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Abstract. This paper shows the solution for an orthotropic disk under the plane strain condition
obtained with complex stress functions. These stress functions were induced by Lekhnitskii and expanded
by one of the authors. Regarding diametrical compression test, the finite element method poses difficulties
in representing the concentrated force because the specimens must be divided into finite elements during
calculation. On the other hand, the method shown in this study can exactly represent this force. Some
numerical results are shown and compared with those obtained under the plane stress condition for both
stress and displacement. This comparison shows that the differences between the tensile stresses occurred
under the plane strain condition and also that the differences under a plane stress condition increase as the
orthotropy ratio increases for some cases.
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1. Introduction

The diametrical compression test is a simple and relatively inexpensive test for measuring the

tensile strength of brittle material. This test is performed by placing a disk or circular column

between two (rigid) plates and applying a diametrical compressive load. The test induces a biaxial

stress state in which the stress at the center of the disk is compressive in the x-direction (σx), and

tensile in the y-direction (σy). Theoretically, for an isotropic material, the tensile stress reaches a

maximum at the constant magnitude of P/(πR), where P is the applied load and R is the radius of

the disk (Sokolnikoff 1956, Timoshenko 1970). Because tensile strength is smaller than compressive

strength for many brittle materials, the material undergoes tensile failure first. Recently, this test,

known as the Brazilian test in rock mechanics, was described in some works covering isotropic

material alone (Lavrov and Vervoort 2002, Markides et al. 2010). However, some materials for this

test exhibit orthotropicity as seen in experimental work for specimens containing some layers
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(Tavallali and Vervoort 2010) or numerical simulation (Cai and Kaiser 2004). Stresses and strains

were obtained by Jianhong et al. (2009) for the case in which the elastic modulus in tension is

different from that in compression. 

The circular plane problems concerning homogeneous material under diametrical compression

were addressed in some studies. Cauweleart and Eckmann (1994) obtained a solution using the

theoretical results for a semi-infinite plate under concentrated force. Lemmon et al. (Lemmon and

Blackketter 1996) evaluated stresses and displacements using the finite element method (FEM) in

which the applied load areas are very narrow. Lekhnitskii (1968) attempted to obtain a solution

using a complex power series, but was unable to obtain the stress field completely because of the

lack of equations for first term of the boundary conditions. Chen et al. (1998), Exadaktylos and

Kaklis (2001), Exadaktylos (2001) and Claesson and Bohloli (2002) used Lekhnitskii’s solution for

rock specimens. They obtained the first term of the solution by direct indication under the boundary

condition. Therefore, the method of determining complex coefficients in the first term was not

shown in their work. One of the authors (Kawakubo et al. 1996) shows a method of completely

determining the complex coefficients in the first term of Leknitskii’s solution which included the

condition that rigid rotation does not occur in the specimen. Good agreement between the numerical

results obtained using this solution and those obtained by FEM was found for loading width equal

to 2, 4, and 8% of circumference (Tsutsumi and Hirashima 2000). 

In this paper, the solution to the plane strain problem is obtained using Lekhnitskii’s solution

based on the condition that rigid body rotation does not occur in the specimen. This solution is

valid for the column-shaped specimens which were subjected to a diametrical compression test.

Specimens described in this paper are orthotropic but are also homogeneous and comprise a

continuum without layers or micro-cracks. Furthermore, the numerical results for stress and

displacement are shown and compared with the results obtained under the plane stress condition. 

2. Fundamental equations

In this paper, the problem of the application of opposing concentrated loads P to the diametrical

axis of an orthotropic column specimen of radius a is treated as shown in Fig. 1; Here, ϕ is the

angle between the loading axis and the principal elastic axis, and E1 and E2 are the respective elastic

moduli in the direction of the principal elastic axis. 

By denoting the loading axis as x, and the perpendicular direction in the plane of the loading axis

as y, the following equations representing the resultant forces on surface Xn and Yn, going

anticlockwise from the x-axis in the x and y directions, on the boundary circumference of a column-

shaped specimen, which are related to stress components σx, σy and txy are obtained

Fig. 1 Orthotropic circular disk under diametrical compression
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(1)

The stress components σx, σy and τxy, and the displacement components ux and uy are expressed by

the following (Lekhnitskii 1968). 

(2)

(3)

Here, Re denotes the real part of the complex functions in brackets.  means the first

derivative of  with respect to zk. By using  (i, j = 1, 2, 3, 6) for the elastic compliance

values of the specimens with a sufficient depth under the plane strain condition, as shown in

Fig. 2(a), the following relations are obtained

(4)

Here, ε and γ respectively denote the vertical strain and shear strain in the direction indicated by

subscripts. The complex parameters µ1, µ2 in Eq. (2) are obtained as complex roots of the following

equation 

(5)

Under the plane stress condition without sufficient depth, as shown in Fig. 2(b), and when the

direction of E1 coincides with the coordinate axis (ϕ = 0), the elastic compliance values are

expressed as follows 

(6)

 is the elastic modulus for the depth direction. When the direction of E1 is not coincident with

the coordinate axis, having an arbitrary angle of ϕ, the elastic compliance values aij (i, j = 1, 2, 3, 6)

under the plane stress condition are expressed by the following.
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(7)

In addition, using these equations the elastic compliance  under the plane strain condition in

Eq. (4) is obtained from the following relations 

, (8)

Because column specimens are treated as having depth in the z-direction in the present paper, a

model is made under the plane strain condition. 

3. Formulation of the problem

Next, a problem is formulated, in which a concentrated load P is applied diametrically to an

orthotropic column. The resultant forces for the x-directions and y-directions on the surface are

expanded as Fourier series with M terms, as follows

(9)
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Fig. 2 Plane strain condition and plane stress condition
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Here, the bar denotes the complex conjugate. When the concentrated load P is applied to the x-

axis, αm and βm are expressed as follows 

 (10)

The complex stress functions for an orthotropic elliptic plate with the major axis a and the minor

axis b, as shown in Fig. 3, are expanded as the series expressed below (Lekhnitskii 1968) 

(11)

Here Pkm(zk) (k = 1, 2) is a power series of the m-th order and is expressed by the following

equation.

(12)

In the present problem, because the circular column-shaped specimens are used, it can be assumed

that a = b for the purpose of calculation. The complex variable zk and power series Pkm(zk) are

represented on the cylindrical boundary as follows 
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By using the complex functions Φk(zk), the resultant stresses are expressed as follows
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Fig. 3 Elliptic disk represented by the solution in this study
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corresponding terms of eimθ and e-imθ (1 ≤ m ≤ M) are compared with each other, resulting in the

following equations

 

(15)

(16)

For the case of m = 1, there are only three equations for the four unknown quantities of the real

and imaginary parts of A1 and B1, respectively, so these equations are unsolved. For this reason, the

condition that the rigid body rotation is zero is additionally introduced, resulting in the following

equation (Kawakubo et al. 1996)

(17)

where 

 (18)

By adding Eq. (17) to Eq. (15), A1 and B1 can be obtained completely. 

4. Results and discussion

4.1 Stress analysis
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was set equal to E1 for both cases. The author’s method is not valid for E2/E1 = 1.0, so E2/E1 = 0.98

is chosen for the near-isotropic case. 

In an analysis using a series as in the present study, the convergence and the accuracy of the

calculated value must be always discussed. The number of terms M in Eq. (11) affects the

calculated values. A large number of terms is necessary for problems involving concentrated force,

because the resultant forces are represented as step functions. An and Bn converge to zero with two

hundred and fifty terms. The error is 6% with one hundred terms, 3% with one hundred fifty terms

and 1% with two hundred terms. In this paper, calculations were carried out with two hundred fifty

terms.

In each case, the distribution of the tensile stress on the loading radius is symmetrical. It can be

observed that the uniform tensile stress occurs along the loading axis except at the loading points

under the near-isotropic condition. For ϕ = 0o, 15o, 75o, and 90o, the maximum is found at |x/a| >

0.9, and the minimum at the center of the specimen. For the case of ϕ = 30o and ϕ = 60o, the

maximum is found in a very narrow range around x/a = 0.98, as is the case with the analysis for the

plane stress condition. In the analysis for the plane stress condition, the maximum was found at this

Fig. 4 Distribution of tensile stress for various directions of elastic axis 
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position from the analysis based on the theoretical solution for loading widths of 8, 4 and 2 % of

the circumference, same as results from the finite element analysis. Taking account of this fact,

these phenomena, particularly when observed during concentrated loading, are considered as noise

due to the Gibbs phenomenon caused by Fourier series expansion of the stepwise loading.

Consequently it is reasonable to regard the local maximum found at the center of the specimen as

maximum. The maximum values of the tensile stress for ϕ = 0o, 45o, and 90o are respectively 1.55,

1.31 and 1.02 times larger than those of the isotropic case for E2/E1 = 2.0, and 3.08, 1.49 and 0.86

times larger than those for E2/E1 = 5.0. For ϕ = 0o, namely for the application of load in the

direction of small elastic modulus, the maximum values of the tensile stress for E2/E1 = 5.0 are

larger than those for E2/E1 = 2.0. For ϕ = 45
o, the maximum values for E2/E1 = 5.0 are still larger

than those for E2/E1 = 2.0, but the difference is smaller in comparison with the case of ϕ = 0
o. In

contrast, for the case of ϕ = 90o, in which the loading is made to the direction of large elastic

modulus, the maximum values of the tensile stress for E2/E1 = 5.0 are smaller than those for E2/E1 =

2.0.

Fig. 5 shows the relation between the angle of the direction of E1 to the loading direction ϕ and

the distance between the center of the specimen and the point where the maximum tensile stress on

the loading radius occurs. The orthotropy ratio E2/E1 was set to 1.5, 2.0, 3.0, 4.0 and 5.0. Also, the

distance is normalized by radius a of the specimen. For all orthotropy ratios, the maximum tensile

stress occurs near the loading point when the angle between the direction of E1 or E2 and loading

direction is small. Furthermore, the maximum tensile stress occurs at the center of the specimen

between ϕ = 23.5o and ϕ = 70.5o for E2/E1= 1.5, 27.5o and 70.0o for 2.0, 31.5o and 71.5o for 3.0,

32.5o and 73.5o for 4.0, and 32.5o and 75.5o for 5.0, respectively.

Fig. 6 shows a comparison of the distribution of the tensile stress on the loading radius under the

plane strain condition with that under the plane stress condition for ϕ = 0o, 45o and 90o. The tensile

stress is normalized by the tensile stress P/(πa) which occurs uniformly on the loading radius when

the specimen is isotropy (Tsutsumi and Hirashima 2000). (a) shows the results for E2/E1 = 2.0 and

(b) for E2/E1 = 5.0, where the solid lines represent the plane strain condition and the dotted lines the

plane stress condition. For ϕ = 0o and ϕ = 90o under the plane strain condition, as well as under the

plane stress condition, the maximum is found at around x/a = 0.95 and the minimum at the center

of the specimen. For ϕ = 45o, the maximum is found at the center of specimen. For ϕ = 0o, the

Fig. 5 Relation between the angle ϕ and distance at which maximum tensile stress occurs
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maximum value of the tensile stress under the plane strain condition is larger than that under the

plane stress condition. For ϕ = 45o, the maximum value under the plane strain condition is only

slightly larger than that under the plane stress condition. In contrast, for ϕ = 90o the maximum

value of the tensile stress under the plane stress condition is larger than that under the plane strain

condition. It addition, the difference between the maximum values under the two conditions is larger

in the case of E2/E1 = 5.0 than in the case of E2 / E1 = 2.0. 

Fig. 7 shows the relation between the orthotropy ratio and the maximum tensile stress for ϕ = 0o

and ϕ = 90o under the plane stress condition, normalized by the tensile stress P/(πa) which occurred

in the isotropic case. The solid lines denote the plane strain condition and the dotted lines the plane

stress condition. For ϕ = 0o, i.e., when the concentrated load is applied to the direction of smaller

elastic modulus, the maximum values of the tensile stress increase with the increase of the isotropic

ratio for the both conditions. The maximum tensile stress under the plane strain condition is larger

than that under the plane stress condition, and the difference increases with increasing the

orthotropy ratio. For E2/E1 = 5.0, under the plane stress condition, a maximum tensile stress of about

Fig. 6 Distribution of tensile stress under plane stress and plane strain conditions 

Fig. 7 Relation between orthotropy ratio and maximum tensile stress
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2.6 times larger than that of the isotropic case is found, while under the plane strain condition a

maximum tensile stress of about 3.1 times larger is found. For ϕ = 90o, i.e., when the concentrated

load is applied in the direction of large elastic modulus, the maximum tensile stress increases

slightly up to the orthotropy ratio of 2.5 under the plane stress condition, and up to the orthotropy

ratio of 2.2 under the plane strain condition. Above these orthotropy ratios, the respective maximum

tensile stresses start to decrease. In contrast to the case of ϕ = 0o, the maximum tensile stress under

the plane strain condition is smaller than that under the plane stress condition. For E2/E1 = 5.0, a

similar maximum value of which magnitude is similar as that of the isotropic case is obtained under

the plane stress condition, while the maximum value under the plane strain condition is 0.86 of that

of the isotropic case under the plane strain condition. 

4.2 Displacement analysis

The authors’ method also enables displacement analysis to be performed for orthotropic material,

because the complex coefficients in Eq. (11) can be determined completely.

Fig. 8 shows the deformation of the surface under diametrical compression in the case of E2/E1= 5.0.

The value of displacement in each figure is multiplied by 0.05E1a/P to draw these displacements in

this figure. Here, the angle of the direction of E1 with respect to the loading axis ϕ was set to 0
o,

30o, 60o and 90o. (a) shows the deformations under the plane strain condition and (b) under the

plane stress condition. It can be observed that the deformation under the plane strain condition is

nearly the same as that under the plane stress condition for all angles. For ϕ = 0o and 90o, namely

when the loading direction is the same as the direction of principal material axis, the deformation is

occurred in the loading direction at the loading points. Also, the displacement for ϕ = 0o is larger

than that for ϕ = 90o because the Young’s modulus along the loading direction for ϕ = 0o is smaller

than that for ϕ = 90o. For ϕ = 30o, the deformation tends to occur in the direction of decreasing the

Young’s modulus though the displacement in the loading direction is the same as that for ϕ = 0o.

For ϕ = 60o, the displacement in the loading direction is smaller than that for ϕ = 30o, though the

displacement perpendicular to the loading direction is smaller than that for ϕ = 30o at the loading

point.

Fig. 8 Deformation of circular specimen under diametrical compression
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Fig. 9 shows the displacement ux on the loading radius for E2/E1= 5.0. The displacement is

multiplied by E1a/P to make it the dimensionless value. Here, the angle of the direction of E1 with

respect to the loading axis ϕ was set to 0o, 15o, 30o, 45o, 60o, 75o and 90o. For all angles, the

maximum displacement appears at the loading point. The displacement decreases as the distance

from the loading point increases, and the displacement is zero at the center of the specimen.

Furthermore, the distribution of the displacement on the loading radius is symmetrical for all angles.

In this figure, the maximum displacement appears for ϕ = 15o at the loading point. The second

largest displacement appears for ϕ = 30o, and the third largest displacement for ϕ = 0o. The

differences between these displacements are very small. Above ϕ = 30o, the displacement at the

loading point decreases as the angle ϕ increases.

Fig. 10 shows the relation between the orthotropy ratio and the displacement in the loading

direction at the loading point. The displacement is multiplied by E1a/P to make it the dimensionless

value. The solid lines denote the plane strain condition and the dotted lines the plane stress condition.

Here, the angle of the direction of E1 with respect to the loading direction ϕ was set to 0
o, 45o and

90o. For all cases, the displacement under the plane strain condition is larger than that under the plane

stress condition. For ϕ = 0o, the displacement increases as the orthotropy ratio increases. In this case,

the Young’s modulus perpendicular to the loading direction increases as the orthotropy ratio increases.

For ϕ = 45o, which is the intermediate value between 0o and 90o, the displacement also increases as

the orthotropy ratio increases. For ϕ = 90o, on the other hand, the displacement decreases as the

orthotropy ratio increases because the Young’s modulus in the loading direction increases as the

orthotropy ratio increases. For all angles, the displacement under the plane strain condition is larger

than that under the plane stress condition. However, it can be observed that the difference between

the displacement under the plane strain condition and that under the plane stress condition is almost

constant for ϕ = 0o and 45o, and increases slightly for ϕ = 90o as the orthotropy ratio increases. 

Fig. 11 shows the relation between the angle of the direction of the Young’s modulus E1 with

respect to the loading direction and the displacement in the loading direction at the loading point. The

value of the displacement is multiplied by E1a/P to make it the dimensionless quantity. The solid

lines denote the plane strain condition and the dotted lines the plane stress condition. Here, the

orthotropy ratio E2/E1 was set to 2.0, 3.0, 4.0 and 5.0. For all orthotropy ratios, the displacement

Fig. 9 Displacement u
x
 along loading radius Fig. 10 Relation between orthotropy ratio and

displacement at loaded point 
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under the plane strain condition is smaller than that under the plane stress condition. For E2/E1=2.0,

the maximum displacement appears at ϕ = 0o and the displacement decreases as angle ϕ increases

under both conditions. The displacement at ϕ = 0o increases, though that at ϕ = 90o decreases as the

orthotropy ratio increases. The maximum displacement that appears at ϕ is around 20o except when

E2/E1= 2.0. Also, the difference between the maximum displacement and the displacement at ϕ = 0o

increases as the orthotropy ratio increases. For all orthotropy ratios, the displacement under the plane

strain condition is larger than that under the plane stress condition. However, it can be observed that

the difference between the displacement under the plane strain condition and that under the plane

stress condition is almost constant though the angle ϕ increases for all orthotropy ratios.

Fig. 12 shows the distribution of the displacement perpendicular to the loading radius on the

loading radius. The value of the displacement is multiplied by E1a/P to make it the dimensionless

value. Here, the angle of the Young’s modulus E1 with respect to the loading axis ϕ was set to 0
o,

15o, 30o, 45o, 60o, 75o and 90o. For ϕ = 0o and 90o, i.e., when the loading axis is in the same

direction as the principal elastic axis, the displacement does not appear. For other angles, the

maximum displacement appears at the loading point, and the displacement disappears at the center

of specimen. Furthermore, the displacement at the loading point tends to occur in the direction of

decreasing the Young’s modulus. However, it can be observed that the displacement in the direction

of decreasing the Young’s modulus appears inside the specimen for ϕ = 15o and 30o.

4.3 Relation between deformation and tensile stress on loading axis

Fig. 13 shows the relation between the tensile stress occurring on the loading axis and the

deformation of the surface. (a), (b), (c) and (d) show ϕ = 0o, 30o, 60o and 90o respectively. The

orthotropy ratio was set to E2/E1 = 5.0. The solid lines denote the deformation of the surface, the

broken lines the tensile stress on the loading radius, and the dotted lines the initial shape of the

surface. The tensile stress is normalized by 5P/(πa) to make it the dimensionless value, and the

value of displacement is also multiplied by 0.05E1a/P to draw it in these figures.

For ϕ = 0o and 90o, i.e., the direction in which the principal elastic axis is same as that in the

loading direction, the deformation appears in the loading direction at the loading point, and the

Fig. 11 Relation between orthotropic direction and
displacement at loading point

Fig. 12 Distribution of displacement perpendicular to
loading direction 
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maximum tensile stress occurs near the loading point. The tensile stress on the loading radius

decreases as the distance from the loading point increases, and the minimum tensile stress occurs at

the center of the specimen. For both cases, it seems that the effect of the deformation on stresses is

largest near the loading point because the tensile stresses near the loading points occur due to

deformation along the loading axis. The maximum tensile stress and the displacement at the loading

point for ϕ = 0o are larger than those for ϕ = 90o. For ϕ = 30o, the direction of deformation at the

loading point does not correspond to the loading direction. Also, the maximum value and the

minimum value do not appear clearly. For ϕ = 60o, the direction of the deformation at the loading

point does not also correspond to the loading direction, and the angle between these directions is

larger than that for ϕ = 30o. For both cases, it seems that stresses which occurred at the center are

lager than those for ϕ = 0o and 90o because the deformation does not correspond to the loading

direction. 

5. Conclusions

For the diametrical compression tests of orthotropic materials, an analysis with a theoretical

Fig. 13 Relation between distribution of tensile stress and deformation
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solution has been presented by Chen et al. (1998), Exadaktylos and Kaklis (2001), Exadaktylos

(2001) and Claesson and Bohloli (2002), and another analysis based on the finite element method

has been presented by Lemmon and Blackketter (1996). However, these analyses are made under

the plane stress condition and their application is limited to tests on thin specimens.

In this paper, the authors made up an equation lacking in Lekhnitskii’s theoretical solution and

presented a model of the problem under the plane strain condition. This permitted a numerical

analysis not only of tensile stress but also of the displacement obtained under diametrical

compression tests for column-shaped specimens of orthotropic materials. In addition, the

concentrated stress, which could not be represented by the finite element method, can now be

successfully represented.

From the present numerical results, it can be observed that the distribution of tensile stress on the

loading radius depends on the angle between the loading direction and the principal elastic axis, as

in the case of the plane stress condition. In addition, it has been found that the tensile stress under

the plane stress condition and that under the plane strain condition are different, and that the

difference increases with increasing the orthotropy ratio. Furthermore, the deformation of the

surface and the displacements on the loading radius are calculated and compared with the

corresponding values under the plane stress condition in graphical form. Finally, the relation

between the deformation and the distribution of tensile stress on the loading radius are shown in

graphical form.
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