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Abstract. The paper constitutes the second part of the author’s study. The first part (Podworna 2010)
formulates four fundamental tasks in dynamics of the bridge-track-train systems. The following cyclic
moving loads are considered: a concentrated forces stream (model P), an unsprung masses stream (model
M), a single-mass viscoelastic oscillators stream (model M,) and a double-mass viscoelastic oscillators
stream (model MM,). Three problems precluding to the numerical simulations have been developed, i.e.,
prediction of the forced resonances, the parameters of integration of equations of motion, the output
results. A computer programme was written in Pascal and numerical research in the scope of the
fundamental tasks was worked out. The investigations were focused on adequacy evaluation of the
moving load models, P, M, M,, MM,, in predicting dynamic processes in railway bridges.

Keywords: bridge-track-train system; fundamental tasks; bridge beam; moving elements streams; one-
way contact; numerical simulations.

1. Introduction

In the first part of this study (Podworna 2010) the author developed a new concept of the
fundamental tasks in dynamics of the bridge-track-train systems (BTT), with special attention on
evaluating moving load’s models adequacy. The 2D physical models of BTT systems, corresponding
to the fundamental tasks, have been worked out taking into account one-way constraints between
the moving unsprung masses and the track. A method for deriving the implicit equations of motion,
governing vibrations of BTT systems’ models, as well as algorithms for numerical integration of
these equations, leading to the solutions of high accuracy and relatively short times of simulations,
have been developed as well.

Recent references concerning the moving load problem (Cojocaru 2004, Garinei 2006, Yau 2007,
Yau 2008, Bilello 2008, Fryba 2009, Muscolino 2009, Yau 2009, Wu 2010, De Salvo 2010, Liu
2011) have been discussed in the first part of this study (Podworna 2010). These references show
that simplified analytic and analytic — numerical methods in dynamics of structures under moving
loads are still developed. The writers adopt simplified models of vehicles or trains in the form of
streams of forces, mass particles or oscillators without verification of adequacy of these models to
reality.
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In this study the following cyclic moving loads are considered (Podworna 2010): a concentrated
forces stream (task 1 — model P), an unsprung concentrated masses stream (task 2 — model M), a
single-mass viscoelastic oscillators stream (task 3 — model M,) and a double-mass viscoelastic
oscillators stream (task 4 — model MM,). The numerical simulations are precluded to prediction of
the forced resonances, description of the parameters of integration of equations of motion, and
description of the output results. A computer program was developed in Pascal and the numerical
research in the scope of the fundamental tasks was developed. The investigations are focused on the
adequacy evaluation of the moving load models, P, M, M,, MM,, in predicting dynamic processes
in railway bridges. Numerical simulations were performed in the base of dimensionless parameters
corresponding to the selected steel railway bridge of 15.00 m span length loaded by a Shinkansen
high-speed train.

2. Shortened description of fundamental tasks

The fundamental tasks are as follows (Podworna 2010):

1) transient and quasi-steady-state vibrations of an Euler-Bernoulli beam under a cyclic stream of
concentrated forces (model P),

2) transient and quasi-steady-state vibrations of an Euler-Bernoulli beam under a cyclic stream of
concentrated unsprung masses (model M),

3) transient and quasi-steady-state vibrations of an Euler-Bernoulli beam under a cyclic stream of
single-mass viscoelastic oscillators (model M,),

4) transient and quasi-steady-state vibrations of an Euler-Bernoulli beam under a cyclic stream of
a double-mass viscoelastic oscillators (model MM,).

Assumptions in physical modelling of above noted systems, matrix equations of motion and
numerical integration algorithms have been developed in the first part of this study (Podworna
2010). Among the others it was assumed that:

1) the beam — moving load system is physically and geometrically linear in respective time

subintervals,

2) an Euler-Bernoulli beam is prismatic, inertial, deformable in flexure and made of viscoelastic

material,

3) the load moves along the track at a constant horizontal velocity.

The considered systems are described by the following dimensional and dimensionless parameters:

/ - a span length of the bridge beam [m],

m - beam mass per unit length [kg/m],

E - a Young’s modulus for the beam material [Pa],

Iy - an inertia moment of the beam cross-section with respect to the horizontal central axis [m*],
El, - bending stiffness of the beam [N-m?],

14 - a damping ratio for the beam,

1% - moving load’s horizontal velocity (service velocity) [m/s],
P - a concentrated force in model P [N],

M - a concentared unsprung mass in models M, MM, [kg],
M, - a concentared sprung mass in models M. MM, [kg],

k, - suspension stiffness for mass M, [N/m],

Co - a suspension damping coefficient for mass M, [N-s/m],
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Fig. 1 The beam dynamic deflection, w(x, #), and the interaction position, R(¢)

ki - contact stiffness,

by, b, - distances between concentrated moving elements representing the axial distance of trucks
(by) and length of a repeatable vehicle (b, + b,).

Vertical deflection of the beam is approximated with a sine series meeting Ritz’s conditions, i.e.

(Fig. 1)

w(x,1) = q'(0s(x) = 5" (¥)a(1) (M
where
() = [¢:(0,42(1), -+, 4,(D]
s(x) = [sinzé& sin27&, ..., sinnzs]”, E= )?“ 2)
while
X - an abscissa in the xz planar coordinate system,
t - atime variable,
q(?) - a vector of Lagrange’s generalized coordinates for the beam,
s(x) - an approximate functions vector (a sine series).
The following values will occur in the description of the output results
§=§; T:v7t, R(7); i=1,2,...,N; ky=8-10°N/m 3)

where £ is a relative abscissa, R,(7) is an interaction between the ith moving element and the track,
ky 1s contact stiffness. Variable 7 is dimensionless and determines the relative position of the first
interaction in relation to the beam left support. The use of the 7 variable makes possible to put on
time histories of a given quantity for different service velocities as well as to put on the dynamic
curve on a quasi-static one.

3. Prediction of the forced resonances

An Euler-Bernoulli beam representing a railway bridge and a moving elements stream
representing a train consisted of repeatable rail-vehicles are geometrically bounded objects. In the
case of a moving forces cyclic stream, forced resonances resulting from periodicity of the moving
load in relation to the beam may occur.
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The fundamental eigenperiod of a simply supported beam equals 7, = 1/f;, where (Langer 1980)

El
fi== = )
207N m
is the fundamental natural frequency of the beam. A set of eigenperiods in decreasing order is
expressed by the well-known formula
T
Sl =12, )
JTh
The fundamental period of the beam vibration excitation, resulting from a moving forces cyclic
stream, amounts to 7 = (b, +b,)/v. Periods of subsequent harmonic components of Fourier’s series
for the periodic beam excitation equal

Tj:

T<:Z b, +b,

1

—, i=1,2,... ©6)
l 1A%

After considering Egs. (5), (6), the T;=T; forced resonance occurs at the resonance service
velocity

v=v, = 3»,6].7_2(b1 +b,)f1 [km/h] @)

Beam vibrations in all the tasks are transient processes that tend to steady-state processes. In the
case of model P a classical task occurs in the form of forced vibrations of a periodically linear
discrete system. In other cases the additional factors extending transient process duration occur, i.e.:

a) model M:

o forced and parametric excitation,
o the possibility of separation and recontact of moving masses M with the track (impact loads),

b) model M,

o forced and parametric excitation,
e time-varying interactions tending to the steady state simultaneously with the beam,
¢) model MM,
o forced and parametric excitation (slighter than in model M),
o the possibility of separation and recontact of moving oscillators MM, with the track (impact
loads slighter than those in model M),
e transient vibrations of masses M, tending to the steady state simultaneously with the beam.

4. Parameters for numerical integration of equations of motion

The dynamic process including the passage of the moving elements stream through the beam and
the interval of beam free damped vibrations is simulated numerically. The simulations have been
performed for the passage of the train consisted of 5 repeatable vehicles. The real time of the
dynamic process amounts to

[+6(b,+b
16y tby)

P

®)

v
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In the dynamic response of the B-S system (beam — moving elements stream system) the
oscillations with the highest frequency 7 occur, among the others. The Newmark average
acceleration method (fy=1/4,y,=1/2) (Newmark 1959) applied in the algorithms is
unconditionally stable and not affected with an amplitude error. A time step is given from the
accuracy condition put on the period error for oscillations with frequency 7. A time step is
assumed as equal to

h=1027=2U )
f
where 7 is a period of oscillations of frequency 7. This value of the time step protects technical
accuracy of the numerical results. The highest frequency f depends on the considered system and
can be evaluated from the set of the local frequencies of insulated subsystems, i.e.
1) the beam eigenspectrum dominant:

fo=nt, (10)
2) the local frequency of oscillator M, k.
1 Jky
= [M 11
Tu= 5l (1
3) the local frequency of oscillator M,, k,:
1 [k
|—J— _0 12
Jo 27N M, (12)

4) frequency of 10" harmonic component of periodic excitation (the influence of higher
components is negligible)

fi= 1oblib2 (13)
Evaluation of the highest frequency 7 has the form:
1) model P: f = max[f,,£] (14)
2) model M: 7 =max[f,,fin/.] (15)
3) model M,: 7 =max[f,.f,. /] (16)
4) model MM, f = max[f,, fipfonfi] (17)

Number of time steps of value # amounts to N, = Tp/h. The extreme values of output quantities
are searched in all time steps. Parameter ¢ in the iteration ending condition is assumed as equal to
£=10"P. The allowed number of the iterations is assumed to be equal 15.

5. Output quantities

Output quantities are selected as follows:
1) time histories of beam deflections in the selected cross-sections,
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2) time histories of normal stresses in the bottom fibres of the beam in the selected cross-sections,
3) time histories of the interactions between concentrated moving elements M, M,, MM, and the
track,

4) dynamic coefficients of the beam deflections,

5) dynamic coefficients of the normal stresses in the beam,

6) loading and unloading coefficients of concentrated moving elements M, M,, MM,,

The quasi-static time histories of the output quantities constitute the background for the dynamic
time histories. The quasi-static solution is the same for all moving elements streams and described
with the matrix equation

{K}q,,(7) = PS(7)1 (18)
Solving Eq. (18), one obtains
2PP
q,,(7) = P{K}"'S(7)1 = =—{d}"'S(9)1 (19)
El,

In Egs. (18), (19) the following quantities occur (Podworna 2010): {K} — a beam stiffness
matrix, S(7) — a matrix following moving elements’ positions, 1 — a unit vector, {d} — a
differentiating diagonal. Symbol q,,(7) denotes generalized coordinates for the beam in the quasi-
static conditions. Interaction forces in the quasi-static conditions are equal to static pressures of
moving elements which amounts to P.

There are examined two characteristic cross-sections of the beam of abscissas x = 0,50/;0,75/
that result in & = 0,50;0,75 . Dynamic and quasi-static time histories of the beam deflections in the
examined cross-sections are equal to (vide Egs. (1), (2))

w(&l, 7) = q'(D)s(&)

Wes(£1,7) = 4y, (DS(8) (20)
A dynamic bending moment in the cross-section at the beam abscissa x amounts to
2
M(x, 1) = —Elba—w - —£1,q'SS = ElrgTays @1)
ox” ox /

A bending index of a beam cross-section in relation to the bottom fibres equals W, = I,/h,,
where /4, is the distance of the bottom fibres from the horizontal central axis, y, of the cross-section.
Normal stresses in the bottom fibres amount to

M(x t) bE]b T
Wy Ib

Ehb T

o(x, 1) = q'{d}’s q'{d}’s (22)

Based on Eq. (22) the dynamic and quasi-static time hlstorles of normal stresses in the beam
bottom fibres are described by the formulae

(&, 7) = E”bq (){d)’s(9)

o (&1, 7) = Ehbq;( {d}’s(&) 23)
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Dynamic coefficients for displacements and normal stresses in the investigated beam cross-
sections are defined as follows

_ max w(¢, 7)
0.8 = ST,
o) = SO D (24)

max qus( 59 T)

Dynamic coefficients for deflections and stresses are related to transient processes corresponding
to the passage of the train composed of 5 repeatable rail-vehicles. Increasing number of vehicles
may change values of these coefficients.

Dynamic time histories of interactions R;(7), i =1,2,...,N are calculated in the collocation
points for models M, M,, MM,. Quasi-static time histories of the interactions for the analysed
models are constant in time, i.e.

R, (7)) =P (25)

The loading and unloading coefficients of concentrated moving elements M, M,, MM, are defined
as follows

;= %)max R(7), i=1,2,..,.N

pi=113min R(2), i=1,2,..,N (26)
The loading and unloading coefficients for streams M, M,, MM, are defined by the formulae
maxgp=max ¢;, i=12,..,N

minpz =min ¢, i=1,2,...,N (27)

6. Dynamic analysis of the fundamental tasks
6.1 Values of system parameters and numerical integration parameters

The fundamental tasks reflect a selected railway bridge loaded with a selected high-speed train.
An Euler-Bernoulli beam represents a simply supported bridge span corresponding to a single track.
The bridge superstructure is made of structural steel. The beam parameters’ values correspond
approximately to the SB15 bridge belonging to some type-of-series (Klasztorny 2005) and are equal
to

1=15.00m, m=5000kg, h,=0.80m
E =206-10° Pa, £, = 7.00 Hz, = 0.004

Inertia moment 7, is calculated from Eq. (4).
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A moving elements stream approximately reflects a Shinkansen train; each vehicle is b,+b, =
25.00 m long and has the truck axial distance b; = 17.50 m. The body mass equals 40 000 kg, two
two-axle truck frames mass is equal to 10 000 kg, and four wheel sets mass amounts to 10 000 kg.
The local natural frequency for the vehicle body amounts to f, = 1.00 Hz, and local damping ratio
of the suspension equals 7, = 0.10. The maximum service velocity equals 280 km/h (Klasztorny
2005).

The four-axle rail-vehicle has been modelled with two moving elements MM,, which parameters
take the following values (Klasztorny 2005):

M, = 25000 kg, M = 5000 kg, £, = 1.00 Hz, y,=0.10
k, = M,(2xf,)* = 987000 N/m, c, = 27,./k,M, = 31400 Ns/m

Parameters describing the simplified models P, M, M, take the following values:

a) model P: P =294300 N
b) model M: M = 30000 kg
¢) model M,;: M, = 30000 kg, £, = 1.00 Hz, y,=0.10

k,= M,(2xf,) = 1185000 N/m, ¢, = 2y,./k,M, = 37700 Ns/m

Common parameters for models P, M, M,, MM, have the values:
P =294300 N, &k, = 8-10° N/m, b,+b,=2500m, b, =17.50m, N =10

Numerical simulations have been performed for service velocity interval v e [80;360] [km/h]. In
this interval the condition described by Eq. (9) if satisfied for time step 4 = 107 s. Remaining
numerical parameters have been assumed to be equal to

n=10, £=0.001 N, L, =15

where L;is an admissible number of iterations for models M, M,, MM,
6.2 Prediction of the resonance velocities

The resonance velocities of concentrated forces cyclic stream P were calculated from Eq. (7),
where index 7 is a number of the beam excitation harmonic component, and j is a number of the
beam eigenfrequency. Predicted values of the resonance velocities, v;;, are set up in Table 1. For the
considered system there are possible resonant service speeds corresponding to the beam
fundamental modal system and excitation harmonic components i = 2,3,4,.... Contributions of
subsequent harmonic components are checked via numerical simulations of transient vibrations of
the system.

Table 1 Values of resonant service speeds subset for moving load P

. v; [km/h]
/ i=1 i=2 i=3 i=4 i=5 i=6 i=7
1 630 315 210 157,5 126 105 90

2 2520 1260 840 630 504 420 360
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6.3 Numerical simulations

Dynamic analysis presented in this study is focused to evaluation of the adequacy of moving
loads models P, M, M,, MM, to reality. The simulations have been performed for systems
approximately reflecting the selected railway bridge and the selected high-speed train. The influence
of basic factors of cyclic moving loads to dynamic responses of the system in undertaken, i.e. the
influence of unsprung masses of moving elements, the influence of sprung masses of moving
elements, the influence of viscoelastic suspensions of moving elements.

Based on the analytical description of fundamental tasks as well as on algorithms for numerical
integration of explicit/implicit equations of motions (Podworna 2010), the author has developed a
computer programme in Pascal for numerical simulation of dynamic and quasi-static processes of
the considered systems. The results in the scope of dynamic coefficients for deflections and normal
stresses in the selected beam cross-sections as well as the loading and unloading coefficients for
streams M, M,, MM, are presented in Figs. 2-7.

In order to illustrate qualitative and quantitative differences in dynamic responses of the examined
systems, related to models P, M, M,, MM,, resonance velocity v3; = 210 km/h has been chosen. The
results are shown in the form of dynamic and quasi-static time histories of deflections and normal
stresses at the x = 0.50/ cross-section (Figs. 8, 9) as well as in the form of time histories of the 8"
interaction (the back truck of the 4™ vehicle, Fig. 10).

Based on Figs. 2-5 the following conclusions can be formulated:

1) For model P one can observe forced resonances corresponding to resonant service speeds

Va1, V31> Vat» Ver» V71 - Maximum dynamic coeeficients are related to speeds v,;, v5, .

2) The resonant service speeds for model P are also valid for model M,, while the dynamic
coefficients take lower values for model M, because of stabilizing influence of sprung masses
(inertia) as well as of suspension damping influence.

3) For model MM, one may observe a shift of the resonances to the left what results from
decreasing the system eigenfrequencies (the parametric excitation effect).

4) Dynamic coefficients’ diagrams for model M substantially differ, both qualitatively and
quantitatively, from the diagrams corresponding to remaining models. Thus, model M is
inadequate.

Model MMo

80 120 160 200 240 280 320 360
v [km/h]

Fig. 2 The impact factor for deflection w(0.50/, f)
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Fig. 3 The impact factor for deflection w(0.75/, £)
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Fig. 5 The impact factor for normal stress o(0.75/, 7)
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Fig. 6 The maximum dynamic interaction for the finite cyclic streams
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Fig. 7 The minimum dynamic interaction for the finite cyclic streams
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Fig. 8 Deflection w(0.50/, ) versus relative time 7 for service velocity v =210 km/h
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Fig. 9 Normal stress o(0.501, 7) versus relative time t for service velocity v =210 km/h

— M =—MMo Mo
25
1=15m, v=210 km/h
2
3
15 A
o
1 =
05
0 T T t T T
5 6 75 8 9 10 "

3 &

Fig. 10 Relative interaction Rg(7)/P versus relative time 7

5) The resonant states for models M, M,, MM, may led to beam dynamic stresses exceeding even
three times quasi-static stresses.

From diagrams presented in Figs. 6, 7 one can conclude that:

6) Loading coefficients for model M reach values >>5 for v=170 km/h and for v> 285 km/h.
Unsprung masses in model M separate from the track at v> 130 km/h, what is inadequate to
reality.

7) Loading coefficients for model MM, take realistic values. Unloading coefficients are safe for
v<190 km/h. In the intervals for v=210-215km/h and v>295km/h there occur
microseparations of double-mass oscillators from the track.

8) Loading and unloading coefficients for model M, slightly differ from the values for model P
what is inadequate to reality.
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Figs. 8-10 give the following conclusions:

9) For model P, at v=210 km/h time histories of deflections and normal stresses show the forced
resonance of the 3™ harmonic excitation component to the 1 beam modal system. Increase of
number of vehicles would lead to further increase of beam dynamic response.

10) For model M, at v =210 km/h time histories of deflections and normal stresses do not exhibit
any resonant state.

11) For model M,, at speed v=210 km/h time histories of deflections and normal stresses also
show the forced resonance of the 3™ harmonic excitation component to the 1% beam modal
system but with lower dynamic effects (see the explanation in conclusion 2).

12) For model MM,, at v=210 km/h one can observe going out from the forced resonance of the
3" harmonic excitation component to the 1% beam modal system (see the explanation in
conclusion 3).

13) Time histories for interaction Rg(7) differ significantly from each other in relation to models
M, M,, MM,. Model MM, is closest to reality. For this model, one may observe
microseparation of the oscillator from the track during crossing the beam right support and
free damped vibrations of the oscillator after this crossing. Model M results in inrealistic
leaping along after passing by the bridge.

7. Conclusions

The study presents the results of dynamic analysis in the range of the fundamental tasks in
dynamics of railway bridges under high-speed trains. The simulations have been performed with the
use of the author’s computer programme. The dynamic analysis has been carried out for the system
modelling approximately the steel bridge of 15.00 m span length and a Sinkansen train composed of
5 rail-vehicles.

The following final conclusions are formulated:

1) Modelling high-speed rail-vehicles requires taking into account unsprung masses, sprung

masses and viscoelastic suspensions. Model MM, having these features is rather too simplified. It

is suggested to reflect wheel sets modelled separately, sprung truck frames, sprung vehicle body
and viscoelastic suspensions of the 1% and 2™ stage.

2) In the case of repeatable rail-vehicles there may occur resonant states, thus a total number of

vehicles as well as damping factors should be taken into account in dynamic simulations.

3) Model M exhibits large differences, both qualitative and quantitative, in comparison to model

MM,, so model M is assessed as inadequate to reality.

4)Model P is close to reality but in resonant states one may observe some shifts from the

resonances and too increased values of dynamic coefficients when compared to model MM,

5) Model M, gives the results also close to reality but in the resonant states some shifts from the

resonances and slight increase of values of dynamic coefficients may occur when compared to

model MM,

6) Model MM, is the most adequate to reality in the scope of simplified train models undertaken.

7) One-way constraints between wheel sets and rails should be taken into consideration in

modelling high-speed rail-vehicles. Derailment risk should be analyzed for high velocities of

trains.
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