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The numerical solution of dynamic response of SDOF 
systems using cubic B-spline polynomial functions
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Abstract. In this paper, we present a new explicit procedure using periodic cubic B-spline interpolation
polynomials to solve linear and nonlinear dynamic equation of motion governing single degree of freedom
(SDOF) systems. In the proposed approach, a straightforward formulation was derived from the
approximation of displacement with B-spline basis in a fluent manner. In this way, there is no need to use
a special pre-starting procedure to commence solving the problem. Actually, this method lies in the case
of conditionally stable methods. A simple step-by-step algorithm is implemented and presented to
calculate dynamic response of SDOF systems. The validity and effectiveness of the proposed method is
demonstrated with four examples. The results were compared with those from the numerical methods such
as Duhamel integration, Linear Acceleration and also Exact method. The comparison shows that the
proposed method is a fast and simple procedure with trivial computational effort and acceptable accuracy
exactly like the Linear Acceleration method. But its power point is that its time consumption is notably
less than the Linear Acceleration method especially in the nonlinear analysis.
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1. Introduction

Solving the differential equation of motion governing the SDOF systems is done through various

methods. Because most of the time, the loading function is not a specific one, numerical methods

are our only option to solve this differential equation. Time integration methods are the most

suitable methods for nonlinear problems in structural dynamics and for dynamic analysis of very

large structures in which the equilibrium equations are solved at discrete times. In general, they

involve a solution of the complete set of equilibrium equations at each time increment. In the case

of nonlinear analysis, it may be necessary to reform the stiffness values for the complete structural

system for each time step. Also, iteration may be required within each time increment. It can take a

significant amount of time to solve structural systems with just a few hundred degrees-of-freedom.

Thus, today, we are mostly interested in those numerical methods which not only provide acceptable

accuracy and stability, but also solve a problem in the least possible time. The simulation of a

complex dynamic system requires a high efficient algorithm of time integration, with high accuracy
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and limited amount of computation. This requirement has attracted many researchers (Belytschko et

al. 1983, Ebeling et al. 1997).

Generally, there are two basic categories of step-by-step integration methods. One is explicit

(Chang 1997, 2010, Chung et al. 1994, Mullen et al. 1983, Rio et al. 2005) and the other is implicit

(Hilber et al. 1977, Houbolt 1950, Newmark 1959, Park 1975, Wilson et al. 1973). A method is

explicit if the equation of motion of the current time step is not used in determining the current step

displacement while it is implicit if that is involved (Bathe 1996). The most significant advantage of

explicit methods is that it is unnecessary to solve a system of equations or to involve any iterative

procedure in each time step, thus it usually requires considerably less computational effort per time

step and less storage is required than for implicit methods (Dokainish et al. 1989). This also leads

to an easy implementation of explicit methods. Almost all of the explicit time integration schemes

are conditionally stable and for a few of them with unconditional stability, the consistency is

conditional. It is the major disadvantage of explicit methods. Consequently, a very small time step

and thus a very large number of time steps may be needed in a time history analysis. This may not

be a disadvantage since the use of a very small time step can easily overcome the difficulty caused

by the linearization errors for nonlinear systems. In addition, explicit algorithms are very efficient

for shock response and wave propagation problems in which the contribution of intermediate and

high frequency structural modes to the response is important. The Newmark explicit method,

Central difference method and explicit Runge-Kutta method are the very commonly used explicit

methods. Meanwhile, since the implementation of an explicit method is much simpler than an

implicit method for performing pseudo-dynamic tests (Chang 1997, 2002), some explicit methods

have been developed for pseudo-dynamic tests.

In this study, a new explicit method is proposed using a family of piecewise polynomial

approximations called B-spline. Piecewise polynomial approximations are fundamental to geometric

modeling, computer graphics, data fitting, and finite element methods. For most applications, B-

splines have become a widely accepted standard because of their flexibility and computational

efficiency. In the recent years, Caglar et al. (2006a, b, 2009) used B-splines with various degrees to

solve several mathematical boundary values problems (BVPs). In the field of dynamic problems,

Liu (2002) employed piecewise Birkhoff interpolation polynomials for the solution of dynamic

response of MDOF systems. Liu (2001) extended a procedure to smoothen varying loading cases by

using the piecewise second or third degree Lagrange polynomial for linear SDOF systems. Inoue

and Sueoka (2002) presented a step-by-step integration scheme by utilizing the cardinal B-spline.

This very method just organized conventional implicit methods such as Newmark-β method and

Wilson-θ method, etc., to provide a simple computation procedure so that the step-by-step

integration can be carried out efficiently.

Regarding the potential ability of B-spline basis functions in interpolation and approximation and

also their order (degree) elevation property, using this function in the field of numerical calculation

is inevitable. We can introduce a B-spline curve as a linear combination of Basis functions by

specifying its order, control points and knot vector (Rogers 2001). As the theory of B-spline is a

very active field of approximation and solving differential equations, we tried to use this function as

a basis. Here, we describe the construction of cubic B-spline bases to approximate the response of

SDOF equation of motion as an initial value problem. Because the SDOF equation of motion is a

second order differential equation, we decided to use cubic B-spline interpolation function. Here,

cubic refers to the order of B-spline. In this way, using periodic cubic B-spline function results in a

new explicit procedure to find linear and nonlinear dynamic response of SDOF system. The use of
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single frequency facilitated the evaluation of the accuracy of the computed responses solved at

regular time increments during ground shaking. The consequence of implementing this approach is

a single-step explicit and straight forward formulation in a fluent manner. And as a result, the

displacement, velocity and acceleration values are submitted independently. Hence, decreasing the

solution formulation, reserving time during the analysis.

In section 4, we have investigated the numerical stability of this proposed method. This method is,

actually, one of the conditionally stable methods where its stability condition is the same as Linear

Acceleration method. The validity of the proposed method is illustrated with four examples in

section 5 where structural dynamic response for each one was characterized by the computed time-

history response of displacement, velocity, and acceleration. The results of these examples show that

the accuracy of this proposed step-by-step method depends on the time step value and frequency

characteristics of the ground motion or the load applied to the system. Actually, the goal of this

study is to introduce a new methodology to be a base for further studies on B-splines in order to

make use of them in dynamic analysis.

2. Overview of the B-splines

2.1 Piecewise polynomial

Generally, consider the piecewise polynomial, let  be a finite interval and we introduce

a set of partition  of  as knot vector, where ti is called knot of the

partition. The set of piecewise polynomials of degree d (or order k) defined on a partition Ω is

denoted by  in each subinterval  is a dth degree polynomial. Specifically,

consider the type of basis, B-spline, for our spline interpolation function, for which we only use the

equidistant partition. Moreover, we extend the set of knots by taking

, where 

A detailed description of B-spline functions generated by subdivisions can be found in De Boor

(1978).

2.2 Implicit definition

Let  be a partition of . A B-spline of degree d is a spline from  with

minimal support and the partition of unity holding. Let  denote the B-spline of degree d,

where  and then we have the following properties: 

• Supp ,

•  (non-negativity),

•  (partition of unity).

a b,[ ] R⊂
Ω t0 t1 t2 … tn, , , ,{ }= a b,[ ]

Pd Ωn( ) Ii ti 1– ti,[ ]=

h
b a–

n
----------- t0, a ti, t0 ih+= = = i ±1 ±2 ±3 …, , ,=

Ωn{ } a b,[ ] R⊂ Sd Ωn( )
Bi d, t( )

i Z∈

Bi d,( ) ti ti d 1+ +,[ ] or ti ti k+,[ ]=

Bi d, t( ) 0  ∀ t R∈≥

Bi d, t( ) 1  ∀ t R∈=
i ∞–=

∞

∑
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2.3 Explicit definition

Let  be a partition of , the zero degree B-spline are defined as follows

 (1)

and for degree d, it is defined as recursive formula in the following form 

(t) (2)

In this formula  is a polynomial of degree d on each interval  as  and its

derivatives of order 1, 2,…, d−1 are all continuous over the entire domain. Eq. (2) clearly shows

that the choice of knot vector has a significant influence on the B-spline curve. The only

requirement for a knot vector is that, it satisfies the relation  i.e., it is a monotonically

increasing series of real numbers (Rogers 2001).

Fundamentally, based on the arrangement of the knot vectors, B-spline functions are categorized

in periodic and open types where each type can have a uniform or non-uniform flavor (Rogers

2001). In a uniform knot vector, knot values are evenly spaced. In this work, as it was mentioned in

section 2.1, we preferred to make use of periodic and uniform types. Thus, for a specified order of

B-spline, periodic uniform knot vectors yield periodic uniform basis functions for which 

 (3)

Furthermore, in periodic type each basis function is simply a translation of the other one and the

range of nonzero function values spreads with increasing order. Thus, the basis function provides

support on the interval ti to .

For a uniform knot vector beginning at 0 with integer spacing, usable parameter range is

. Thus, for the cubic B-spline  which we have used in this work, in order to start

from , as shown in Fig. 1, we have to consider the Basis functions from .

2.4 Cubic B-spline interpolation

The cubic B-spline interpolation is a linear combination of the cubic B-spline basis as follows 

Ωn{ } a b,[ ] R⊂

Bi 0, t( )
1, ti t ti 1+≤ ≤

0, otherwise⎩
⎨
⎧

=

Bi d, t( )
t ti–

td i+ ti–
----------------⎝ ⎠
⎛ ⎞Bi d 1–, t( )

td i 1+ + t–

td i 1+ + ti 1+–
---------------------------⎝ ⎠
⎛ ⎞Bi 1+ d 1–,+=

B t( ) ti t ti 1+≤ ≤ B t( )

ti ti 1+≤

Bi d, t( ) Bi 1– d, t 1–( ) Bi 1+ d, t 1+( )= =

ti d 1+ +

td t tn d–≤ ≤ d 3=( )
t0 0= B 3– 3,

Fig. 1 Periodic cubic B-splines (usable range is from ti to ti+4) 



The numerical solution of dynamic response of SDOF systems 215

 (4)

where Ci (control points) are unknown real coefficients and  are third degree (cubic) B-spline

functions (De Boor 1978, Yingkang et al. 1995). A short description of cubic B-spline functions can

be found in (Caglar et al. 2006a, b, 2009).

Here, we apply the recursive formula (2) to get to the third degree B-splines which are defined as

 (5)

where,  and .

In this paper, as ti refers to time values and generally starts from zero ( ) and h is time

interval or , so B0,3 can be obtained as follows 

 (6)

as , .

Next we will have its first and second derivatives as  and , respectively. According to

the previous discussions, we can simply obtain other s and their derivates just by transference.

3. Implementation of cubic B-spline to solve the differential equation of motion 

A nonlinear differential equation of motion can be expressed as 

 (7)

subject to the initial conditions 

(8)

The applied force, , is given by a set of discrete values . The time interval

 is usually taken to be constant, although it is not necessary. The response is

determined at the discrete time instant ti, denoted as time i. The displacement, velocity and

acceleration of SDOF system are  and , respectively. These values, assumed to be known,

satisfy Eq. (7) at time i

 (9)

where  is the resisting force at time i and for a linear elastic system is kui but would depend on

Sd t( ) CiBi 3, t( )
i 3–=

n 1–

∑=

Bi 3, t( )

Bi 3, t( ) 1

6h
3

--------

t ti–( )3,                                                            ti t ti 1+≤ ≤
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3
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h
3
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2
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⎪
⎪
⎨
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⎪
⎧
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t∆

B0 3, t( ) 1

6h
3

--------

t
3
,                                           0 t h≤ ≤
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2
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3
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2
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2
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3
,   3h t 4h≤ ≤+ +⎩

⎪
⎪
⎨
⎪
⎪
⎧

=

Bi 3, t( ) B0 3, t ih–( )= i 3– 2– 1– …, , ,=

B0 3,
′ B0 3,
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Bi 3,

mu·· cu· fs u u·,( )+ + F t( )=

u 0( ) u0= ,  u· 0( ) u· 0=

F t( ) Fi F ti( )=

ti∆ ti 1+ ti–=

ui u· i, u··i

mu··i cu· i fs( )i+ + Fi=

fs( )i



216 S. Shojaee, S. Rostami and A. Moeinadini

the prior history of displacement and velocity in an inelastic system. For a linear system the

equation of motion could be written as 

(10)

where m, c and k are the mass, damping characteristic and stiffness of the system, respectively

(Chopra 1995).

The third-degree B-spline is used to construct a numerical solution for Eq. (10). Here we use

Eq. (6), in which h refers to ∆t (time interval). To solve the second-order boundary value problem,

evaluation of  and at the nodal points (knots) is required. Their coefficients are summarized in

the Table 1.

Let

(11)

be the approximate solution of Eq. (10), therefore

(12)

and 

 (13)

describe the approximate functions of the velocity and acceleration, respectively, where Cis are

unknown real coefficients (control points) and s are cubic B-spline basis functions. Let

 be  grid points in the time interval , so that

We can rewrite Eq. (10) as

(14)

where ξ is the damping ratio and ω is the natural frequency of the system.

It is required that the approximate solution (11) and its derivates (12, 13) satisfy the differential

Eq. (14) at each point .

mu·· t( ) cu· t( ) ku t( )+ + F t( )=

Bi Bi′,

u t( ) CiBi 3, t( )
i 3–=

n 1–

∑=

u· t( ) CiBi 3,
′ t( )

i 3–=

n 1–

∑=

u·· t( ) CiBi 3,″ t( )
i 3–=

n 1–

∑=

Bi t( )
t0 t1 t2 … tn, , , , n 1+ 0 td,[ ]

ti i t   i,∆ 0 1 2 … n;  t0, , , , 0,  tn td,  t∆ td/n= = = = =

u·· t( ) 2ξωu· t( ) ω
2
u t( )+ +

F t( )
m

----------=

t tj=

Table 1 Values of  and 

ti ti+1 ti+2 ti+3 ti+4

 Bi 0 1/6 2/3 1/6 0

0 1/2∆t 0 -1/2∆t 0

0 1/∆t2 -2/∆t2 1/∆t2 0

Bi Bi′, Bi
″

Bi′

Bi
″
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Substituting the terms (11), (12) and (13) in Eq. (14), gives

 (15)

Factoring Ci unknown coefficient, Eq. (15) can be written in an incremental form as

(16)

If we use Eq. (16) at any time instant tj (knots), , we would have  unknown

coefficients (Cis) and  equations while  equations are located on force points and two of

them are related to initial conditions.

Because in each tj, only three Basis functions  and their derivatives have

nonzero values and the others are zero (see Fig. 1), we can develop (16) in each tj as follows

          

         (17)

According to the values of the spline function at the knots  which have been determined in

Table 1, (17) can be summarized as

, (18)

where  are constant values as follows

, ,

Initial condition can be written as 

(19)

(20)

For , using the first condition results that 

 (21)
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and using second condition similarly gives 

(22)

The spline solution of Eq. (14) with the initial conditions is obtained by solving the following

matrix equation. The matrix is constructed using Eqs. (21), (22) and (18). Then as a result, a system

of  linear equations in the  unknowns  is obtained. This system can be

written in the matrix-vector form as follows

(23)

where 

and ψ is a -dimensional matrix given by

According to the sparse and bandwidth form of the matrix ψ, in order to find unknown

coefficients (Cis), there is no need to inverse ψ completely.

At the beginning, to find the first three unknown coefficients (i.e., ) we can

consider just the first three rows and columns of matrix ψ, as

 (24)

so, solving the above equations, we get to

(25a)

(25b)

1

2 t∆
-------- C 1– C 3––( ) v0=

n 3+ n 3+ C 3– C 2– … Cn 1–, , ,

F{ } ψ[ ] C{ }=

F[ ] 1

m
---- mu0 mv0 F t0( ) F t1( ) F t2( ) … F tn( ), , , , , ,[ ]T=

C{ } C 3– C 2– C 1– Co … Cn 1–, , , , ,[ ]T=

n 3+( ) n 3+( )

1/6  2/3  1/6 0  … … … 0

1/2 t  ∆– 0  1/2 t  ∆ 0  … … … 0

α  β  γ 0  … … … 0

0  α  β γ  0  … … 0

0  α β  γ  0  

        

 0  α  β  γ  0

0  0  … … 0  α  β  γ

…
…

…
…

…

…
…

… … … … …

C 3– C 2–  and C 1–,

u0

v0

F t0( )/m⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

1/6  2/3  1/6
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α  β  γ
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C 1–⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫
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⎩ ⎭
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⎧ ⎫
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⎩ ⎭
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(25c)

where  is equal to . Then, to find the remainder of unknown coefficients (i.e.,

) we use Eq. (23) again and develop it from the fourth row to the end. Then as a

result, we get to the below recursive relation for finding Ci unknown values for 

, (26)

Here,  and  known values have been used to determine Ci unknown value in an explicit

form.

Now, having all unknown coefficients (Cis) in hand, we can determine system displacement,

velocity and acceleration values in each time point using the (11) to (13). As these terms show the

piecewise polynomial functions of displacement, velocity and acceleration, we can easily find these

values not only in each time instant ti (knots) but also in any other time point.

As only three Basis functions have nonzero values in each ti, we can summarize the Eqs. (11) to

(13) as follows

(27a)

 (27b)

(27c)

As it is clearly denoted from the above relations, because all the Cis depend on previous values

already calculated, this procedure is an explicit one. In order to write a computer code, the complete

algorithm used in this proposed method is given in Table 2.

4. Numerical stability

Step-by-step numerical integration methods transfer the state at the tth step to the (t+∆t)th step and

this can be written as follows

 (28)

where  is the displacement, velocity or acceleration is derived from last step. [A] is the

amplification matrix which transfers  to the next step.  is the external force at each step

and [L] is the load factor vector to relate external force to . Each quantity in (28) depends

on specific integration scheme employed (Bathe 1996, Hughes 1987).

To investigate the stability of the proposed method, at first, it is required to find the amplification

matrix. Thus we have to construct a relation in which the values of displacement, velocity and

acceleration at the end of each time step are written in terms of those very values at the beginning.

Therefore, if we solve the Eqs. (27) in order to get to the  and , we will have

C 1–

1

2γ β– 2α+
--------------------------- 3βu0– t β 4α–( )v0

2F t0( )
m

---------------+∆+
⎩ ⎭
⎨ ⎬
⎧ ⎫

=

2γ β– 2α+ 6/ t
2∆

C0 C1 … Cn 1–, , ,
i 0 1 … n 1–, , ,=

Ci
1

γ
---

F ti 1+( )
m

---------------- αCi 2–– βCi 1––⎝ ⎠
⎛ ⎞= i 0 1 2 … n 1–, , , ,=

Ci 1– Ci 2–

u ti( ) 1

6
--- Ci 3– 4Ci 2– Ci 1–+ +( )=

u· ti( ) 1

2 t∆
-------- Ci 1– Ci 3––( )=

u·· ti( ) 1

t
2∆

------- Ci 3– 2Ci 2–– Ci 1––( )=

X̂t t∆+{ } A[ ] Xt{ } L[ ] f̂t υ+{ }+=

X̂t{ }
X̂t{ } f̂t υ+{ }

X̂t t∆+{ }

Ci 1– Ci 2–, Ci 3–
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(29a)

(29b)

(29c)

Setting the Eq. (29a) at the current time (t) equal to the Eq. (29b) at the next time , we

will get to

Ci 1– ui tu· i∆ t
2∆

3
-------u··i+ +=

Ci 2– ui

t
2

∆

6
-------u··i–=

Ci 3– ui tu· i∆–
t
2∆

3
-------u··i+=

t t∆+( )

 

Table 2 Step-by-step numerical solution of equation of motion using cubic B-spline

A. Initial calculation:
1- Determine stiffness k, mass m, and damping ratio ξ of the system.
2- Specify the force value applied to the system in each time instant.
3- Determine initial value of displacement u0 and velocity v0.
4- Select appropriate time step ( ) and calculate constant parameters α, β and γ as

                                         

5- Using the below terms determine the values of three unknown coefficient (  and );

                                         

B. For each time step (i = 0, 1, ..., n):
1- Calculate displacement, velocity and acceleration simultaneously by

       
                                                   
 

2- Just for nonlinear analysis; update the values of stiffness, k and mass, m and as its result α, β and γ
       will be updated according to the values of ui and .

3- Calculate unknown coefficient Ci from  to  by

                                             

t∆ tcritical∆<

 

C 3– C 2–, C 1–

 

 

u· i
i 0= n 1–( )
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(30)

Then, if we arrange the above equation in terms of , it can be expressed as

(31)

Similarly, if we do this process for the Eq. (29b) at the current time (t) and the Eq. (29c) at the

next time , we will get to an equation. Then, if we use (31) instead of  in this equation,

and then arrange the outcome in terms of , we get to

 (32)

Now, having the Eqs. (31) and (32) in hand, it is possible to make the amplification matrix. The

amplification matrix is obtained by solving the equation of SDOF system (14) in  time instant

as follows

 (33)

where . Substituting Eqs. (31) and (32) into (33), an equation is obtained with 

as the only unknown. Solving it for  and substituting into Eqs. (31) and (32), the following

relationship of the form (28) is obtained as

 (34)

where

 and

According to the fact that the stability of an integration method is determined by examining the

behavior of the numerical solution for arbitrary initial conditions, we consider the integration of

Eq. (33) when no load is satisfied; i.e.,  (Bathe 1996).

Stability analysis can be performed by solving eigenproblem of amplification matrix. The

eigenvalues and eigenvectors of A are calculated using  or . It is
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now possible to write A in terms of its eigenvalues and eigenvectors . Here, [Φ]

consists of the eigenvectors of A, and [λ] is a diagonal matrix consisting the eigenvalues of A. Now,

to have a stable solution, the norm of the elements of [λ] should not be more than unity

In this equation,  is the spectral radius which is a function of time step length, ∆t. As the

spectral radius slightly changes with the variation of damping ratio, here, we assume  in

amplification matrix and it results in 0.55T0 for the maximum value of ∆t in the case of .

Here, T0 is the period of the system.

Thus, the condition of stability is  in this proposed method which is exactly the

same as condition of stability in Linear Acceleration method (Wilson-θ method with θ = 1) (Wilson

et al. 1973). Of course, it can be resulted from the sameness of the amplification matrix for both

methods. Also the other reason for this sameness is because the relations (31) and (32) are the same

as those in the Linear Acceleration method.

5. Numerical examples

In this section, the validity and effectiveness of the proposed method is demonstrated with four

examples, the first and the second examples have linear behavior and the third and fourth have

nonlinear behavior.

Example 1: A portal frame with linear behavior under a harmonic loading in the ceiling level;

Fig. 2 shows a SDOF portal frame with linear behavior under a sinusoidal load. Frame elevation

is 4 m and the columns are I-shaped (IPB300) with the moment of inertial equal to 25170 cm4.

Here, Young’s modulus of material is assumed to be 2.1 × 106 kg/cm2. The loading function applied

to this frame is a harmonic single frequency load equal to (5sin(3t)) in tons. The mass of the frame

is 5000 kg and damping ratio is assumed to be 5 percent . In this example, sec

has been selected as time increment. 

This example is analyzed by four methods including the Exact method, Duhamel integration

method, Linear Acceleration method and Cubic B-spline method (proposed method). The results

including the values of displacement, velocity and acceleration for all these four methods have been

plotted as three time-history graphs in a time interval between 0 to 10 seconds as shown in Figs. 3

to 5.

As the graphs show, regarding the selected time increments  and frequency of the

A[ ] Φ[ ] λ[ ] Φ[ ] 1–
=

ρ A( ) max λ1 λ2 λ3, ,( ) 1≤=

ρ A( )
ξ 0=

ρ A( ) 1=

tcritical∆ 0.55T0≤

ξ 0.05=( ) T∆ 0.1=

T∆ 0.1=( )

 Fig. 2 A portal frame (Example 1)
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applied load  for this problem, the results from these four methods are nearly coincident.

But for sake of a more accurate investigation, the resulted values of these methods in peak points

are given in Table 3.

ω 3=( )

Fig. 3 Displacement time histories (cm) 

Fig. 4 Velocity time histories (cm/sec)

Fig. 5 Acceleration time histories (cm/sec2) 

 
Table 3 The peak time values of displacement, velocity and acceleration for all four methods

Displacement Velocity Acceleration

Time Exact Duhamel
Cubic 

B-spline
Linear 
Acc.

Time Exact Duhamel
Cubic 

B-spline 
Linear 
Acc.

Time Exact Duhamel
Cubic B-

spline 
Linear 
Acc.

1.2 0.27291 0.27086 0.27049 0.27049 0.8 0.39949 0.39649 0.39579 0.39579 0.4 0.78123 0.78237 0.78298 0.78298

2.5 -0.41063 -0.40756 -0.40657 -0.40657 1.9 -0.88246 -0.87585 -0.87341 -0.87341 1.4 -1.82166 -1.81460 -1.81520 -1.81520

3.7 0.38044 0.37759 0.37517 0.37517 3.1 1.02661 1.01890 1.01400 1.01400 2.5 2.55866 2.54650 2.54360 2.54360

4.9 -0.22390 -0.22223 -0.21867 -0.21867 4.3 -0.81585 -0.80973 -0.80234 -0.80234 3.7 -2.50608 -2.49480 -2.48640 -2.48640

5.9 0.05581 0.05540 0.05225 0.05225 5.3 0.45078 0.44740 0.43874 0.43874 4.8 1.86267 1.85600 1.84090 1.84090

6.6 -0.08120 -0.08060 -0.08224 -0.08224 7.2 0.48181 0.47820 0.48156 0.48156 6.7 1.25151 1.24930 1.25290 1.25290

7.7 0.22886 0.22715 0.22941 0.22941 8.3 -0.74368 -0.73811 -0.74035 -0.74035 7.7 -1.78932 -1.78260 -1.79200 -1.79200

8.8 -0.31222 -0.30988 -0.30995 -0.30995 9.4 0.82329 0.81712 0.81360 0.81360 8.7 2.05587 2.04660 2.04550 2.04550
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It is clear that, first of all, the proposed method provides us with the results having a very low

rate of error compared to Duhamel and even the Exact method. Secondly, the results from the

proposed method are exactly the same as the results from Linear Acceleration method. Selecting a

cubic function for describing displacement brought a linear function for describing acceleration and

therefore, the sameness of the results for these two methods is justifiable. Meanwhile, for solving

this problem, the proposed method consumed a time equal to 66% of the needed time by Duhamel

method and about 92% of the required time by Linear acceleration method.

Example 2: A water reservoir with linear behavior under harmonic ground acceleration;

Fig. 6 shows a SDOF water reservoir with linear behavior under a twenty cycles of sinusoidal

acceleration with peak ground acceleration of 1 g and Tg = 0.05 sec (see Fig. 7). The period of this

system is equal to 0.25 sec and damping ratio is assumed to be 5 percent . In this

example,  has been selected as time increment. 

This example has been also analyzed by the same methods which were used in the previous

example. The results including the values of displacement, velocity and acceleration for all aforesaid

methods have been plotted as three time-history graphs as shown in Figs. 8 to 10.

As the graphs show, regarding the selected time increment (∆t = 0.01) and frequency of the

applied load (ω = 126) for this problem, the result of Exact method for relative displacement and

velocity has shown some differences with the others just at the peak and valley zones. They are

nearly coincident in the other zones. In order to have an accurate investigation, resulted values of

these methods in some peak and valley points have been given in Table 4. 

In this example, as the applied load has high frequency content, the result from numerical

methods (even Duhamel method) in peak points is, somehow, different from those related to the

Exact method. But, like the results from the previous example, these differences can be neglected.

Furthermore, outcomes from the proposed method are exactly the same as those from Linear

Acceleration method. From the point of view of time consumption, the results of the previous

ξ 0.05=( )
t∆ 0.01 sec=

              Fig. 6 A water reservoir                         Fig. 7 Ground acceleration time-history 

Fig. 8 Displacement time histories (cm)
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example are present here.

Example 3: A SDOF system with nonlinear behavior under an earthquake ground shaking;

A vertical cantilever tower with nonlinear behavior that supports a lumped weight at the top is

considered; assuming that the tower mass is equal to 5000 kg, , and the force-deformation

relation (stiffness) is kg/cm2. The system is under the acceleration time-history of El-

Centro ground shaking with the peak ground acceleration (PGA) equal to 0.32 g.

Figs. 11 to 13 show the analysis results including relative displacement, velocity and acceleration

of the aforesaid system for both Linear Acceleration and B-spline (proposed) methods during the

first 15 seconds of the earthquake.

In this example, because of the nonlinear behavior, the proposed method has been just compared

to Linear Acceleration method. And, as the above graphs show, the outcomes from the proposed

ξ 3%=

4000/ u 1+

Fig. 9 Velocity time histories (cm/sec)

Fig. 10 Acceleration time histories (g)

Table 4 The peak and valley time values of displacement, velocity and acceleration for all four methods

Displacement Velocity Acceleration

Time Exact Duhamel
Cubic 

B-spline
Linear 
Acc.

Time Exact Duhamel
Cubic 

B-spline 
Linear 
Acc.

Time Exact Duhamel
Cubic 

B-spline 
Linear 
Acc.

0.04 -0.32164 -0.27915 -0.27799 -0.27799 0.02 -13.41709-11.61000-11.54400-11.54400 0.01 -0.92533 -0.92935 -0.92959 -0.92959

0.06 -0.23788 -0.20494 -0.20466 -0.20466 0.05 6.15160 5.32260 5.26660 5.26660 0.04 1.16104 1.13333 1.13262 1.13262

0.08 -0.30394 -0.26351 -0.26344 -0.26344 0.15 13.37989 11.57600 11.56100 11.56100 0.06 -0.80371 -0.82413 -0.82426 -0.82426

0.17 0.27349 0.23715 0.23589 0.23589 0.18 -5.57061 -4.81850 -4.73470 -4.73470 0.41 -1.09979 -1.08033 -1.07870 -1.07870

0.19 0.19352 0.16657 0.16686 0.16686 0.2 5.88580 5.09210 5.13100 5.13100 0.44 0.86498 0.87714 0.87637 0.87637

0.21 0.27230 0.23646 0.23775 0.23775 0.3 6.64217 5.74690 5.61720 5.61720 0.49 0.96532 0.96396 0.96073 0.96073

0.91 0.13983 0.12186 0.11855 0.11855 0.4 11.98822 10.37200 10.40300 10.40300 0.81 -0.92161 -0.92614 -0.92549 -0.92549

0.94 0.03823 0.03221 0.03327 0.03327 0.82 -6.05032 -5.23590 -5.32250 -5.32250 0.84 1.03571 1.02487 1.02752 1.02752

0.96 0.14510 0.12641 0.12938 0.12938 0.95 7.30910 6.32360 6.40870 6.40870 0.91 -1.05122 -1.03823 -1.03649 -1.03649
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method including relative displacement, velocity and acceleration, are exactly coincident with those

from the compared method. The difference lies here that the needed time for solving this problem

using Cubic B-spline method is about 87% of the consumed time by the Linear Acceleration

method. This is the advantage of the proposed method.

Example 4: A portal frame with elasto-plastic behavior under the acceleration time-history of El-

Centro ground shaking;

Fig. 14 shows a SDOF portal frame with nonlinear behavior under the acceleration time-history of

El-Centro ground shaking with the peak ground acceleration (PGA) equal to 0.32 g. In this example,

it is assumed that the damping coefficient (ξ = 0.087) is constant. So, nonlinearity is only limited to

the stiffness changes.

Fig. 15 shows the analysis result (displacement time-history) of the above system for both Linear

Acceleration and Cubic B-spline (proposed) methods during this 30-second earthquake. Fig. 16 also

shows the hysteresis diagram of bilinear behavior of the system. As the graph shows, the result of

proposed method is coincident with the result of Linear Acceleration method. 

Fig. 11 Displacement time histories (cm)

Fig. 12 Velocity time histories (cm/sec)

Fig. 13 Acceleration time histories (g) 
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6. Conclusions

In this paper, we introduced a new direct integration method to find dynamic response of SDOF

systems using periodic cubic B-spline. The result of implementing B-spline basis function to solve

differential equation of motion is an explicit, straightforward and fluent formulation with a simple

 Fig. 14 A portal frame with elasto-plastic behavior under earthquake ground shaking 

Fig. 15 Displacement time-histories

Fig. 16 Hysteresis diagram 
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algorithm for linear and nonlinear analyses. The proposed method is conditionally stable. The

aforementioned method is accurate and fast to analyze, especially in the case of nonlinear analysis.

The results from this method are completely coincident with those from the Linear Acceleration

method, while solving a problem using the proposed method is less time comsuming than Linear

Acceleration. The proposed method calculates the values of displacement, velocity and acceleration

independently while the Linear Acceleration method does not act in this way. This property reduces

the time consumption of the analysis. This method can be simply generalized to multi-degree-of-

freedom (MDOF) systems, but as our goal has been just to introduce a new methodology, we have

just discussed SDOF systems. According to the possibility of increasing the order in B-spline

functions, the higher order B-spline functions can be used to improve the accuracy and convergence

of the method. Finally, the authors foresee a very clear and inspiring future for this method,

asserting that it can be used as an efficient method in dynamic analysis, particularly in nonlinear

systems. 
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