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Abstract. Deciding on an optimal sensor placement (OSP) is a common problem encountered in many
engineering applications and is also a critical issue in the construction and implementation of an effective
structural health monitoring (SHM) system. The present study focuses with techniques for selecting
optimal sensor locations in a sensor network designed to monitor the health condition of Dalian World
Trade Building which is the tallest in the northeast of China. Since the number of degree-of-freedom
(DOF) of the building structure is too large, multi-modes should be selected to describe the dynamic
behavior of a structural system with sufficient accuracy to allow its health state to be determined
effectively. However, it’s difficult to accurately distinguish the translational and rotational modes for the
flexible structures with closely spaced modes by the modal participation mass ratios. In this paper, a new
method of the OSP that computing the mode shape matrix in the weak axis of structure by the simplified
multi-DOF system was presented based on the equivalent rigidity parameter identification method. The
initial sensor assignment was obtained by the QR-factorization of the structural mode shape matrix.
Taking the maximum off-diagonal element of the modal assurance criterion (MAC) matrix as a target
function, one more sensor was added each time until the maximum off-diagonal element of the MAC
reaches the threshold. Considering the economic factors, the final plan of sensor placement was
determined. The numerical example demonstrated the feasibility and effectiveness of the proposed scheme.

Keywords: optimal sensor placement (OSP); finite element method (FEM); modal assurance criterion
(MAC); series of multidegree-of freedom; high-rise building.

1. Introduction

Modern tall buildings are constructed with high-strength and lighter-weight materials tending to be

more flexible and lightly damped than those in the past. These structures are sensitive to the effects

of strong wind, earthquake, wheeled track etc. For example, when structural drifts exceed certain

permissible levels, non-structural elements (partitions, cladding systems) may be damaged and
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mechanical services (elevators) may not operate properly. The collapse and failure of these deficient

structures even cause increasing concern with structural integrity, durability and reliability. To

monitor and diagnose the performance of a structure, find the damage of the structure in time,

predict the calamity that may appear and assess the security of the structure have become an

inevitable requirement in civil engineering (Majumder et al. 2008).

Structural health monitoring (SHM) refers to the use of in-situ, continuous or regular measurement

and analyses of key structural and environmental parameters under operating conditions, for the

purpose of warning impending abnormal states or accidents at an early stage to avoid casualties as

well as giving maintenance and rehabilitation advice (Housner et al. 1997). Remarkable progress has

been made in the SHM over the last decade. Successful laboratory demonstrations have led to

deployments of the integrated SHM systems in a variety of applications from civil infrastructure to

transportation systems to defense-related assets (Kister et al. 2007, Efstathiades et al. 2007, Takeda et

al. 2007, Kim et al. 2008). In spite of this progress, there are still challenges to address in the SHM.

Deciding on an optimal sensor placement (OSP) is a critical issue in the construction and

implementation of an effective SHM system. An optimal configuration can minimize the number of

sensors required, enhance the accuracy and provide a robust system. Thus, sensors must be

judiciously placed in order to provide adequate information for the identification of the structural

behavior and reduce the overall cost of system. Previous work addressing the issue of optimally

locating a given number of sensors in a structure has been carried out by several investigators. A

comprehensive survey of sensors placement strategies for aerospace applications can be found in

Kammer (2005), for the OSP problem in the process industry in Naimimohasses et al. (1995), for the

safe operation of nuclear reactors in Oh and No (1994), and for the damage identification and the

SHM can be found in Worden and Burrows (2001). Mossberg (2001) performed a theoretical study

on optimal sensor configurations for parametric identification, and the results indicate a substantial

increase in accuracy by the use of optimal sensor locations. Liu and Tasker (1996) proposed a

perturbation-based approach to predict the optimal locations for sensors. Heredia-Zavoni et al. (1999)

treat the case of large model uncertainties expected in model updating. The optimal sensor

configuration is chosen as the one that minimizes the expected Bayesian loss function involving the

trace of the inverse of the Fisher information matrix (FIM) for each model.

It is well known that if the number of degree-of-freedom (DOF) of a structure is too large, the

multi-modes should be selected to describe its dynamic behavior of the structural system with

sufficient accuracy to allow its health state to be determined effectively (Kister et al. 2007). On the

other hand, due to placing the sensors only in the translational direction of the structure during the

on-site test, it’s necessary to reduce the DOF number that couldn’t be placed (e.g., rotational

direction etc.) in the analytical model. For the differentiation between translational and rotational

modes, generally it can be accurately selected by the modal participation mass ratios. However it’s

difficult to do that for the flexible structures with closely spaced modes. For this, a new method

computing the mode shape matrix of weak axis by the simplified series MDOF system is presented

based on the equivalent rigidity parameter identification method. It may avoid the difficulty of

accurately choosing the modes by the method. The paper is organized as follows: first, the

identification method of equivalent stiffness coefficients is briefly presented followed by the

introduction of the initial sensor assignment by the QR-factorization. Then the procedure using the

sequential sensor placement (SSP) algorithm to solve the OSP problem is outlined. Next, the

effectiveness of the proposed scheme is demonstrated via a numerical simulation study for Dalian

World Trade Building. Finally, a few concluding remarks are given.
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2. OSP based on simplified finite element model

2.1 Identification method of equivalent stiffness coefficients

The mass matrix of the structure is generally integrated by the FE model and the Rayleigh’

damping matrix is usually used as damping matrix. Thus, the difficult problem of simplifying the

model is how to identify the stiffness matrix of the structure accurately. Countless identification

methods of stiffness coefficients have been developed; but to some extent these methods would be

limited (Hiroyuki 2002). For example, the well known D-value method can only be used for low-to-

mid-rise shear type buildings, while the shear-bending type storey model can only be applied to

frame structures of , where H and B are respectively the height and width of the

structure. Here, a kind of method called as the parameter identification method is used in which the

influences of various factors in the original structure are considered and all assumptions are

abandoned in order to make the simplified system more accurately coincided with the original

structure (Fig. 1) (Sun et al. 1992).

In general, the sensors are deployed along the weak axis of the building. The dynamic equation of

the FE model can be expressed as

(1)

The expression of the equation of motion for a lumped mass system can be written as follows

(2)

Where,  stands for the stiffness matrix and  is the load column vector which are

known,  denotes the unknown displacement column vector, [K] means the unknown stiffness

matrix,  and {U} implies the mass center displacement column vector of the FE model.

Because the stiffness matrix [K] is symmetric, the number of the unknown numbers is

, where n is the number of the structure layers. Thus, the groups of load vector,

{F0}, can give w Eq. (2) (w is the dimensional number of {F0}), i.e., w · n equations, so w is at

least equal to . To obtain enough precision, the least square method is usually used

10 H/B 3> >

K0[ ] U0{ } F0{ }=

K[ ] U{ } F{ }=

K0[ ] F0{ }

U0{ }

F{ } F0{ }=

M n n 1+( )/2=

M/n n 1+( )/2=

Fig. 1 Lumped mass representation of the tall building
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to identify the rigid coefficients, where the integer of  is chosen. When solving

this problem, it’s necessary to know the unknown numbers of the stiffness matrix, which is

(3)

Thus, the unknown vector can be expressed in the following form

(4)

Eq. (2) can be modified as

(5)

where, [u] is the  matrix, which is extended by [U] and  represents the 

column vector, which is extended by .

Then, Eq. (2) results in the following expression

(6)

By the definition of  and , therefore

(7)

where, [A] is the  symmetric matrix and  denotes the  column vector. Then, the

stiffness coefficients  can be obtained from Eq. (7).

2.2 Initial sensor assignments by QR-factorization

Based on the modal superposition method, the vector of the measured structural responses denoted

by {u} can be estimated as a combination of s mode shapes through the expression

(8)

where,  means the matrix of target mode shapes partitioned to the sensor locations and  is

the vector of target modal coordinates.

The vector  can be computed using the least square (LS) method by solving Eq. (8), yielding

(9)

The superscripts “−1” and “T” represent the inversion and transpose of a matrix, respectively.
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Considering the noise of sensor, a modification of the output of Eq. (8) is introduced as follows

(10)

where, the vector  represents the stationary Gaussian white noise variance σ2.

To simplify the analytical procedure, it is assumed that the measurement noise be uncorrelated

and possessed identical statistical properties of each sensor. For an efficient unbiased estimator, the

covariance matrix of the estimated error is given by

(11)

In which,  is the FIM, E denotes the expected value and  means the efficient unbiased

estimator of q.

To minimize [B], a suitable norm of  must be maximized. Kammer (1991) suggested the

spectral norm as a useful and physically meaningful matrix norm

(12)

Thereby, maximizing  would lead to the maximization of [B] and, thus the best state estimate

{q}. It is known that the QR factorization (also called the QR decomposition) of a matrix is a

decomposition of the matrix into an orthogonal matrix and a triangular matrix. Suppose the subset

of candidate location corresponding to the obtained mode matrix from FE model be Φ, ,

and generally  and . By the QR factorization of the matrix , the initial candidate

set of sensor locations is obtained as follows

(13)

where, ,  and  are the permutation matrices and .

2.3 Objective function

It is known from the structural dynamic principle that the structural inherent modes should

comprise a group of orthogonal vectors at the nodes. But in fact, it’s impossible to guarantee the

measured modal vector are orthogonal, because of the problems of the measured freedoms less than

those of model and measuring accuracy limitation. Further, it is even possible to lose many

important modes owing to the too small space angles between vectors. The larger space angles

among the measured modal vectors should be guaranteed while choosing measuring points in order

to keep the original properties of the model if possible. Carne and Dohmann (1995) thought that the

MAC is an ideal scalar constant relating the causal relationship between two modal vectors

(14)

where, Φi and Φj represent the ith and jth column vectors in matrix Φ, respectively; aij is the
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elements of . For an optimal (orthogonal) set this would be diagonal, so the size of the

off-diagonal elements is an indication of fitness. In this formulation, the values of the MAC range

between 0 and 1, where zero indicates that there is little or no correlation between the off-diagonal

element  and one indicates that there is a high degree of similarity between the modal

vectors. 

Hence, it is desirable to try to make the off-diagonal element in the MAC small when deploying

the sensors. The objective function in each step of iteration could be given in Eq. (15)

(15)

where, Max denotes the maximal value in MAC matrix, Maxk represents the maximum vale in k step

iteration.

2.4 Sequential sensor placement (SSP) algorithm

For a structure that has simple geometry, or smaller number of DOF, experience and a trial-and-

error approach may suffice to solve the problem. However, for a large-scale complicated structure

with Nd DOFs, the number of all distinct sensor configurations involving N0 sensors is

(16)

This can be an extremely large number for most cases of practical interest. Therefore, an

exhaustive search over all sensor configurations for the computation of the optimal sensor

configuration is largely with time consuming and prohibitive even for models with a relatively small

number of DOFs in most cases. The computational issues arising in the search of the optimal sensor

configuration have been addressed in the literature. A great deal of research has been conducted

over the last decade on optimal sensors placement using a variety of placement techniques, such as

the Genetic algorithms (GA), Worst-Out-Best-In (WOBI) algorithm, Exhaustive Single Point

Substitution (ESPS) algorithm and Sequential sensor placement (SSP) algorithm (Papadimitriou et

al. 2004).

The GA has been widely proposed as an effective alternative to the previous heuristic algorithm

which is not guaranteed to give the optimal solution (Worden and Burrows 2001). Another

systematic and computationally very efficient approach for obtaining a good sensor configuration

for N0 sensors is to use a SSP algorithm as follows. The computations involved in the SSP

algorithm are an infinitesimal fraction of the ones involved in the exhaustive search method and can

be done in realistic time, independently of the number of sensors and the number of model DOFs.

The positions of N0 sensors are computed sequentially by placing one sensor at a time in the

structure at a position that results in the highest reduction in the maximum off-diagonal element of

the MAC. Specifically, the position of the first sensor is chosen as the one that gives the highest

reduction in the maximum off-diagonal element for one sensor. Given the optimal position of the

first sensor, the position of the second sensor is chosen as one that gives the highest reduction in the

maximum off-diagonal element computed for two sensors with the position of the first sensor fixed

at the optimal one already computed in the first step. Continuing in a similar fashion, given the

positions of  sensors in the structure computed in the previous  steps, the position of

the next ith sensor is obtained as one that gives the highest reduction in the maximum off-diagonal

element for i sensors with the positions of the first  sensors fixed at the optimal ones already

A Φ
T
Φ=

MACij i j≠( )

f k( ) Maxk Max–=

Ns

Nd!

N0! Nd N0–( )!
--------------------------------=

i 1–( ) i 1–( )
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obtained in the previous  steps. This procedure is continued for up to N0 sensors. The SSP

algorithm will give the optimal sensor configuration only in the case for which the optimal sensor

positions for i sensors is a subset of the optimal sensor positions for  sensors for all i from

one to N0. Although the iterative nature of the optimization process only seeks a suboptimal or near-

optimal solution, the result is believed to be close to the optimal one. Compared to the GA

algorithm, the SSP algorithms are preferred since they are found to maintain higher levels of

accuracy with less computational effort than that involved in GAs (Qin et al. 2001, Papadimitriou et

al. 2004). For the sake of reference, the aforementioned algorithm is termed the forward sequential

sensor placement (FSSP) algorithm. The SSP algorithm can also be used in an inverse order,

starting with Nd sensors placed at all DOF’s of the structure and removing successively one sensor

at a time from the position. This algorithm is termed as the backward sequential sensor placement

(BSSP). Since the number of DOF of the structure is too large, from the computational point of

view, the FSSP algorithm should be preferred than that involved in the BSSP.

The modal vector matrix comprised of the measured freedoms (The term candidate sensor

location is also referred to as DOF measured by sensors) and the residual freedoms are expressed

by  and , respectively, in which, m is the number of the measurable freedoms, n

denotes the number of the measured freedoms and  means the number of residual freedoms equal

to the possibly measured freedoms minus the measured ones.

After adding the kth row of  and , the MAC matrix is become as follows

(17)

where, aij is the elements of ;  and  denote the modal vector values corresponding

to node i and j at the kth freedom, respectively;  and MAC matrices should be modified each

time when adding sensors to measuring group, in order to search the measurable point of  which

gives the highest reduction of the maximum off-diagonal elements of the MAC matrix at each

computation until the maximum reaches the specified threshold value.

To sum up, the procedure of the FSSP method based on the simplified FE model is shown as

follows:

(1) The simplified series MDOF system is obtained by the equivalent rigidity parameter

identification method;

(2) The modal vector matrix is set up based on the simplified FE model and then the MAC matrix

is ob The freedoms obtained by the QR factorization of the modal vector matrix are used as the

initial candidate set of sensor locations, Then the maximum off-diagonal element Max of the MAC

matrix is chosen;

(4) The residual freedoms are added one by one, e.g. adding the kth freedom to the measured

freedoms and then computing the  matrix of the modal vector and the maximum off-

diagonal element Maxk;

(5) Computing , add the freedom corresponding to the maximum of 

 to the sensor locations;

(6) Steps (4) and (5) should be repeated for all of the residual freedoms of the modal vector

matrix until the maximum off-diagonal element reaches the specified threshold.
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3. Application to Dalian World Trade building

To illustrate the proposed scheme for modal survey, the procedure for identifying an actual

structure-Dalian World Trade building is as follows.

3.1 Description of building

The Dalian World Trade Building, comprising of office, commerce, finance and security parts, is a

super high-rise structure. It has 4 stories under the ground level and 50 stories above. The main

structure is about 201.9 m high from ground level. With the top tower, the total height is about

242 m and there is also an 8-story commercial building (local 9-story) 34.2 m in height around it.

The commercial building and main office tower are linked as shown in Fig. 2 and to its south of the

main tower. Up to now, the building has still been the tallest in the northeast of China. The

structural system utilizes both steel and reinforced concrete (SRC), including core wall systems and

perimeter steel frame coupled by outrigger trusses at two levels (the 30th and 45th floors). The plan

of a standard floor is 37.4 m long by 38.3 m wide, and the floor-to-floor height is 3.8 m. The 15th,

30th and 45th floors are the refuge floors, with the height of 5.1 m (Li et al. 2007). The building is

located near the sea, in an active area with a strong wind. Hence, monitoring the wind-induced

vibration of the building is of particular importance to provide the important validation of the design

procedures and an assurance of acceptable behavior of the high-rise structure.

3.2 Modal analysis

In order to provide input data for the OSP method a three-dimensional FE model of the building

was built. The construction of a FE model, capable of accurately replicating the behavior of the real

structure, was undertaken using the ETABS software. The analytical model was based on the

structural drawings and other information, such as mass of core wall, column, core slab, office slab,

curtain wall at each storey, which was provided by the architect. All the beams and columns are

simulated using “Frame Elements” in the ETABS element library. The beam and column properties

are input by defining the relevant cross-sectional shape from the pre-defined ETABS cross-section

Fig. 2 Vertical overview of the building 
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library. The slab and core wall are simulated using the “Shell Element” having bending and

membrane stiffness terms available in the ETABS library. The model is supported at the bottom

using “Link Element”. The FE model is built considering the bending and shearing deformation of

the beam and column, and also the axial deformation of the column. The rigid floor assumption is

used. To the 30th and 45th strengthened story, for the axial deformation of the column needs to be

considered, the corresponding floors are computed as flexible floors. The model has 13,324 node

elements, 90,062 frame elements and 22,967 shell elements, considering 31 section types and 8

materials’ properties. The mesh representing the model has been studied and is sufficiently fine in

the areas of interest to ensure that the developed forces can be accurately determined. Then, the

modal analysis is carried out, and the frequencies and periods of the first 6 modes are listed in

Table 1 and the mode shapes are shown in Fig. 3.

3.3 Simplification of the FE model

The mass matrix [M] is obtained by concentrating the total mass of each story on the floor of the

FE model. The damping matrix of structure is expressed as the Rayleigh orthogonal damping

formulation (Eq. (17)), and the damping ratio of the first two modes is chosen as 4%.

(17)

where,  and , in which 

and  are the vibrating frequencies and damping ratios of the first and second modes,

respectively.

C[ ] α1 M[ ] α2 K[ ]+=

α1 2ω1ω2 ξ1ω2 ξ2ω1–( )/ ω2

2
ω1

2
–( )= α2 2 ξ2ω2 ξ1ω1–( )/ ω2

2
ω1

2
–( )= ω1 ω2,

ξ1 ξ2,

Table 1 Modal frequencies and periods calculated using FE model

Mode 1 2 3 4 5 6

Period (s) 3.6856 3.4686 1.1875 0.8227 0.7717 0.5735

Frequency (Hz) 0.2713 0.2883 0.8421 1.2155 1.2958 1.7437

Fig. 3 First six mode shapes
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 Here, the diagonal elements of mass, stiffness and damping matrices are illustrated in Fig. 4. The

natural frequencies of first two modes are obtained by the FE model of the original structure and

simplified model and their relative errors to compare the accuracy of two models are calculated by 

 (18)

Where,  and  are the periods of the FE model and simplified model, respectively. The

TF TS–

TF

------------------ 100%×

TF TS

Fig. 4 Diagonal elements of mass, stiffness and damping matrixes of the simplified model

Table 2 Comparison on relative errors of periods of two models in the weak axis

FE Model Simplified Model Error (%)

Mode 1 3.6856 3.7308 1.23%

Mode 2 0.8227 0.8437 2.55%

Mode 3 0.3403 0.3500 2.85%

Fig. 5 Comparison of the first three modes of two models
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results are listed in Table 2. The comparison between the FE and the simplified mode shapes for

first three vibration modes is shown in Fig. 5. It can be seen from Table 2 and Fig. 5 that the errors

of computational results of two models are quite small so that the simplified model can be applied

to calculate the vibration responses of original structure.

3.4 Results of OSP

The OSP of the building is performed by the FSSP algorithm. Fig. 6 shows the MAC values of

all of the 50 DOFs and Fig. 7 shows the MAC values of the initial placement (for the first 4 DOFs)

determined by the QR factorization. As shown, the maximum off-diagonal element of the sensor

placement determined by the QR factorization is close to the diagonal element and there are many

higher off-diagonal elements, so the results are not perfect. Fig. 8 shows the variation curve of the

maximum off-diagonal element for adding one more DOF to the initial placement. The curve shows

Fig. 6 MAC values of all of the 50 DOFs Fig. 7 MAC values of the initial placement determined
by the QR factorization

Fig. 8 Variation curve of the maximum off-diagonal element
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a decreasing trend at initial stage and then an increasing trend later, and the lowest point is the

value for adding 27 DOFs, i.e., the optimal result when selecting 31 DOFs (see Fig. 9). However, it

is not economic due to high cost of the data acquisition systems (sensors and their supporting

instruments). As shown in Fig. 8, the maximum off-diagonal element varies gently with 18 sensors.

Thus, 18 DOFs should be selected as the sensor locations and the MAC values are shown in

Fig. 10. The 18 selected DOFs are listed in Table 3, where the first 4 DOFs are the results of the

QR factorization. Table 4 gives the maximum off-diagonal elements of the MAC matrix for various

sensor locations. As shown, after adding 14 measurement points, the maximum of off-diagonal

element obtained by cumulative method is fastly reduced from 0.6872 to 0.0458. This indicates that

the FSSP method is greatly effective.

4. Conclusions

The feature of the dynamic behavior of a real structure is possibly obtained only if the amount of

the basic information is available. This, in turn, implies that a minimum number of sensors must be

Fig. 9 The optimal value of the MAC Fig. 10 MAC value of 18 DOFs

Table 3 OSP on Dalian World Trade building

Sensor 
No.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Story 50 46 18 8 28 34 11 15 43 22 5 39 4 23 7 33 37 9

Table 4 Maximum off-diagonal element of MAC of each kind of sensor placement

Sensor placement All of the 50 DOFs
4 DOFs of QR 

factorization
31 DOFs obtained by 

SSP method
18 final selected 

DOFs

Maximum 
off-diagonal element

0.1442 0.6872 0.0222 0.0458
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placed on the structure under assessment. Thus, the sensors must be judiciously placed in order to

provide adequate information for the identification of the structural behavior. However, modern

buildings have become so complicated that with closely spaced modes, making it difficult to select

important DOF based on modal participation mass ratios. The fundamental problem is how many

and which DOF should be taken in the identification process. In solving this problem the due

account has to be taken of economic factors, weight and physical constraints, etc., which may

require a limited number of sensors being placed at accessible locations on the real structure. This

paper focuses on the OSP of super high-rise buildings. A method of OSP based on the simplified

models is proposed. With the case study, the following conclusions are drawn as:

(1) The calculation model of the super high-rise building is generally a bending-shear one, i.e. its

rigidity matrix is full rank. The triple diagonal matrix simplified by traditional methods is not

reasonable, while the identification method of equivalent rigidity coefficients is the better one.

(2) The maximum off-diagonal element of the MAC matrix can be rapidly reduced by the FSSP

algorithm, which can obtain the MAC satisfying the related requirements in the condition of few

sensors.

(3) The method in this paper avoids the problem in which it is difficult to choose the high order

mode accurately based on the modal participation mass ratios. The numerical example demonstrated

the feasibility and effectiveness of the proposed scheme. It’s practical for large structures with more

DOFs and coupled-space vibrations.

(4) As we know, it is unreasonable that a large number of sensors are uniformly placed, since this

kind of method didn’t consider any modal vector of the structure (Chung and Moore 1993). For

example, it may deploy the sensor on the constrained nodes or on the nodes where the mode shape

values are zero. On the other hand, if the test mode shapes are not spatially independent, test-

analysis mode shape correlation using orthogonality and cross-orthogonality computations cannot be

performed because the test modes and the corresponding FE modal partitions will be

indistinguishable.

(5) Enough modes must be considered for the optimal locations of large structures. However how

to determine the order of the monitoring modes still needs further research.
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