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Abstract. This paper presents recovering of missing vibration data of a bridge transmitted from
wireless sensors. Kalman filter algorithm is adopted to reconstruct the missing data analytically. Validity
of the analytical approach is examined through a field experiment of a bridge. Observations demonstrate
that, even a part of recovered acceleration responses is underestimated in comparison with those responses
taken from cabled sensors, dominant frequencies taken from the reconstructed data are comparable with
those from cabled sensors. 
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1. Introduction

This study is intended to investigate the feasibility of reconstructing missing data or incomplete

observations in a wireless sensing system which is developed for vibration-based bridge health

monitoring (BHM). The Kalman filter algorithm is applied to recover missing data transmitted from

wireless sensor nodes. Feasibility of the method is investigated by comparing reconstructed data

with the data measured by wired accelerometers. Brief explanation about the wireless sensor node

developing for BHM is also described.

Maintaining and improving condition of bridges is critical to the structural integrity and cost

effectiveness of the transportation system. The majority of bridges are small and medium span

structures, and large portions of those small and medium span bridges are located on local and rural

areas. Attention also must be paid to their health condition (e.g., Doebling et al. 1996). Actual

situation, however, reveals that most of monitoring concerns focus on bridges in urban area and

monumental bridges such as long span bridges because of budgetary problems of bridge owners.

System identification of bridge structures based on the system output such as vibration data of the

bridge is a useful technique for BHM (e.g., Hoshiya and Saito 1984, He and De Roeck 1997). An
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important problem that must be solved in health monitoring for the small and medium span bridges

of rural areas using vibration measurements is in developing a cost-effective sensor system. 

There are a wide range of commercially available wired sensor systems, some of which have been

developed for general purpose data acquisition and others which have been specifically developed

for structural health monitoring (SHM) applications. The majority of these systems work by AC

power. It means there are very limited numbers of those designed to run off of batteries.

Furthermore, experience with field-deployed systems has shown that the wires can be costly to

maintain because of environmental degradation (Lynch 2004). In addition, the deployment of such

system can be challenging with a great portion of the installation time attributed to the installation

of system wires and cables for large scale structures (Farrar et al. 2006). The integration of wireless

communication technologies into SHM methods has been widely investigated in order to overcome

the limitations of wired sensing networks (e.g., Straser et al. 1998, Castaneda et al. 2009). Wireless

communication can remedy the cabling problems of the traditional monitoring system and

significantly reduce the maintenance cost. Detail summaries of the wireless sensor systems for

structural health monitoring are available from references (e.g., Farrar 2006, Spencer et al. 2004). 

To realize a method which focuses on the health monitoring of small and medium span bridges even

in rural areas, it needs a wireless sensor system which provides a cost-effectiveness and real-time

communication of vibration data. The authors have been developed a novel sensor node equipped a

wireless device for data transmitting and MEMS accelerometer (Kim et al. 2008). The design of

wireless sensors is done with commercially off-the-shelf components to keep costs down. The sensor

node is also designed to minimize the memory space and energy consuming. The performance of a

trial piece of the sensor node is examined through bridge vibration experiments. The results indicate

that acceleration responses taken from the wireless sensor node are comparable with those from the

conventional sensing device with cabled acceleration transducers. However data missing is observed in

time series data from the wireless sensor node (Kim et al. 2008, Kim et al. 2009). 

The multi-packet transmission is an option to solve the data missing problem. The way of

recovering missing data using multi-packet transmission (or repeated broadcasting) is as follows

(Kim et al. 2007): in response to the request of the receiver, the sender sends the entire data and the

receiver identifies missing packets, and then sends a list of those packets back to the sender; the

sender resends those missing packets, and repeats until no data loss is found. However the repeated

broadcasting requires large memory space and consumes much power. 

Another option is the reconstruction of missing data. Kalman filter and state space model

formulation together provide a powerful tool for the recursive treatment of dynamic systems

(Anderson and Moore 1979, Kitagawa and Gersh 1984, 1996, Lee and Yun 2008). Many standard

statistical examples arise from estimation, interpolation and prediction procedures for autoregressive

time series (e.g., Akaike 1978). Numerous real data examples show that there are suitable

modifications of the Kalman filter which allows the treatment of incomplete data (e.g., Cipra and

Romera 1997).

2. Methodology for recovering missing data

The discrete state equation for time history data can be described as (Ljung 1999)

, (1)x k 1+( ) Fx k( ) Gv k( )+= y k( ) Hx k( )=
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where x is the state vector of a system. F indicates the system matrix. G and H denote the input

and output influence matrices respectively. y indicates the output vector which links to observed

physical outputs. 

The output signal is modeled as the output of an autoregressive (AR) model, because such AR

model may be easily and effectively computed from covariance data using least squares method

(LSM), Yule-Walker equation or Levinson algorithm (e.g., Ljung 1999). Through numerical

manipulations the state equation is described in the form of AR model subjected to a white-noise

input. 

(2)

Therein e(k) denotes a white noise with zero mean and covariance as

(3)

where, E[ ] indicates the operator for mathematical expectation.

The AR parameter in Eq. (2) can be estimated by means of the maximum likelihood estimate

(MLE) as an exact solution. In this study an approximate solution based on the Levinson algorithm

is adopted instead of the MLE. 

If  signifies a predicted estimate which is definable as

(4)

Then the AR parameter is the solution taken from minimizing a prediction error, which is

obtainable from the following relationship.

(5)

where,  and  which denotes a prediction error.

Finally Eq. (5) results the Yule-Walker equation as shown in Eq. (6).

(6)

where 

(7)

(8)

(9)

(10)

The Levinson algorithm is used to solve the linear equation in Eq. (6), which gives AR parameters.
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The state space equation of Eq. (1) is now re-definable in the AR model using following

definition for the system matrix F, input influence matrix G and output influence matrix H.

(11)

(12)

 (13)

Therein, m is the optimal order of the AR model, which is selected by means of the Akaike

Information Criteria (AIC). The AIC is a way of selecting a model from a set of models. The

chosen model is the one that minimizes the Kullback-Leibler distance between the model and the

truth. The AIC is defined as

(14)

where .

The aim of time history analysis is to identify the state vector x appropriately. The Kalman filter

algorithm provides a good step-by-step method for identifying the state of a system such as

prediction, filtering and smoothing the state (e.g., Kitagawa 1984).

If a time series model is given, a future state can be predicted in terms of the Kalman filter

algorithm as

(15)

where, x(n|n−1) and V(n|n−1) stand for the predicted conditional mean vector and covariance matrix

at a time (n) under the condition of the state at a time (n−1), respectively. Q denotes covariance

matrix of the system noise v, which is set to be σ2. L denotes the number of data including missing

part. Moreover an initial state can be described as 

 ,  (16)

where I
m
 denotes the unit matrix. 

Filtering problem is also solved by the step-by-step algorithm as
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where K(n) is the Kalman gain computed from the solution to the Ricatti difference equation. N

denotes the number of un-missing data.

In recovering missing data the smoothing by Kalman filter algorithm is very useful. The

smoothing algorithm is a kind of backward step-by-step state identification algorithm. In other

words, using all the observations a state at a past time is estimated as following procedure.

(18)
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Fig. 1 Flow chart of recovering missing data
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In estimating parameters in Eq. (18) following assumptions are used for missing part.

(19)

Finally y(n|L) = Hx(n|L) gives y(n) which is the recovered missing data under N observations. It is

noteworthy, however, that the raw data is not smoothed in this study. The flowchart of the

recovering missing data is shown in Fig. 1.

3. Wireless sensor node

The developed prototype wireless sensor module is shown in Fig. 2 (Kim et al. 2008). It

comprises commercially available off-the-shelf components: a 2.4 GHz radio transceiver with an

embedded 8051 compatible microcontroller of Nordic Semiconductor ASA (nRF2401) and the

LIS3LV02DQ of STMicroelectronics which is a three axes MEMS accelerometer. A schematic

block diagram of the sensor node is appeared in Fig. 2(b). The dimension of the module exclusive

of the battery pack is 20 mm (width) × 20 mm (depth) × 3.9 mm (thickness). The module works on

two AA batteries.

The microcontroller is an instruction set compatible with the industry standard 8051, and has a

256 byte data RAM. A small ROM of 512 bytes, contains a bootstrap loader that is executed

automatically after power on reset or if initiated by software later. The user program is normally

loaded into a 4k byte RAM from an external serial EEPROM by the bootstrap loader. The 4k byte

RAM may also partially be used for data storage in some applications. The AD converter can be

configured by software to perform 6, 8 or 12 bits conversions.

The transceiver part of the circuit has single chip RF transceiver for the world wide 2.4 - 2.5 GHz

ISM band (Industrial, Scientific and Medical band). The maximum data transmission rate is 1 Mbps.

The typical current consumption in data transmitting phase is 20 mA. In sleep mode it needs 4 µA.

The data communication adopted is the infrastructure mode.

The MEMS accelerometer, LIS3LV02DQ, has a user selectable full scale of ±2 g, ±6 g and it is

capable of measuring acceleration over a bandwidth of up to 640 Hz for all axes. The sampling

frequency is also adjustable according to the user’s needs. The sensitivity of the sensor under the

conditions of ±2 g and 12 bit representation is 0.957 Gal. The effective range of data transmission

was up to 40 m in indoor test. However, in outdoor test the limit transmission distance was about

10 m. 

To control functions of the sensor nodes, it is designed to be changeable by adding and deleting

rules (Kodama et al. 2007, Kim et al. 2009). According to the hardware control rule, for example,

the sampling frequency, range of maximum acceleration to be measured, etc. are easily changeable,

which is a distinguishing point of the sensor node.

4. Field experiment using wireless and cabled sensor

Field experiments on a bridge are conducted to examine performance of the wireless sensor node.

The observation bridge is shown in Fig. 3, which is a seven-span continuous steel box girder bridge.

x n n( ) x n n 1–( )=

V n n( ) V n n 1–( )=
, N n< L≤( )
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⎨
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The observation points are summarized in Fig. 4, in which four points denoted as S-0.25L-G1, S-

0.5L-G1, S-0.75L-G1 and S-0.5L-G2 are the locations of both wireless and cabled sensors. A relay

node is also used because of the limitation of transmission distance especially for the sensor at S-

0.25L-G1. The sampling rates of signals of wireless and cabled sensors are 100 Hz and 200 Hz,

respectively. The measurement period is 10 minutes.

Data missing is observed in the data measured by the wireless sensor. The rate of data missing is

summarized in Table 1. Table 1 shows that the rate of data missing changes even in the same

sensor. It signifies that the performance of radio data transmission of the wireless sensor is easily

affected by nearby environmental conditions of the bridge. The rate of missing data goes up to

7.06%. 

Fig. 5 shows examples of burst data missing: for S-0.5L-G2 the data missing occurs between

580 s and 590 s; and for S-0.25L-G1 incomplete observations are concentrated between 450 s and

550 s. The vertical scale of Fig. 5 indicates the existence of data missing: “0” means no data

missing occurs; and “1” indicates data missing. 

Those missing data are recovered using the Kalman filter algorithm. Fig. 6(a) shows the

acceleration time history from 560 s to 600 s of S-0.5L-G2 which shows burst data missing between

580 s and 590 s. It is noteworthy that the Fourier amplitude spectrum shown in Fig. 6(a) is

estimated by using zero padding on data missing parts. These missing data are reconstructed as

shown in Fig. 6(b), and the time history taken from the cabled sensor is shown in Fig. 6(c).

Fig. 2 Wireless sensor node
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Fig. 3 Observation bridge 

Fig. 4 Observation points and sensor location  

Table 1 Data missing rate (%)

S-0.25L-G1 S-0.5L-G1 S-0.75L-G1 S-0.5L-G2

First 1.37 1/6000 0.28 4.12

Second 0.01 0.01 0.01 0.93

Third 7.06 0.00 1.50 0.16
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Fig. 5 Examples of data loss 

Fig. 6 Acceleration response and Fourier amplitude spectra of observation point S-0.5L-G2 with 4.12% of
data missing rate
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Observations show that amplitude of the recovered acceleration is small in comparison with that of

the cabled sensor. However dominant frequencies of the reconstructed signal are comparable with

those of cabled sensors. Another recovered acceleration response is appeared in Fig. 7 which is

observed at S-0.25L-G1. The Fourier amplitude spectrum shown in Fig. 7(a) is also estimated by

using zero padding on data missing parts. It demonstrates that the missing data measured using

wireless sensors is recovered using the method and comparable results between cabled and wireless

sensor such as acceleration and Fourier amplitude spectra are obtained, even though some noises

and peak responses on the time history measured by wireless sensors are appeared.

Fig. 7 Acceleration response and Fourier amplitude spectra of observation point S-0.25L-G1 with 7.06% of
data missing rate 
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5. Conclusions

This study investigates the feasibility of reconstructing missing data or incomplete observations in

a wireless sensing system which is developed for vibration-based bridge health monitoring. The

Kalman filter algorithm is applied to recover missing data transmitted from wireless sensor nodes

because the wireless sensor node is designed to minimize the memory space and energy consuming.

Field experiments on a seven-span continuous steel box girder bridge are conducted. Observations

from the field experiment demonstrate that the rate of data missing changes even in the same

sensor. It signifies that the performance of radio data transmission of the wireless sensor is easily

affected by nearby environmental conditions of the bridge.

Those missing acceleration data transmitted from the wireless sensors are reconstructed by the

Kalman filter algorithm. Comparable results between data taken from cabled and wireless sensors

such as acceleration and Fourier amplitude spectra are obtained, even though some noises and peak

responses on the time history measured by wireless sensor are observed. A part of recovered

acceleration amplitude, however, is small in comparison with cabled sensor, which is one of the

next tasks of this study. 
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