has been

observed that the results converge for the number of displacement vectors, m, equal to or greater

than 10. When m increases from 10 to 11, the maximum difference of the approximation results is

less than 10−3, which can be accepted by engineers. Hence, in the following studies the number of

vectors, m, has been taken as 11. The comparisons of nodes deformations, shear forces and

moments derived from the present method with those from the FEM (Ma and Ai 2002) are shown

in Figs. 4-6. The results also compared with those obtained from the classical method for the elastic
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beam on Winkler foundation (Long 1981, shown in Appendix B).

From Tables 1-3, it is obvious that when the beam-soil interface resistance is not taken into

account, the results obtained from the present method are much closer to the results from the

classical method (Long 1981) for the beam on elastic foundation, than the results obtained from the

FEM proposed by Ma and Ai (2002). That is because the FEM (Ma and Ai 2002) derived from the

Fig. 3 Elastic foundation beam with loads on it

Fig. 4 Right half of a foundation beam under a concentrated load in the mid-span

Fig. 5 Relationship between P and w0 Fig. 6 Relationship between P and M0
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analysis of a line element, the element deformations and internal forces are expressed by the nodal

deformations and forces. A small segmentation is needed for high calculation accuracy. If the

Table 1 Comparison of node deformations with existing methods /mm

Calculation methods A B C D E

without resistance

Long’s method/w1 12.84 13.62 14.69 16.76 16.79

Ma’s method/w2 13.16 13.66 13.60 18.02 16.65

Present method/w3 12.95 13.67 14.67 16.72 16.77

(w2 − w1)/w1 (%) 2.49 0.29 -7.42 7.52 -0.83

(w3 − w1)/w1 (%) 0.86 0.37 -0.14 -0.24 -0.12

with resistance

Ma’s method/w2' 13.18 13.68 13.61 17.99 16.62

Present method/w3' 13.12 13.80 14.71 16.62 16.60

(w2' − w3' )/w3'  (%) 0.46 -0.87 -7.48 8.24 0.12

(w3' − w3)/w3 (%) 1.31 0.95 0.27 -0.60 -1.01

Table 2 Comparison of shear force of node point with existing methods /kN

Calculation methods A B/left B/right C D/left D/right E

without 
resistance

Long’s method /Q1 0 496.9 -725.1 118.8 1064.8 -1011.2 0

Ma’s method/Q2 0 505.7 -716.3 81.3 1032.7 -1043.3 0

Present method/Q3 0 499.7 -722.3 121.9 1066.5 -1009.5 0

(Q2 − Q1)/Q1 (%) - 1.77 -1.21 -31.57 -3.01 3.17 -

(Q3 − Q1)/Q1 (%) - 0.56 -0.39 2.78 0.17 -0.18 -

with
 resistance

Ma’s method/Q2
' 0 506.5 -715.5 83.6 1034.6 -1041.4 0

Present method/Q3
' 0 505.6 -716.4 134.3 1076.4 -999.6 0

(Q2
' − Q3

' )/ Q3
'

 (%) - 0.18 -0.13 -37.75 -3.88 4.18 -

(Q3
' − Q3

) /Q3 (%) (%) - 1.18 -0.82 9.99 0.92 -0.97 -

Table 3 Comparison of node moments with existing methods /kNm

Calculation methods A B C D E

without 
resistance

Long’s method /M1 0 614.9 -617.9 1705.4 -315.5

Ma’s method/M2 0 627.8 -635.7 1495.1 -555.7

Present method/M3 0 461.9 -657.3 1452.5 -336.2

(M2 

− M1)/M1 (%) - 2.1 6.38 -12.33 76.13

(M3 − M1)/M1 (%) - 24.49 10.82 -14.83 6.56

with 
resistance

Ma’s method/M2' 0 626.6 -629.5 1487.0 -552.3

Present method/M3' 0 479.3 -621.2 1400.7 -365.3

(M2' − M3' )/M3' (%) - 30.73 1.34 6.16 51.2

(M3' − M3)/M3 (%) - 3.77 -5.49 -3.57 8.66
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segmentation isn’t small enough, high errors will be existent in some points. However, excluding

these special nodes with the some differences, when the beam-soil interface resistance is taken into

account, the results derived from the present method and the results from Ma and Ai’s FEM are

close.

In addition, from Tables 1-3, comparing the deformations, the shear forces and the moments with

and without consideration of the beam-soil interface resistance, it is found that the interface

resistance has an effect on the deformation, shear force and moment of the beam. Compared with

the results without consideration the beam-soil interface resistance in the current method, the

maximum differences are 1.31% for the deformation, 9.99% for the shear force and 8.66% for the

node moment, respectively.

6.2 Case 2

In order to have a further study about the beam-soil interface resistance effects on the behavior of

foundation beam, a finite beam, as shown in Fig. 4, with length of 29.0 m, width of 3.0 m, height

of 1.0 m and flexural rigidity of 5.125 × 106 kN·m2, under a concentrated load P0 = 2000 kN in the

mid-span is applied to investigate the relationships of kx~w0, kx~M0, kx~w and kx~M. Due to the

symmetric, only the right half of the beam was chosen to analysis. The geometric nonlinearity of

the beam is also taken into account, namely, in the calculation χ = 1.

6.2.1 Relationships among w0, M0 and P0

The vertical foundation coefficient kz is chosen as 1 × 104 kN/m3 and the horizontal foundation

coefficient kx has two values, kx1 = 0 and kx2 = kz. Figs. 5 and 6 illustrate the relationships among

the mid-span displacement w0, the mid-span bending moment M0 of beam and the concentrated load

P0 with different cases.

When kx1 is 0, the beam-soil interface resistance is zero according to the assumption shown in the

first equation in Eq. (1). Then, the problem investigated in this paper is reduced as the original

elastic foundation beam problem without consideration of the beam-soil interface resistance. As

shown in Figs. 5 and 6, when kx1 = 0, the mid-span deformation w0 and the mid-span bending

moment M0 of the foundation beam increase linearly with the increase of P0. But when kx2 = kz, the

displacements in x and z directions are coupled. And the relationships among P0~w0 and P0~M0 are

non-linear with consideration of the beam-soil interface resistance.

Moreover, as shown in Figs. 5 and 6, the curves of P0~w0 and P0~M0 with consideration of the

beam-soil interface resistance are both under the ones without consideration of the beam-soil

interface resistance. It indicates that the beam-soil interface resistance has weakening effects on the

values of the mid-span deformation and the mid-span bending moment of foundation beam.

6.2.2 Relationships among w0, M0, kx and kz

Three different vertical coefficients of the foundation reaction are chosen to analyze, they’re

kz1=1×103 kN/m3, kz2=1 × 104 kN/m3 and kz3=1 × 105 kN/m3, respectively. Introducing the following

non-dimensional parameters 

which denote the degrees that the weakening effect of beam-soil interface resistance on the values

ζw

w0

w0 max,

--------------= ,  ζM

M0

M0 max,

---------------=
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of w0 and M0, respectively. 

The variations of ζw and ζM along with the variation of the horizontal coefficient of the foundation

reaction kx are shown in Figs. 7 and 8.

From the definitions of ζw and ζM, it can be found that when ζw or ζM is smaller, the weakening

effect of horizontal resistance on the values of w0 or M0 is larger. The maximum values of w0,max

and M0,max in each curve in Figs. 7 and 8 are the w0 and M0 corresponding to log10(kx) = 0 kN/m3

(namely, kx = 1 kN/m3).

As can be seen from Figs. 7 and 8, both ζw and ζM decrease with the increase of kx, indicating

that the weakening effect of horizontal resistance on the values of w0 and M0 increases with the

increase of the resistance value. For kx < 1 × 103.4 kN/m3 and 1 × 103 kN/m3 < kz < 1 × 104 kN/m3, ζM

increases with the increase of kz, this means the effect of horizontal resistance on the value of M0

increases with the resistance value increasing. But for kx < 1 × 103.4 kN/m3 and 1 × 104 kN/m3 <

kz < 1 × 105 kN/m3 or kx > 1 × 103.4 kN/m3, ζM decreases with the increase of kz. This implies that the

horizontal resistance effect on the value of M0 decreases with the resistance value increasing.

Therefore, it can be concluded that for kx > 1 × 103.4 kN/m3, the stronger the foundation soil body is,

or the rougher the interface between the beam and the foundation soil below is, or the bigger the

horizontal resistance is, the greater the horizontal resistance effect on the internal force and the

deflection of the foundation beam is.

6.2.3 Relationships among w0, M0 and kx/kz

The vertical foundation coefficient kz is chosen as 1 × 104 kN/m3 and the effect of the ratio of the

horizontal foundation coefficient to the vertical one kx/kz on w0 and M0 are determined as shown in

Fig. 9.

From Fig. 9, w0 and M0 have the same change trend with the increase of kx/kz, and their values

both decrease with the increase of kx/kz. In addition, when 0 < kx /kz < 0.5, the values of w0 and M0

decrease quickly with kx /kz increasing; when 0.5 < kx/kz < 1.25, the values of w0 and M0 decrease

relative slowly with kx /kz increasing.

Fig. 7 Relationship between ζw and kx for different kz Fig. 8 Relationship between ζM and kx for different kz
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6.2.4 Relationship among w, M and kx

The vertical foundation coefficient kz is 1 × 104 kN/m3, the horizontal foundation coefficient has

three different values, kx1 = 0, kx2 = 0.5kz and kx3 = kz. Figs. 10 and 11 illustrate the deflection and

bending moment of foundation beam with different horizontal foundation coefficients.

As shown in Figs. 10 and 11, the horizontal foundation coefficient has a great effect on the

moment and deformation of the beam. Greater the horizontal foundation coefficient is, greater the

effect of the resistance between beam and the soil below on the behaviors of beam is. 

7. Conclusions

In this paper, by using an iterative Galerkin method, semi analytical solutions for the

deformations, axial force, shear force and bending moments of a finite beam resting on Winkler

foundation have been presented with consideration of the interface resistance between beam and the

Fig. 9 Relations of ζw~kx/kv and ζM~kx/kz

Fig. 10 Relationship between w and kx Fig. 11 Relationship between w and kx
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foundation soil below. The coupling effect between vertical and horizontal displacements was also

taken into account to obtain the solutions. A traditional Winkler elastic foundation theory and a

finite element method were employed to verify the validity of the present solutions. In addition, the

influences of the interface resistance on the behaviors of beam have been investigated. From the

investigation, the following conclusions can be obtained: 

(1) The beam-soil interface resistance has no effect on the development and change trends of

bending moment and deformation of foundation beam, but has a weakening effect on their values.

(2) The larger value of the beam-soil interface resistance is, the greater weakening effect of the

resistance on the internal forces and deformations of foundation beam is.

(3) The bending moment and deformation of beam decrease with increasing of kx/kv .

(4) It is suggested that the effect of the beam-soil interface resistance should be taken into account

in engineering for economical and optimal designs, especially in the case that the contact face

between the beam and the soil bed below is rough.
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Appendix A

In the finite element method (FEM) conducted by Ma and Ai’s study (2002), the line element ij as shown
in Fig. A.1 was employed to analysis. The displacements of the element can be expressed by

(A.1)

where u and w are the horizontal and vertical displacements on the neutral axis of the beam, respectively; Nj

(j = 1, 2,…, 6) are the shape factors with the values: ; , ;

;  is the nodal deformations, ; and θ is the

rotation angle of the beam.
Then, the relative horizontal displacement at the beam lower side is

(A.2)

where .

Assuming the horizontal friction  has a linear relationship with the horizontal displacement ∆u, namely,
, then

(A.3)

where kx is the horizontal coefficient of the soil reaction.
By applying the virtual work principle, the following equation is obtained

(A.4)
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Fig. A.1 Elastic foundation beam element in Ma and Ai’s study (2002)
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where  is the virtual displacement;  is the nodal force vector of the element ij, , Mi

Nj  Qj  Mj] ; and  is the corresponding virtual strain.
Substituting  (where [Ke] is the element stiffness matrix),  and Eq. (A.3)

into Eq. (A.4) obtains

(A.5)

Then, the element stiffness matrix which considers the contact friction effect was deduced:

(A.6)

Adding this stiffness matrix into the common stiffness matrix, , used in the common bar-system finite
element method obtains a new stiffness matrix 

(A.7)

The other steps are the same as those in the common bar-system finite element method, only need to substi-
tute  by  in the calculation.

Appendix B

The solutions for the deformation w, bending moment M and shear force Q of a finite beam (Fig. B.1)
derived from the classical theory for the Winkler elastic foundation beam (Long 1981) are shown as follow.
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For ,

For ,

In the above equations, wa, θa, Ma and Qa are the deformation, rotation angle, bending moment and shear
force at the left end point of the beam; EI is the flexural rigidity of the beam ; ; kv is the
vertical foundation coefficient; φ1~φ4 are Krannov functions with expressions as below

x1 x x2≤ ≤

 

x1 x l≤ ≤

 

δ kvb/4EI4=

 

Fig. B.1 Finite beam under discretional concentrated loads 




