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Abstract. Uncertainty in concrete properties, including concrete modulus of elasticity and modulus of
rupture, are predicted by developing a microstructural homogenization model. The homogenization model
is developed by analyzing a concrete representative volume element (RVE) using the finite element (FE)
method. The concrete RVE considers concrete as a three phase composite material including: cement
paste, aggregate and interfacial transition zone (ITZ). The homogenization model allows for considering
two sources of variability in concrete, randomly dispersed aggregates in the concrete matrix and uncertain
mechanical properties of composite phases of concrete. Using the proposed homogenization technique, the
uncertainty in concrete modulus of elasticity and modulus of rupture (described by numerical cumulative
probability density function) are determined. Deflection uncertainty of reinforced concrete (RC) beams,
propagated from uncertainties in concrete properties, is quantified using Monte Carlo (MC) simulation.
Cracked plane frame analysis is used to account for tension stiffening in concrete. Concrete
homogenization enables a unique opportunity to bridge the gap between concrete materials and structural
modeling, which is necessary for realistic serviceability prediction.
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1. Introduction

Prediction of deflection in reinforced concrete (RC) structures is a critical requirement for
satisfactory performance of concrete members. Many researches (Jokinen and Scanlon 1985,
Gardner 1990, Ghali et al. 2000) have discussed the difficulty to improve accuracy of models that
estimate deflection of concrete structures. Branson’s approach (1977) has been accepted as the basis
for calculating a reduced concrete stiffness of a cracked concrete section to estimate immediate
deflection and long-term deflection. In spite of the critique to the approach for its incapability to
capture concrete deflection with accuracy (Gilbert 1999, Ghali and Azarnejad 1999, Reda Taha and
Hassanain 2003), both the American Code ACI 318-08 (2008) and the Canadian Code CSA A23.3-
MO04 (2004) utilize this approach. Many researchers have also shown and recommended the use of
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the mean curvature method to yield more accurate deflection predictions. The mean curvature
method was adopted by the well-known CEB-FIP Model Code 90 (MC-90) (1993).

Since deflection of RC beams is affected by concrete properties, by directly affecting the
structural stiffness of the element and by indirectly defining the moment redistribution due to
cracking, it is important to incorporate uncertainty of concrete properties in deflection calculations
for robust prediction of RC deflection. Researchers have suggested the need to consider uncertainty
in modeling concrete properties related to deflection prediction. Zundelevich et al. (1974) applied
the principles of error propagation to predict the variation in the final deflection of prestressed
concrete elements using separate measures of the elastic and the long-term deflections at different
loading stages. The study showed that a measured coefficient of variation (COV) of 12% in time-
dependent deflection resulted in COV of 10% in the total deflection. Thompson and Scanlon (1988)
noted that code deflection computations would only provide an estimate of the mean deflection. The
probability to exceed this mean deflection would be about 50% if normal distribution of slab
deflection was assumed. Fling (1992) showed that concrete properties incorporated in deflection
calculation (i.e., modulus of elasticity, modulus of rupture, and time-dependent parameters) have
wide scatter in their values. Scanlon and Pinheiro (1992) compared the current deterministic
approach to deflection control to a probabilistic approach for design for safety. They suggested that
the best practical probability limit can be generated using a measure of the associated damage to
serviceability due to excessive deflections. Reda Taha and Hassanain (2002) showed that a 20%
uncertainty of cracking strength can result in 30% uncertainty in predicted short term deflection.
Choi et al. (2004) applied Monte Carlo simulation to evaluate the variability of deflections due to
uncertainty in material properties and dimensions involved in the computation of deflections. The
researchers showed that a wide variation range of deflection exists as a result of the variability in
design parameters, applied moment/cracking moment ratio, reinforcement ratio and live load/dead
load ratio. Kim and Reda Taha (2009) examined the propagation of random uncertainties in
deflection of a continuous one-way RC slab from uncertainties in modulus of elasticity and modulus
of rupture and showed that robustness to uncertainty can be used as a measure to examine the
significance of modeling parameters.

The properties of concrete, including compressive strength, modulus of elasticity and modulus of
rupture, have a relatively large variation as compared with other structural materials due to the
inherent uncertainty in concrete microstructure. As a composite material, concrete characteristics
might be determined by numerical simulation using composite homogenization techniques.
Composite homogenization is based on realization of the interaction of the microstructure
constituents to predict composite properties. A number of homogenization techniques to model
particulate composites have been developed (Ju and Chen 1994, Torquato 2002, Jain and Ghosh
2008, Qui and Li 2009, Vorel and Sejnoha 2009, Kim and Muliana 2010, Milani and Benasciutti
2010, Kalali and Kabir 2010). The homogenization process is developed by selecting a
representative volume element (RVE) of the composite microstructure to simulate the mechanical
characteristics of the composite. The RVE satisfies the scale separation principle (Bear and Bachmat
1990) that the characteristic length of the heterogeneity is less than the characteristic size of the
RVE. The basic premise of modeling the RVE is to utilize a robust averaging technique to
determine apparent and intrinsic properties of the composite materials (Dormieux et al. 2006). It is
proposed that this RVE would rather be considered a statistical volume element (SVE) due to
stochastic aspect of RVE (Ostoja-Starzewskib 2006).

In this study, uncertainty in deflection of RC beams, which are propagated from uncertainties of
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concrete characteristic properties, is quantified using Monte Carlo (MC) simulation. The variations
of concrete properties including concrete modulus of elasticity and modulus of rupture are predicted
from a homogenization model considering randomly dispersed aggregates in concrete with uncertain
mechanical characteristics of the microstructural phases of concrete. A concrete RVE is developed
using the finite element (FE) method. The proposed RVE recognizes concrete as a three phase
composite material incorporating cement paste, aggregate and interfacial transition zone (ITZ). It is
important to note that the RVE used in this study is limited to extract the macro properties of
concrete, which are modulus of elasticity and tensile strength. The deflection calculation is predicted
using cracked plane frame analysis. As a result, a variation in deflections on RC beams is quantified
by probabilistic analysis with the random concrete properties extracted from RVE. Moreover, it can
be realized that concrete homogenization approach can be a robust method to bridge the gap
between concrete materials and structural modeling for realistic serviceability prediction.

2. Methods

A two-dimensional (2D) RVE for concrete is developed to determine the modulus of elasticity and

Source 1 Source 2
Randomy Dispersed Aggregates [) Uncertain Phase Properties )
Constant properties Uncertainty assignment
for RVE phases Variations
| for RVE phases
Uncertainty assignment I
Generate For one RVE
number of » RVE
Finite element analysis Finite element analysis
Variation of f,. Variation of £,
Variation of E . Variation of E .
Statistical analysis Statistical analysis
CDF. .1 CDFj;, 2
CDFg. 1 CDFg. 2

—‘ MC Simulation for Deflection |—
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I

| Cracked plane frame analysis |
I
| Deflection variation |

Fig. 1 Schematic representation of the proposed process for quantification of deflection uncertainty in RC
beam due to microstructural variability
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the modulus of rupture of homogenized concrete. Random uncertainties of concrete characteristics
including modulus of elasticity and modulus of rupture are obtained using FE modeling of the RVE.
Two sources of random uncertainty were considered to generate the random uncertainty in the RVE.
First, uncertainty was generated by considering random generation of RVE. This random generation
represents the randomly dispersed aggregates in concrete. The second source of uncertainty was
generated by considering the uncertain mechanical properties of the RVE phases including the
cement paste, the aggregates and the ITZ. The uncertainty in the modulus of elasticity and modulus
of rupture is represented in the form of cumulative probability density function (CDF). MC
simulation is performed for deflection calculation of a RC beam by cracked plane frame (CPF)
analysis. A schematic representation of this procedure is shown in Fig. 1.

2.1 Concrete homogenization

Concrete was successfully modeled using this approach where aggregate was assumed randomly
dispersed in the cement paste (Kurukuri 2005). Here, we follow this assumption in performing
concrete homogenization. At that length scale, concrete is considered a three phase material: cement
paste, aggregate (coarse and fine) and ITZ. Selection of the three phases was based on their unique
microstructural features and intrinsic properties (Mehta and Monterio 2006). The RVE
characteristics include the volume fraction of cement paste and aggregate, size distribution of the
aggregate and the constitutive models of the cement paste and the aggregate. A 2D finite FE model
of the RVE is developed to predict the constitutive relationship and the fundamental characteristics
of concrete. For the selection of RVE size, it was proposed that RVE-based homogenization is
analogous to specimen testing in lab to get the material properties (Hashin 1983). Kurukuri (2005)
studied the effect of the dimension ratio of RVE matrix and inclusion on the prediction of macro-
scale properties of concrete and it was shown that the predicted modulus of elasticity of a concrete
has a variation of 2% for the range of the dimension ratio between 2.5 and 17.5. Many researchers
(Le Pape 2009, Wu 2010) reported successful use of RVE for predicting macro-scale properties of
concrete as summarized in Table 1. Therefore, it is necessary to consider the dimensional ratios
recommended for the RVE validity while considering the accepted accuracy for the application in
hand and the associated computational cost. In this study, considering the largest aggregate size of
12 mm, RVE size is selected as 100 mm x 100 mm which gives the dimension ratio 8.3. The
100 mm x 100 mm RVE is a FE model including 250,000 elements developed under ANSYS® FE

Table 1 The dimension ratio of RVE to aggregates in this study compared with those used by others

References Smallest RVE size, a Largest inclusion size, d ratio, a/d
This study 100 mm 12 mm 8.3
Hashin (1983)* 100 to 150 mm 10-25 mm 8to 15
Kurukuri (2005)** 60 to 210 mm 12 mm 5to 17.5
Le Pape (2009) 150 mm 10 mm 15
Wu et al. (2010) 100 mm 15 mm 6.7

*Based on the discussion (Hashin 1983): “RVE-based homogenization is analogous to specimen testing in lab
to get the material properties.”
**There are no units for the sizes of a and d in original study.
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Fig. 2 Finite element (FE) model representing the three phase RVE model

environment as shown in Fig. 2. It is notable that the reason to use 2D RVE for concrete instead of
three-dimensional (3D) RVE is to reduce computation time with the numerous elements for
modeling the relatively small phase ITZ of concrete rather than the other aggregates of concrete.
The RVE elements were modeled using PLANE42 (SAS 2003), which is a plane element with 4
nodes, each having two degrees of freedom (DOF); translations in the x and y directions at each
node. Elements are randomly assigned within each microstructural phase. This allows for dealing
with the RVE as an isotropic material. To satisfy the spatial periodic boundary conditions of the
RVE, which means that the RVE deforms identical to its neighbors (Smit et al. 1998), the following
boundary conditions are applied to the RVE as

Ucp—Uyp =0, Vup—Vec=0, ug=vg=0 (1)

2 b

where u# and v are the horizontal and the vertical displacements at the boundaries of the RVE as
shown in Fig. 2 respectively. ¢ is the applied displacement at the edge CD of the RVE. Considering
plane stress condition of the RVE, that is the normal stress to plane and two out-of-plane stresses
are zero, the constitutive model of the RVE defined as

f;l - 1 o 0 g,
f; - 2 v ! O & (2)
I-v 0 o L=v
uv 2 Vv

where f,, f,, & and &, are the normal stresses and strains of # and v directions. f,, and j,, are the
shear stress and strain in plane. £ and v are the modulus of elasticity and Poisson’s ratio of the
homogenized concrete. The average normal stresses f,, .. and f, ... by unit axial load (#-direction) in
the RVE are determined using the FE analysis. The axial strains ¢, and &, are calculated as one over
a (RVE size in Fig. 2) and zero, respectively, with the boundary conditions in Eq. (1). Therefore, £
and v of the homogenized concrete are determined as
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To get the constitutive models of the RVE for both tension and compression, the displacement is
applied to the RVE until the average strain of the ITZ phase approaches the maximum elastic strain
of tension and compression respectively.

Linear elasticity bounds are used here to avoid the challenge in computing the strain energy
function tensors when microstructural homogenization of nonlinear phases is considered (Khisaeva
et al. 2006). Such complexity might be necessary to consider for realistic modeling of
heterogeneous microstructures as concrete if accurate stress states are required. Since our intention
is to estimate the probabilistic uncertainty of concrete characteristics, the use of linear
homogenization techniques shall provide results with reasonable accuracy.

2.2 Monte Carlo simulation

Monte Carlo (MC) simulation has been proven efficient by many researchers for modeling
uncertainty in complex systems (Hall and Strutt 2003, Cavdar et a/. 2008, 2009, Muzzammil 2008,
Beer and Spanos 2009, Pellissetti 2009, Schuéller 2009, Kim et al. 2010, Milani and Benasciutti
2010, An et al. 2011) and for calibration of structural concrete design codes (Nowak and Szerzen
2003). Here MC simulation is used for numerical evaluation of RC deflection uncertainty
propagated from uncertainties in concrete properties. The uncertainties in concrete properties are
determined from two independent sources. Therefore, two probability density functions (PDF) for a
concrete property will be obtained from random generation of a RVE and from assignment of
variations in mechanical properties of RVE phases as schematically presented in Fig. 1. To generate
random variates for a concrete property considering the two sources of uncertainty, two cumulative
probability density functions (CDF) of the corresponding PDF are used. Considering o-algebraic of
variations, the i-th random variate of modulus of rupture £, is generated as

7= TG+ Ty ()~ (2 (s)
where l"}rl,l and T J?rl , are the inverse of two CDF, which are numerically generated from FE
analysis of RVE. | and u; are the i-th standard uniform variates (generated uniformly between 0
to 1) for the corresponding CDF generated independently. If one standard uniform variate is used
for Eq. (5), the resulting variation will be the algebraic summation of two variations, not o-
algebraic of variations. ¢, and ¢4 are the mean values of the corresponding CDF. The procedure is
repeated for the modulus between each of elasticity. The full positive correlation between f. and E,
is considered to account for the relationship between each of those variables and concrete
compressive strength (ACI 318-08 2008, CSA A23.3-M04 2004). This can be done by sharing the
same set of standard uniform variates for generating random variates of f. and E. (Kim and Reda
Taha 2009). The i-th deflection of a RC beam A’ is then computed as

A= F(ELf,C) (6)
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where F'is a RC deflection calculation method, which is based here on cracked plane frame analysis
(Ghali and Favre 2002). C represents constant parameters for deflection calculations. By generating
a large number of random variates for each variable, the probability distribution of RC deflection
can be estimated.

2.3 Cracked plane frame analysis

Cracked plane frame analysis is used here to model deflection of RC beams. This method
incorporates axial deformation and curvature to calculate deflection (Ghali and Favre 2002). The
transformed section properties, the cross sectional area A, first and second moment S and / for a
section, are calculated with respect to a reference axis (arbitrary axis in a section). The axial strain ¢
and curvature i with respect to the reference axis are then calculated as

5= IN=SM o
E(AI-5")

_ _SNvAM @®
E(AI-S")

where N and M denote normal force and bending moment respectively. £ is modulus of elasticity of
the transformed section, steel being that of concrete. The stiffness matrix of the cracked plane frame
analysis accounting for tension stiffening is evaluated using the mean curvature method. The mean
axial strain and curvature can be expressed as

Vn = (1 _ﬂ’) l//uc+ ﬂ’l//cr (9)
Em = (1 _ﬂ’)guc + née, (10)

where subscript #c and cr denote uncracked and fully cracked sections respectively. A is a
dimensionless coefficient, which is determined by considering the extent of cracking. For a local
element as shown in Fig. 3, flexibility matrix F is evaluated using virtual work as

_ 4
F;= joNuigm,jdﬁ .[OMu,»l//m,jdx 1

where / is element length. N,;, and M,; are the normal force and the bending moment when a unit
force acts to the i-th degree of freedom (DOF). g,; and y,; are the mean axial strain and the mean
curvature evaluated at the sections along the element (shown in Fig. 3 by broken lines) when a unit
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1 \ B 4
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3 12

ZA——

I ——
I
I ——
I —
I P ——
Lt

1

Discretized sections along element

to evaluate axial strain and curvature

Fig. 3 Description of the degree of freedom (DOF) to generate cracked plane frame element
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force acts to the j-th degree of freedom (DOF). The stiffness matrix is then determined by inverse
of the flexibility matrix. Full details of CPF analysis can be found elsewhere (Ghali and Favre
2002).

3. Case study

For a case study, the reinforced concrete beam for deflection test by Christiansen (1988) was
considered. The beam had 7.5 meters span, 280 mm thick and 170 mm wide. The reinforced steel
areas for compression and tension are 452 mm?’ respectively. The bottom concrete cover to the
reinforcement is 31 mm. The beam is subjected to a distributed load of 1.143 kN/m and two
concentrated load of 2.27 kN. For this beam, the test result of the instantaneous deflection at the
mid-span was measured as 14.2 mm. The concrete compressive strength f! of 26 MPa was
reported for the tested RC beam. The beam is shown schematically in Fig. 4.

To generate the RVE model for this concrete, a concrete mix with an average compressive
strength of 26 MPa after Kim (2009) was considered. This concrete mix is presented in Table 2.
Two aggregate particle sizes of 2 mm and 12 mm considered to simulate fine and coarse aggregate
particles (Phase II) respectively. The thickness of ITZ (Phase III) is modeled as 200 mm. The
volume fractions of fine and coarse aggregates are determined by considering their specific gravity
as 2.7 and 2.65 respectively. The volume fraction of ITZ is calculated by assuming that ITZ is
surrounding all aggregate particles with thickness of 200 mm. The volume fraction of ITZ is then
approximated as 10%. The remaining volume fraction of concrete 21% is considered as cement
paste (Phase I).

The elastic constitutive model in tension and compression were used for cement paste (Phase 1)
and aggregates (Phase II). The tensile strength and stiffness of Phase III is then determined through
iterative process such that the RVE of concrete has an elastic tensile strength of 0.62./f MPa,
while the compressive strength and stiffness of Phase III is determined through iterative process
such that the RVE of concrete has a compression modulus of elasticity of 4730ij’ MPa. The two
selections for the modulus of rupture and modulus of elasticity are therefore in agreement with most

227kN 2.27kN

v 1143 KN/m y |_017m lo.ozsm
! v 1

4 ——
452x1076 m? r

0.249m
0.28 m

2.5m | 2.5m | 2.5m 452106 m?2
L

Fig. 4 The beam setup of the deflection test by Christiansen (1988) for a case study

Table 2 Mixture ingredients of concrete (kg/m®)

Cement Silica fume Water Fine aggregate Coarse aggregate
236 79 192 700 1143
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Table 3 Volume fractions and mechanical properties of RVE phases

Phase Phase 1 Phase 11 Phase 111
Materials Cement paste Fine aggregate Coarse aggregate ITZ
Volume fraction 21% 25% 44% 10%
1! 30 MPa 70 MPa 10.5 MPa
*&, 0.01 0.001 0.00015
f 30 MPa 70 MPa 1 MPa
**e, 0.01 0.001 0.001

*&.: the maximum compressive elastic strain.
**g: the maximum tensile elastic strain.

design codes (ACI 318-08 2008, CSA A23.3-M04 2004). The volume fractions and the mechanical
properties of each phase of RVE are presented in Table 3.

4. Results and discussion

Finite element (FE) analysis of the RVE is conducted until the average strain of Phase III (ITZ)
approaches its peak elastic strain. Applying tension and compression displacement to the RVE, the
constitutive model shown in Fig. 5 is extracted. The modulus of rupture of the homogenized
concrete is then determined from the tension (-) part of the constitutive model, while the modulus of
elasticity of the homogenized concrete is determined from the compression (+) part of constitutive
model. The strain distributions due to tensile stress in the RVE are shown in Fig. 6. By marking the
elements of the RVE whose strains are over the maximum elastic tensile strain of ITZ 0.001 as
black color, the initiating of micro cracks at ITZ can be observed in Fig. 6(a) at the RVE strain of
0.00008 when the ITZ cracking is initiated (Point I in Fig. 5). The micro crack distribution at
failure of the RVE is also shown in Fig. 6(b) at the RVE strain of 0.00027 when the RVE is
assumed to fail (Point II in Fig. 5). This might be extended to simulate more realistic crack
propagation using a homogenization model that considers a cohesive contact zone between the

f'.=26 MPa A
E.=
= 20| 24.1GPa
=™
S
2
£ 10
wn
!0
! I f=29Mpa | .
Strain (10-3)
-10

Fig. 5 Constitutive model generated using the RVE
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(a) the RVE strain of 0.00008 when the ITZ cracking is initiated (Point I in Fig. 5)
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(b) the RVE strain of 0.00027 when the RVE is assumed to fail (Point II in Fig. 5)

Fig. 6 Strain distribution due to tensile stress showing the cracking status of the ITZ

aggregate particles and the cement paste. This extended approach is beyond the scope of this paper.

To quantify the variations of modulus of rupture and modulus of elasticity, the uncertainty
associated with the randomly dispersed aggregates is considered first. One hundred RVE is
generated randomly for the given volume fractions of microstructural phases and geometries. Using
the 100 results of modulus of rupture and modulus of elasticity, the CDF of modulus of rupture
(average 2.95 MPa with standard deviation 0.05 MPa) and modulus of elasticity (average 24.9 GPa
with standard deviation 0.5 GPa) are evaluated as shown in Figs. 7(a) and (b) respectively.

Second, the uncertainty in the modulus of rupture and modulus of elasticity propagated from
considering uncertain microstructural phase characteristics is considered. A single RVE, with the
median of £, and E,, is selected among the 100 RVE generated at the first step. The modulus of
elasticity of the three microstructural phases are assumed as normally distributed. The coefficient of
variation (COV) of modulus of elasticity for aggregates, cement paste and ITZ are assumed as 5%,
10% and 20%, respectively, for case study. Probabilistic analysis is conducted for the
homogenization analysis to identify the uncertainty of the modulus of rupture and modulus of
elasticity of the RVE respectively. For each case, 100 FE analysis iterations are conducted. Random
numbers are generated by Latin hypercube sampling method. The numerical CDF of modulus of
rupture (average 2.96 MPa with standard deviation 0.4 MPa) and modulus of elasticity (average
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Fig. 8 CDF for (a) modulus of rupture and (b) modulus of elasticity propagated from the uncertainty source 2,
uncertain concrete phase properties

247 GPa with standard deviation 3 GPa) are then determined as shown in Figs. 8(a) and (b)
respectively.

Using the two CDFs for each f. and E. from two sources of uncertainty, the uncertainty of
deflection is quantified using Monte Carlo simulation. For random sampling for f, and E., 5000
random variates for each £, and E, were generated by Eq. (5). The deflections were calculated using
the cracked plane frame analysis after Ghali and Favre (2002). The resulted deflection histogram
and the relative frequency density are shown in Fig. 9 with the average of 14.6 mm and COV of
10%. The resulted COV might be considered as relatively lower than practical deflection variations.
This might be attributed to the fact that the uncertainty quantification was dependent on two sources
of uncertainty only. Other sources of uncertainty might include uncertainty in ITZ thickness,
aggregate size distribution, quality of cementitious materials, etc. Nevertheless, the above method
and case study provide a framework for quantifying uncertainty in deflection of RC members by
considering sources of inherent randomness in concrete micro and macrostructure. This quantified
uncertainty might be integrated with other uncertainties in loading and structural geometry to
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Fig. 9 Frequency histogram and relative frequency density for deflection of a case study

provide a rational estimate for uncertainty in deflection of RC members. Furthermore, using the
probabilistic distribution of deflection predicted in Fig. 9, the probability of exceeding deflection
threshold can be quantified by reliability analysis. This might enable probabilistic design of
serviceability limit states considering realistic assumptions of the materials behaviour under service
conditions. Finally, introducing homogenization techniques for modeling reinforced concrete
elements shall bring forward the ability to incorporate concrete deterioration mechanisms on the
structural behaviour of RC members.

5. Conclusions

A concrete homogenization approach is developed to examine the significance of random
distribution and uncertain mechanical characteristics of concrete composite phases on the
uncertainty of deflection of reinforced concrete beams. The inherent randomness of aggregate
dispersion in concrete matrix and the uncertainty in different phase characteristics are considered.
This enabled computing the uncertainty in concrete characteristics namely modulus of rupture and
modulus of elasticity. The uncertainties in concrete characteristics are used to compute uncertain
deflection probability distributions using Monte Carlo simulation. It is shown that the proposed
approach is capable of quantifying uncertainty in RC deflection by considering linear
homogenization of concrete. Further research is warranted to consider the significance on concrete
heterogeneity on the proposed approach for uncertainty quantification using means of nonlinear
homogenization.

Acknowledgements

The financial support by Army Research Office Grant # W911NF-08-1-0421 to study topological
optimization and homogenization of composites is greatly appreciated. The support to the second
and third author by Defense Threat Reduction Agency (DTRA) Grant for uncertainty quantification
is greatly appreciated.



A homogenization approach for uncertainty quantification of deflection in reinforced concrete beams 515

References

ACI Committee 318 (2008), Building Code Requirements for Structural Concrete (318-08), and Commentary
(318R-08), American Concrete Institute, Farmington Hills, USA.

An, D., Choi, J.H., Kim, N.H. and Pattabhiraman, S. (2011), “Fatigue life prediction based on Bayesian approach
to incorporate field data into probability model”, Struct. Eng. Mech., 37(4), 427-442.

Bear, J. and Bachmat, Y. (1990), Introduction to the Modelling of Transport Phenomena in Porous Media,
Kluwer Academic Dordrecht.

Beer, M. and Spanos, P.D. (2009), “A neural network approach for simulating stationary stochastic processes”,
Struct. Eng. Mech., 32(1), 71-94.

Branson, D.E. (1977), Deformation of Concrete Structures, McGraw-Hill Book Co., NY, USA.

Cavdar, O., Bayraktar, A., Cavdar, A. and Adanur, S. (2008), “Perturbation based stochastic finite element
analysis of the structural systems with composite sections under earthquake forces”, Steel Compos, Struct.,
8(2), 129-144.

Cavdar, O., Bayraktar, A., Cavdar, A. and Kartal, M.E. (2009), “Stochastic finite element analysis of structural
systems with partially restrained connections subjected to seismic loads”, Steel Compos, Struct., 9(6), 499-518.

CEP-FIP Model Code 90 (1993), Model Code for Concrete Structures, Comité Euro-International du Béton
(CEB) - Fédération Internationale de la Précontrainte (FIP), Thomas Telford Ltd., London, UK.

Christiansen, K. (1988), “Eight-year deformation tests on reinforced concrete beams”, Mater. Struct. (RILEM),
21, 172-178.

Choi, B.S., Scanlon, A. and Johnson, A.P. (2004), “Monte Carlo simulation of immediate and time-dependent
deflections of reinforced concrete beams and slabs”, ACI Struct. J., 101, 633-641.

CSA A23.3-M04 Technical Committee (2004), Design of Concrete Structures, Canadian Standards Association,
Toronto, Canada.

Dormieux, L., Kondo, D. and Ulm, F.J. (2006), Microporo Mechanics, John Wiley & Sons, UK.

Fling, R.S. (1992), “Practical considerations in computing deflection of reinforced concrete”, ACI Special
Publication, 133, 69-91.

Ghali, A. and Favre, R. (2002), Concrete Structures: Stresses and Deformations, 3rd Edition, Spon Press,
London, UK.

Ghali, A., Elbadry, M. and Megally, S. (2000), “Two-year deflections of the confederation bridge”, Can. J. Civil
Eng., 27(6), 1139-1149.

Gardner, N.J. (1990), “Design and construction interdependence”, Concrete Int., 12(11), 32-38.

Hashin, Z. (1983), “Analysis of composite materials - A survey”, J. Appl. Mech., 50, 481-505.

Hall, P.L. and Strutt, J.E. (2003), “Probabilistic physics-of-failure models for component reliabilities using Monte
Carlo simulation and Weibull analysis: a parametric study”, Reliab. Eng. Syst. Safe., 80(3), 233-242.

Jain, J.R. and Ghosh, S. (2008), “Homogenization based continuum damage mechanics model for monotonic and
cyclic damage evolution in 3D composites”, Interact. Multis. Mech., 1(2), 279-301.

Jokinen, E.P. and Scanlon, A. (1985), “Field-measured two-way slab deflections”, Proceeding of the Annual
Conference of the Canadian Society for Civil Engineering, Saskatoon, Saskatchewan, 43-58.

Ju, JW. and Chen, TM. (1994), “Effective elastic moduli of two-phase composites containing randomly
dispersed spherical inhomogenities”, Acta Mech., 103, 123-144.

Khisaeva, Z.F. and Ostoja-Starzewski, M. (2006), “On the size of RVE in finite elasticity of random
composites”, J. Elast., 85, 153-173.

Kalali, A. and Kabir, M.Z. (2010), “Modeling of unreinforced brick walls under in-plane shear & compression
loading”, Struct. Eng. Mech., 36(3), 247-278.

Kim, JJ. (2009), “Uncertainty quantification for serviceability of reinforced concrete structures”, PhD
Dissertation, Department of Civil Engineering, University of New Mexico, USA.

Kim, JJ. and Reda Taha, M.M. (2009), “Robustness-to-uncertainty: An alternative perspective in realizing
uncertainty in modeling deflection of reinforced concrete structures”, J. Struct. Eng.-ASCE, 135(8), 998-1001.
Kim, J.J., Reda Taha, M.M. and Ross, T.J. (2010), “Establishing concrete cracking strength interval using
possibility theory with an application to predict the possible reinforced concrete deflection interval”, Eng.

Struct., 32, 3592-3600.



516 Jung J. Kim, Tai Fan and Mahmoud M. Reda Taha

Kim, J. and Muliana, A. (2010), “Time-dependent and inelastic behaviors of fiber- and particle hybrid
composites”, Struct. Eng. Mech., 34(4), 525-539.

Le Pape, Y., Toulemonde, C. and Sanahuja, J. (2009), “Upscaling concrete properties: a rational approach to
account for the material complexity and variability”, Int. J. Mater. Struct. Integrity, 3, 227-246.

Kurukuri, S. (2005), “Homogenization of damaged concrete meso-structure using representative volume
elements: implementation and application to slang”, MS Thesis, University Weimar, Germany.

Mehta, K., and Monterio, P.J.M. (2006), Concrete: Microstructure, Properties and Materials, Third Edition.
McGraw-Hill Professional, New York, USA.

Milani, G. and Benasciutti, D. (2010), “Homogenized limit analysis of masonry structures with random input
properties: polynomial Response Surface approximation and Monte Carlo simulations”, Struct. Eng. Mech.,
34(4), 417-447.

Muzzammil, M., Siddiqui, N.A. and Siddiqui, A.F. (2008), “Reliability considerations in bridge pier scouring”,
Struct. Eng. Mech., 28(1), 1-18.

Nowak, A.S. and Szerszen, M.M. (2003), “Calibration of design code for buildings (ACI 318): Part -Statistical
models for resistance”, ACI Struct. J., 100(3), 377-382.

Ostoja-Starzewski, M. (2006), “Material spatial randomness: From statistical to representative volume element”,
Probabilist. Eng. Mech., 21, 112-132.

Ostoja-Starzewski, M. (2007), Microstructural Randomness and Scaling in Mechanics of Materials, Chapman &
Hall/CRC/Taylor & Francis, USA.

Pellissetti, M.F. (2009), “Parallel processing in structural reliability”, Struct. Eng. Mech., 32(1), 95-126.

Qiu, G. and Li, X. (2009), “Design of materials with prescribed elastic properties using D-functions”, Struct.
Eng. Mech., 33(1), 109-112.

Scanlon, A. and Pinheiro, L. (1992), “Allowable deflections: the other side of the equation”, ACI Special
Publication, 133, 111-120.

Schuéller, GI. (2009), “Efficient Monte Carlo simulation procedures in structural uncertainty and reliability
analysis - recent advances”, Struct. Eng. Mech., 32(1), 1-20.

Smit, R.J.M., Brekelmans, W.A.M. and Meijer, HE.H. (1998), “Prediction of the mechanical behavior of
nonlinear heterogeneous systems by multi-level finite element modeling”, Comput. Meth. Appl. Mech. Eng.,
155, 181-192.

Thompson, D.P. and Scanlon, A. (1988), “Minimum thickness requirements for control of two-way slab
deflections”, ACI Struct. J., 85, 12-22.

Torquato, S. (2002), Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Springer
Science & Business Media, LLC., New York, USA.

Vorel, J. and Sejnoha, M. (2009), “Evaluation of homogenized thermal conductivities of imperfect carbon-carbon
textile composites using the Mori-Tanaka method”, Struct. Eng. Mech., 33(4), 429-446.

Wu, W., Yuan, Z. and Fish, J. (2010), “Eigendeformation-based homogenization of concrete”, Int. J. Multiscale
Com., 8, 1-15.

Zundelevich, S., Hamada, H.S. and Chiu, A.N. (1974), “Variability of deflections of simply supported precast
prestressed concrete beams”, ACI Special Publication, 43, 547-571.





