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Abstract. In this paper an analytical model is presented that addresses the compressive response of
short-fiber reinforced concrete members (FRC) with hooked steel fibers. This model is applicable to a
wide range of concrete strengths and accounts for the interaction between the cover spalling and the
concrete core confinement induced by transverse steel stirrups and also for buckling of longitudinal
reinforcing bars. The load-shortening curves generated here analytically fit existing experimental data well. 
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1. Introduction

Fiber reinforced concrete (FRC) is a construction material which offers important advantages with

respect to plain concrete relating to its tensile resistance, especially in the post-cracking stage. Very

high values of post-cracking strength and energy absorption capacity are obtained by incorporating

fibers (Bentur and Mindess 1990). If poor compaction of composite is avoided by ensuring that the

sand/gravel ratio in the mix design is appropriate to maintain workability with fibers, no strength

reduction is observed. In this case with reference to compressive behavior, it has been shown that

the addition of fibers produces significant increases in maximum and post-cracking strain values

(Fanella and Naaman 1983, Nataraja et al. 1999, Campione et al. 1999). Other positive effects of

using fibers were observed in compressed members after the peak load was reached and primarily

an increase in apparent ductility, as shown in Foster (2001) and in Campione (2002). 

Recent studies (e.g., Fosters 2001, Saeker 2001, Campione 2002, Zaina and Foster 2005,

Bencardino et al. 2008, Aoude et al. 2009) have shown that for structural applications relating to

reinforced concrete columns, fibers can be successfully used in combination with traditional steel

reinforcements, allowing a reduction in the required percentages of transverse steel reinforcement,

especially in seismic design. In this case the presence of fibers can mitigate or prevent longitudinal

bar buckling (Dhakal 2006), thereby reducing the cover spalling process and also increasing the

effectively confined core. 
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In the present paper the focus is on the advantages of using hooked steel fibers in conventionally

reinforced members in compression. Specifically, the paper stresses the influence of fibers on the

spalling process of the concrete cover and on the overall stability of longitudinal bars. However, no

size effects are considered in this study. The original contribution is to propose a single model that

considers the interaction between longitudinal bars, transverse reinforcement and confined concrete. 

2. Aim and originality of the research

Research has identified two main aspects in the use of fiber reinforced concrete for columns:

controlling the concrete cover spalling and reducing the critical length of the longitudinal bars.

These two aspects are of fundamental importance in the design of ductile members, because a

buckling length of longitudinal bars inside an R.C. member equal to or higher than the lateral

spacing of stirrups can drastically reduce the confinement effects, while a premature cover spalling

process, especially in high performance materials, such as high strength concretes, determines

negative effects, also in terms of bearing capacity. Using FRC is of particular interest if we refer to

R.C. members subjected to monotonic and cyclic axial forces and bending moment for which, as is

well known, the cover spalling and buckling phenomena of compressed steel bars can drastically

reduce the strength and available ductility of the member, so the use of fibers can be very suitable. 

3. Analytical model for confined FRC members

The case examined is shown in Fig. 1 and refers to a short member having a square cross-section

with side b and reinforced with longitudinal steel bars with area Al1, at the corners and Al2 along the

flat portion and confined by transverse closed steel stirrups with area ϖst1, ϖst2 (see Fig. 1). The

stirrups are placed in the plane of the cross-section with a cover δ and they are spaced at clear

spacing s. The cases examined are those shown in Figs. 1(a), 1(b) and 1(c) referring to different

arrangements of longitudinal and transverse steel bars.

Fig. 1 Cases of steel arrangements examined with bars at the corners and single stirrup (a) no addition,
(b) four additional bars, (c) four additional bars and double stirrup
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If loaded in compression, columns exhibit shortening accompanied by lateral deformation

inducing stresses in concrete and in steel proportional to their axial stiffness. The concrete cover

close to the transverse stirrups behaves as a compressed shell having low thickness (δ) and

essentially subjected to a biaxial state of stresses (compression-tension). The concrete core is

subjected to a triaxial state of stresses (compression-compression), while the main bars are in

compression. 

In the following sections preliminarily to the determination of the load-axial strain curves of

columns, the stress-strain curves of constituent materials (concrete cover, core and steel bars) will

be introduced and validated on the basis of existing experimental data. Then a comparison will be

made between the complete compressive response of short reinforced fibrous concrete columns with

experimental tests available in the literature. 

4. Stress-strain curves for unconfined and confined FRC

It has been widely observed experimentally that the addition of hooked short steel fibers in plain

concrete significantly affects the post-peak response of plain concrete, especially referring to the

ductility resources underlined by higher strain capacity and reduced slope of the softening branch of

the response (see e.g., Foster 2001, Bencardino et al. 2008, Aoude et al. 2009). These effects also

depend on concrete strength and type (normal or lightweight) (see e.g., Campione and La Mendola

2001).

4.1 Stress-strain in compression for unconfined concrete

For unconfined plain concrete, the following stress-strain relationship (Sargin 1971) is adopted in

this work 

(1)

β is a parameter which modulates the slope of the softening branch of the response and take on

the value 

(2)

where Ec is the initial elasticity tangent modulus, and fc and ε0 the peak stress and the corresponding

strain values.

In the absence of experimental data, Ec can be assumed, as suggested in Razvi and Saatcioglu

(1999) for different concrete strengths, in the form  (in MPa).

Eq. (1), originally assumed for normal strength concrete, covers a wide range of experimental data

referring to several concrete grades if the peak strain ε0 and the β parameter are assumed to be

variable with the peak strength according to the following equations with fc expressed in MPa

σ fc

ε

ε0
----⎝ ⎠
⎛ ⎞ β⋅

β 1–
ε

ε0
----⎝ ⎠
⎛ ⎞β+

-----------------------------⋅=

β
Ec

Ec

fc
ε0

----–

---------------=

Ec 6900 3320 fc⋅+=
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(3)

(4)

Eq. (3) and Eq. (4) are here derived in such a way as to give the best fitting with the experimental

curves given by Ahmad and Shah (1985) referring to several concrete grades.

Fig. 2 shows the stress-strain curves from Eq. (1), where ε0 and β are defined in Eqs. (3) and (4),

and the experimental curves given by Ahmad and Shah (1985).

In the case of fibrous concrete it was observed experimentally (see e.g., Campione et al. 1999,

Fanella and Naaman 1985, Hsu and Hsu 1994) that for hooked steel fibers, if good compaction of

concrete is ensured, the peak stress fcf, the corresponding strain εcf and the slope of the softening

branches change. These benefits increase with an increase in the reinforcing index F defined as

. vf, Lf and φf are respectively the volume percentage, length and diameter of the

hooked end fibers 

On the basis of Campione (2007) Eq. (1) can also be adopted for FRC with steel fibers and these

parameters can be related to F through the following relationships

 (in MPa) (5)

(6)

(7)

Using Eq. (1), β is replaced with β1 for ε > εof while Eq. (4) is assumed for ε < εof. 

Fig. 3 shows a comparison between the stress-strain curves in compression obtained with the

proposed model (Eq. (1) by means of Eqs. (5), (6), (7)) and some experimental ones given in the

literature for normal and high strength fibrous concrete with hooked steel fibers with .

Specifically, the experimental data of Fanella and Naaman (1985) refer to compressive tests on

100 × 200 mm normal strength plain and FRC concrete cylinders with hooked steel fibers at volume

percentages of 0.7 and 1.4%; while the experimental data generated by Hsu and Hsu (1994) refer to

ε0 0.0016 0.00002+ fc⋅=

β 1.4276 e
0.0247 f

c
⋅( )

⋅=

F vf Lf /φf⋅=

fcf fc 6.913 F⋅+=

ε0f ε0 0.00192 F⋅+=

β1 β 0.175+ F⋅=

Lf /φf 60=

Fig. 2 Stress-strain curve for unconfined concrete (data of Ahmad and Shah 1985) 
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compressive tests on 100 × 200 mm high strength plain and FRC concrete cylinders with hooked

steel fibers at volume percentages of 0.75 and 1.5%. In both cases examined a comparison shows

the capacity of the proposed analytical equation to fit the experimental results.

With reference to compressive behavior the compressive peak stress and corresponding strain

were reduced considering the softening coefficient proposed in the literature by Michell et al.

(1986) in the form 

(8)

With εt the lateral strain is related to the axial strain ε through the Poisson coefficient νc (εt = νcε).

The Poisson coefficient can be assumed to vary with the axial strain ε, as suggested in Elwi and

Murray (1979), with the expression

(9)

In Eq. (9) εcu is the ultimate strain in the concrete cover (the complete cover is spalled off), and it

is assumed to be 0.004 (e.g., as suggested in Mander et al. 1988). 

The softening coefficient ς affecting fc'  and ε0 takes into account the biaxial state of stresses

(compression-tension) induced in the concrete cover by the compressive load.

As observed by Demeke and Tegos (1994) the inclusion of steel fibers in concrete members

substantially improves their biaxial strength. Fiber reinforced concrete strength under combined

tension and compression is far greater than plain concrete strength and steel fibers increase concrete

strength from one to three times depending of the amount of fiber.

According to ACI 318 (2002) the range of variation of the efficiency factor is between 0.4 and 1

depending on the strut geometry. Values in the ranger from 0.4-0.8 are obtained for plain concrete

by using Eq. (8), assuming v = 0.5 and εcu = 0.004. 

In the case of FRC a linear variation in the softening coefficient with F can be assumed, as

already done in Campione et al. (2009). In this case the efficiency factor ξFRC for FRC is related to

ς
5.8

fc′
---------

1

1 400 εt⋅+
----------------------------

0.9

1 400 εt⋅+
------------------------≤=

ν ν0 1 1.38+
ε

εcu

------⋅ 5.36–
ε

εcu

------⎝ ⎠
⎛ ⎞ 2⋅ 8.59

ε

εcu

------⎝ ⎠
⎛ ⎞ 3⋅+⋅=

Fig. 3 Experimental and analytical stress-strain curve for FRC with hooked steel fibers: NSC data of Fanella
and Naaman (1985), HSC of HSU and Hsu (1994) 
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that of plain concrete in the form ξFRC = ξ + 0.28 · F. This assumption is in agreement with

experimental results obtained by Demeke and Tegos (1994).

4.2 Stress-strain curves in compression for confined concrete

Several models are available in the literature for analyzing the confinement effects produced by

transverse steel reinforcements on compressed normal and high strength concrete (NSC, HSC)

members with circular, square or rectangular cross-section reinforced with longitudinal and

transverse bars (see e.g., Cusson and Paultre 1995, Razvi and Saaatcioglu 1999). More recently

some other models have become available for confined fibrous reinforced concrete (see e.g., Foster

2001, Campione 2002). These models allow one to evaluate the strength and strain enhancements

due to transverse steel and give the stress-strain curves in compression, also including the post-peak

response. 

Referring to the maximum compressive strength fcc of ordinary confined concrete members

Cusson and Paultre (1995) showed that the relationship between fcc and the effective confinement

pressure fle is nonlinear and can be expressed in the form 

(10)

As suggested in Campione (2002) for FRC compressed members it is possible to use Eq. (10) by

computing the effective confinement pressure with the procedure proposed by Mander et al. (1988),

but taking the presence of fibers into account. The effect of the latter, as suggested in Campione

(2002), is reflected in higher confinement pressures due to the presence of the concrete cover and in

a bigger effectively confined core. 

For the calculation of the confinement pressure at hoop level the equilibrium condition of half a

cross-section considered as a rigid body (see Fig. 4) was applied, the confinement pressure proving

to have the following form

(11)

fcc

fc
----- 1 2.1+

fle

fc
----⎝ ⎠
⎛ ⎞

0.7

⋅=

fl
2 ωstl⋅
bc s⋅
-------------- 2+

ωst2

bc s⋅
----------⋅⎝ ⎠

⎛ ⎞ σs εt( )⋅ ft εt( ) 2 δ s⋅ ⋅
bc s⋅
---------------⋅+=

Fig. 4 Equilibrium condition of half of the transverse cross-section
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If stirrups have yielded at stress fy and therefore the post-cracking strength fr has been attained in

the composite, the maximum confinement pressure proves to be

(12)

Referring to the post-cracking strength of FRC in tension, it was shown that it is possible to relate

its value to the strength characteristics of plain concrete and to the geometrical and mechanical

characteristics of fibers. Specifically, it was shown that the maximum tensile strength can be

assumed to be that of plain concrete, while the post-cracking tensile strength can be assumed, as

suggested in Campione et al. (2006), to be

in MPa (13)

The effectively confined core was referred to the Mander et al. (1988) model, which with

reference to the cases in Fig. 2 gives the following expressions for the ke coefficients 

(14)

where ρcc is the ratio between the area of longitudinal steel reinforcements Al and the gross area of

the section Ag.

For FRC too the model of Mander et al. (1988) can be utilized by introducing, instead of the s'

parameter (which is the clear spacing between two stirrups appearing in the expressions of the ke
factors suggested by Mander et al. 1988), the fictitious geometrical parameter s1'  defined in

Campione (2002) as

(15)

This parameter takes into account the fact that with an increase in the reinforcing index, F, the

effective confined concrete core increases. Eq. (15) was obtained assuming a linear variation in 

with s' and F. Therefore, the effective confinement pressures can be expressed as 

(16)

Finally, the strain corresponding to the peak stress, as suggested in Cusson and Paultre (1995), can

be assumed to be 

(17)

with k1 a coefficient assumed as in Cusson and Paultre (1995). 

In order to determine the confined core response in terms of the stress-strain (σ − ε) curve, Eq. (1)

can be adopted by replacing fc and ε0 with fcc and εcc and calculating β though Eq. (2) referring to

fcc and εcc. 

flmax

2 ωst1⋅
bc s⋅
--------------- 2
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5. Critical length for longitudinal bars

Results for compressed normal and high strength concrete specimens in the presence of

longitudinal and transverse steel bars have shown that after the cover is spalled off the risk of

longitudinal bar buckling increases. If this occurs, the bars can buckle in a length L, involving

several pitches, s, of the stirrups (see Fig. 5), leading to a dangerous reduction in the strength

contribution of the main bars, which have generally yielded at this stage of loading. The assumption

generally made that the buckling length is equal to the spacing of lateral stirrups is only verified

when the spacing between lateral stirrups is very large and the longitudinal bars are very slender.

The determination of the critical load, of the length involved, and of the forces in the stirrups is a

very important problem for correct evaluation of confinement pressure. In the discrete model

proposed by Papia et al. (1988), the compressed bars were considered connected at each pitch, s, to

elastic-plastic springs simulating the presence of transverse steel stirrups. It was supposed that

buckling, if any, can only occur in the opposite direction to the concrete core and also in the

diagonal direction of the square cross-section. More recently in the discrete model proposed by

Dhakal and Maekawa (2002) reinforcement stability was taken into account, also including fracture

of the concrete cover in reinforced concrete members. Further study (see e.g., Dhakal 2006) based

on a discrete model focused on the importance of including the effect of fibers to reduce the risk of

buckling of main bars and to significantly increase the lateral strain corresponding to cover spalling. 

The discrete model proposed by Papia et al. (1988) was modified in Russo and Terenzani (2001)

by considering the axial stiffness of stirrups spread along the specimens’ height. This made it

possible to analyze the problem by means of an elastic beam on an elastic medium, which was

represented by the spread springs simulating the stirrups subjected to tensile forces. Consequently,

the evaluation of the critical load is less accurate compared to that provided by the discrete model,

but a more simple solution is obtained. The approximate procedure allows one to obtain a solution

which differs from the exact solution in the range of a few percent, as seen from the most common

cases given in the literature. 

In the present paper the continuum model was modified by introducing the contribution of the

concrete cover (Foster 2001) in order to determinate the critical length.

In particular, with reference to the case shown in Fig. 6, of a square cross-section reinforced with

Fig. 5 Mechanical model for buckling of longitudinal bars
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single closed stirrups at pitch s, and longitudinal bars at the four corners and four bars along the flat

portion, it is possible to obtain the stiffness of the stirrups measured along the diagonal and along

the direction perpendicular to the leg of the stirrup. This stiffness represents the force necessary to

produce a unit displacement of the loaded joints.

With reference to the bar placed at the corner (see Fig. 6(a)) the stiffness of the stirrup (Es is the

elastic modulus of steel before yielding and in the plastic range is the reduced modulus here

assumed to be 0.03 ES) proves to take the form

(18)

If the contribution due to the presence of the concrete cover is considered and the cover is treated,

analogously to the stirrup, as a beam in tension of length b/2 and rectangular cross-section of sides

δ and s, the equivalent spring stiffness proves to be

 (19)

Esec being the secant modulus of FRC in tension, variable for each load level and obtained by 

(20)

If the concrete cover is cracked, the post-cracking strength fr is available for the composite, and

the stiffness of the equivalent springs is reduced according to the variation in Esec. 

Moreover, if we refer to the case of transverse steel at first yielding and the concrete cover is

cracked (in this case post-cracking strength is attained) the stiffness of the equivalent spring αeq

proves to be

 (21)

αst

2 Es ωst1⋅ ⋅
bc

------------------------=

αcover 2 Esec
δ s⋅
b
--------⋅ ⋅=

Esec

fr

ν ε⋅
---------=

αeq 2 Esec
δ s⋅
b
--------⋅ ⋅

2 Es ωst⋅ ⋅
bc

----------------------+=

Fig. 6 Mechanical model for the calculation of equivalent spring stiffness
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Analogously, with reference to the bar placed along the side of the transverse cross-section the

stiffness of the system (see Fig. 6(b)) (in this case the stiffness represents the force necessary to

produce a unit displacement along the direction perpendicular to the leg of the stirrups) at first

yielding of the transverse steel is 

(22)

Eq. (22) was derived assuming the cover and the stirrups to be beams loaded in flexure. 

Finally, with reference to the case of the main bars in Fig. 6(c) the stiffness of the system proves

to be expressed by

(23)

By using the continuum approach, diffused springs can be assumed by introducing a fictitious

parameter  representing the stiffness per unit length. In this connection, a problem of an

elastic beam on elastic springs subjected to an axial compressive load allows one to determine the

critical load Pcrit and the length L involved in the buckling phenomena of the longitudinal bars. 

The Eulerian critical load of the longitudinal bars, considered as fixed between two stirrups,

proves to be ,  being the inertia moment of the longitudinal bar. 

To obtain the critical load, the energy method (see Russo and Terenzani 2001) was adopted,

basing the choice of the shape on the buckled curve. The curve must satisfy the end bar condition

y(0) = y(L) = y'(L) = y'(0) = 0.

Any shape of the deflection curve can be represented by a trigonometric series having the form

 (24)

which satisfies the boundary conditions and unilateral constrains due to the presence of a concrete

core having higher stiffness than the concrete cover. The function y(x) is the deflection ordinate and

δn is the unknown amplitude value of anti-sinusoidal mode. By imposing an energy balance

αeq
192

bc
3

--------- Esec
s δ

3⋅
12
----------⋅ Es+

π ωst

4⋅
64

-------------⋅⎝ ⎠
⎛ ⎞⋅=

αeq
192

bc
3

--------- Esec
s δ

3⋅
12
----------⋅ Es+

π ωst

4⋅
64

-------------⋅⎝ ⎠
⎛ ⎞ 2 Es ωst⋅ ⋅

bc
----------------------+⋅=

k αeq/s=

PE π E I/s
2⋅ ⋅= I π φlong

      4
/64⋅=

y x( )
δn

2
----- 1 cos

2 π n⋅ ⋅
L

---------------- x⋅⎝ ⎠
⎛ ⎞–⋅

n 1=

∞

∑=

Fig. 7 Variation in critical stress with s/b 
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ensuring that the work done by the applied force P be equal to the increase in the total strain energy

due to the energy of hoop deformation and of cover deformation plus the strain energy of bending

of the buckled bar, it is possible to determine the critical load function of the critical length L and

therefore the critical length as a lower bound of the function of the critical load. 

Therefore the following expressions hold for the critical length L and the critical load Pcrit

 (in mm)   (25)

in N   (26)

Er being the reduced modulus proposed by Papia et al. (1988) and I the moment of inertia of the

longitudinal bars.

By determining the length L the choice of the stress-strain curve in compression for longitudinal

bars is made. The expressions obtained (see Eqs. (21), ..(29)) highlight the fact that the main

parameters governing the overall instability of the main bars in the presence of FRC are the

following: - diameter of stirrups and longitudinal bars; - stirrup spacing; - steel elasticity modulus; -

elasticity secant modulus of SFRC (including, in accordance with the proposed model. the aspect

ratio of fibers, the volume percentage of fibers, etc.); - side of the transverse cross-section; - and

cover thickness. If we refer to the case of a member with square cross-section with main bars

having 12 mm diameter and stirrups having 8 mm diameter, adopting Eq. (29) by means of Eq. (26)

we obtain the variation in the critical stress with the variation in s/L shown in Fig. 7. The critical

stress is here defined as the minimum value between fy , Pcr /Ali and Pe/Ali (i = 1, 2 respectively for

corner or side bar). Cases of plain and fibrous concrete with fr = 0, 0.5 and 1.0 MPa are considered.

From the graphs it clearly emerges that if the pitch of the stirrups is reduced (e.g., is lower than

0.5 b) the critical stress is fy, while for the bars placed along the flat portion of the section its value

is lower. As the fiber percentage increases the critical stress also increases, showing the efficiency

in reducing the buckling effects of the main bars. 

6. Stress-strain curves for transverse and longitudinal bars

To describe the compressive behavior of reinforced compressed members, the constitutive laws of

longitudinal and transverse steel also need to be defined. 

6.1 Stress-strain curves for steel in tension

For transverse steel with strain hardening behavior a three-linear-strain hardening model is

assumed, as suggested in Dhakal and Maekawa (2002), in the following form

(27)

Ep being the hardening modulus of the bilinear law and assumed to be equal to 0.03Es.

L 2 π
Er I⋅
3 k⋅
----------⎝ ⎠
⎛ ⎞

1/4

⋅ ⋅ 4.77
Er I⋅
k

----------⎝ ⎠
⎛ ⎞

1/4

⋅= =

Pcrit 12 Er I k⋅ ⋅ ⋅=

σs

εs Es                for εs εy≤⋅

fy                  for εy εs 8≤ ≤ εy⋅

εs Es⋅ εs εy–( ) Ep for 8 εy⋅ εs 40 εy⋅≤ ≤⋅+⎩
⎪
⎨
⎪
⎧

=
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6.2 Stress-strain curves for steel in compression

The constitutive law assumed for a compressed longitudinal bar is given by Eq. (27), neglecting

buckling effects. If buckling effects are considered, the average steel bar compressive stress-strain

curve as written in Dhakal and Maekawa (2002) is here assumed in the form 

; (28)

with 

(29)

α being 1 for linear hardening bars and 0.75 for perfectly elastic-plastic bars, and L being the

buckling length. 

Therefore the average monotonic stress-strain curve given by Eq. (29) shown in Fig. 5 can be

assumed. In the same graph the graphical representation of Eq. (27) is also given. Both curves are

dimensionless with respect to the yielding stress and to the corresponding strain. 

Eq. (29) was derived by Dhakal and Maekawa (2002) as a result of microanalysis of bars with

hardening behavior and it can be fully described in terms of the product of the square root of the

yield strength and the slenderness ratio of the reinforcing bar, the latter being the ratio between the

length L and the diameter of the longitudinal bar. 

7. Load-carrying capacity and load-axial strain curves in compression 

7.1 Load carrying capacity 

The load-carrying capacity of reinforced concrete (R.C.) columns is determined as the sum of the

three different strength contributions constituted by: - Pcover due to concrete cover area in a biaxial

state of stresses; - Pcore due to the concrete core area in a triaxial stress state of stresses; - and Psl

due to the longitudinal bars including buckling phenomena. 

By considering the concrete contributions one obtains 

(30)

The contribution due to longitudinal bars is

(31)

σ

σ1

----- 1 1
σ*

σ1

*
-----–

⎝ ⎠
⎜ ⎟
⎛ ⎞ ε εy–

ε* εy–
--------------⎝ ⎠
⎛ ⎞ for εy ε< ε*≤⋅–=

σ 0.2 fy⋅≥ σ σ* 0.02– Es ε ε*–( ) for ε ε*>⋅ ⋅=

ε*

εy

---- 55 2.3–
fy
100
---------

L

φ1

-----;
ε*

εy

---- 7≥⋅ ⋅=

σ*

σ1

*
----- α 1.2 0.016

fy

100
---------

L

φ1

-----⋅ ⋅–⎝ ⎠
⎛ ⎞ ;⋅=

σ

fy
--- 0.2≥

Pu ζ fc 4 δ b δ–( )⋅ ⋅ ⋅ ⋅ fcc b 2 δ⋅–( )2⋅+=

Ps Al1 σs1⋅ Al2+ σs2⋅=
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σs1 and σs2 being the minimum values between fy and the critical stress σcr (see Eq. (2) assuming

). 

If we denote with P0 the load-carrying capacity of a gross section of concrete defined as 

(32)

the ratio between Pu and P0 proves to be

(33)

while the ratio between the confined area of concrete and the gross area is

(34)

Comparing Eq. (34) and Eq. (33) it emerges that in the presence of confinement effect and

concrete FRC cover the reduction in the bearing capacity is lower than the reduction in the gross

area (see Eq. (34)). 

By imposing the condition that the strength reduction due to cover spalling be balanced by the

increase in strength due to the confinement effect it is possible to derive the minimum amount of

transverse steel in the form. 

(35)

Therefore from Eq. (35) by solving with respect to  one obtains

(36)

Considering Eqs. (10), (12) and Eq. (14) one obtains
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Fig. 8 Stress-strain relationships in compression for steel bars



662 G. Campione

(37)

Substituting Eq. (37) in Eq. (36) gives

(38)

Eq. (38) allows one to obtain the minimum pitch of transverse steel to verify Eq. (35). 

Fig. 9 gives the variation in the load-carrying capacity (Eq. (33)) with the variation in s/b for

fixed values of post-cracking tensile strength of FRC and δ /b ratio. The cases examined refer to

configuration a) in Fig. 2 and to stirrups having diameter 8 mm and 450 MPa yielding stress. The

concrete had strength 40 MPa and side b of 400 mm. The comparison clearly shows that by adding

fibers (also when a high cover value is adopted) the reduction in strength due to cover spalling is

reduced. 

7.2 Load-axial strain curves in compression 

To determine the complete axial load-axial strain curve it will be assumed that the full load P is

the sum of the three different strength contributions defined before. 

Specifically, the procedure is based on the following steps: - an initial value of axial shortening ε

is assumed; - the lateral strain  is computed assuming a fixed variation law of ν with ε

(Eq. (9)); - the effective confinement pressure due to the transverse steel is computed; - the

compressive strength of the confined concrete and corresponding strain is calculated using

Eqs. (10), (17); the strength contribution due to the concrete cover is calculated through Eq. (1) by

taking Eq. (17) into account; and finally σ is determined by means of Eq. (1). Repeating this

procedure for all possible axial strain values the complete load-strain curve is plotted. 
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To explain the procedure, Fig. 10(a, b, c) shows the compressive response of a short column with

square cross-section having external side b = 300 mm, reinforced with 8 longitudinal deformed bars

having diameter φ = 12 mm and transverse stirrups having 8 mm diameter at pitch s = 45, 90,

180 mm. A cover δ = 20 mm is considered. The yield stress of longitudinal and transverse steel was

assumed to be 450 MPa, while the cylinder compressive strength of the plain concrete specimen

was 80 MPa. Hooked steel fibers having aspect ratio 60 and volume percentage 0.5% were

considered. 

Fig. 10(a) gives the load-axial strain curves for the three different pitches of stirrups for ordinary

and fibrous concrete columns respectively for normal and high strength compressed members.

Fig. 10(b) gives the corresponding variation in the critical length with respect to the diameter of

longitudinal bars with the variation in axial strain; Fig. 10(c) gives the stress-strain curves adopted

for steel bars in compression. 

From the graphs it emerges clearly that the addition of fibers produces significant improvement in

the performance of the columns, especially referring to the stability condition of longitudinal bars.

Moreover, when fibers are used the strength contribution due to the yielding of the main bars is also

present after the peak load is reached for the different pitches examined, including cases of slender

bars. This aspect can be explained by the fact that in the case of FRC the presence of significant

Fig. 10 Responses of a short plain concrete and a short fibrous HSC column (a) load-axial strain curves,
(b) L/φ variation with axial strain, (c) stress in main steel with variation in axial strain
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values of post-peak tensile strength of the composite ensures that the critical length L is reduced

and its value is enclosed in the pitch s (or in a lower value) of the stirrups. 

8. Comparison of analytical and experimental results

In this section a comparison is made between the analytical results generated here and the

experimental ones given in the literature. Experimental data provided by Ganesan and Murthy

(1990), Campione et al. (2007) and Zaina and Foster (2005) are used.

The first data refer to the experimental research carried out by Ganesan and Murthy (1990) and

specifically to compressive tests on normal strength fiber reinforced concrete columns having a

square cross-section, in the presence of longitudinal and transverse steel. The cases examined refer

to prismatic members having 1000 mm length and square transverse cross-section with external

side 200 mm and an effective cover of 25 mm. The columns were reinforced with 8 deformed bars

having a 12 mm diameter and with transverse stirrups having 6 mm diameter placed at pitches of

60, 90, 180 and 240 mm. The yield stress of the transverse and longitudinal bars was 468 MPa.

The concrete had a cylinder compressive strength of 20 MPa (measured on a 150 × 300 mm

cylinder). Hooked steel fibers having aspect ratio 70 and volume percentage 1% were added to

fresh concrete.

The second case examined refers to experimental research carried out by Campione et al. (2007)

and specifically to compressive tests on normal strength fiber reinforced concrete columns having a

square cross-section, in the presence of longitudinal and transverse steel. The cases examined refer

to prismatic members having length 1200 mm and square transverse cross-section with side 210 mm

and effective covers of 10 and 25 mm respectively. The columns were reinforced with 4 deformed

bars having a 12 mm diameter and with stirrups having a 6 mm diameter placed at a pitch of 65

mm. The yield stress of the longitudinal and transverse bars was 461 MPa. The concrete had a

cylinder compressive strength of 29 MPa (measured on a 100 × 200 mm cylinder) with

corresponding strain of 0.0019. Hooked steel fibers having aspect ratio 55 and volume percentage

1% were added to fresh concrete, giving maximum compressive strength up to 32 MPa and

corresponding strain of 0.0023. 

The third case examined refers to experimental research carried out by Zaina and Foster (2005)

and specifically to compressive tests on high strength fiber reinforced concrete columns having a

square cross-section, in the presence of longitudinal and transverse steel. The columns were cast

using high strength concrete with and without fibers. Different arrangements of transverse steel were

also considered. The columns, having a side of 200 mm and overall length 2100 mm, were

reinforced with 8 deformed bars having a 12 or 16 mm diameter and with closed transverse stirrups

having a 6 mm diameter placed at a pitch of 50, 72, 100 and 150 mm, respectively. The cover was

assumed to be equal to 20 mm. The yield stress of the longitudinal and transverse bars was

500 MPa. The fibrous concrete had a cylindrical compressive strength of 101 MPa for series R with

a fiber content of 50 kg/m3, 87 MPa for series Z and M with fiber contents of 50 and 65 kg/m3

respectively. Details of specimens are presented in Table 1. Hooked steel fibers having aspect ratio

84 were added to fresh concrete. 

Fig. 11(a) and Fig. 11(b) show the stress-strain curves of confined core (ordinary and fibrous

concrete) experimentally determined by Ganesan and Murthy (1990) and ones determined

analytically, showing good agreement. 
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Finally, Fig. 12 shows a comparison between the analytical and experimental responses of

columns tested in Campione et al. (2007). In both cases good agreement is observed both in the

ascending and in the descending branches. Table 1 gives the experimental ultimate load and the

corresponding strain (if available) for the different cases examined. In the same table the values

predicted with the proposed model and the average and standard deviation values are also given.

Table 1 Geometrical and mechanical characteristics of confined specimens

Ref.
Specimen 
designation

Vf ρs

Ultimate load (kN) Ultimate strain 

Experiment. Predicted Experiment. Predicted

Ganesan and 
Murthy 
(1990)

R1 0 0.006 902.24 909 0.0027 0.0024

R2 0 0.008 931.67 921 0.0029 0.0027

R3 0 0.016 1029.74 1010 0.0032 0.0035

R4 0 0.024 1118.00 1095 0.0034 0.0045

F1 1.5 0.006 1000.31 1095 0.0032 0.0044

F2 1.5 0.008 1059.16 1113 0.0043 0.0059

F3 1.5 0.016 1157.23 1172 0.0052 0.0065

F4 1.5 0.024 1260.20 1222 0.0073 0.0068

Campione
et al. (2007)

A1 0 0.0054 1286 1173 0.0025 0.0027

A2 1 0.0054 1398 1254 0.0032 0.0030

Zaina and 
Foster 
(2005)

4HF0-50R6r 0.65 0.0075 3438 3575 0.0041 0.0034

4HF0-100R6r 0.65 0.0039 3326 3476 / 0.0031

2HF0-150Z6r 0.65 0.0026 2962 2714 0.0027 0.0023

2HF0-72M6r 0.85 0.0054 2586 2773 / 0.0033

2HF0-100M6r 0.85 0.0039 3061 3092 / 0.0031

Average and standard deviation
Exp/Predicted = 1.0045 Exp/Predicted = 0.969

ST.DEV. = 0.058 ST.DEV. = 0.17

Fig. 11 Experimental and analytical stress-strain curve for confined FRC with hooked steel fibers: data of
Genesa and Murthy (1990)
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9. Conclusions

In the present paper an analytical model is presented that is able to analyze the compressive

behavior of short compressed fiber reinforced concrete columns with square cross-sections and

different arrangements of longitudinal and transverse steel bars. 

The model considers the effects of fibers on the overall stability of compressed longitudinal bars,

on the interaction between concrete cover and confinement pressures and on the effectively confined

concrete core at rupture. 

The paper highlights the influence of the most relevant confinement parameters, i.e., type,

volumetric ratio, spacing, yield strength, concrete grade, geometrical properties of fibers (length,

diameter) and fiber volume, dimension of the transverse cross-section and cover thickness,

highlighting some advantages and disadvantages in using fibers for structural members. The main

results obtained are: - the calibration of stress-strain curves in compression for several grades of

concrete, both plain and FRC; - the derivation of the softening coefficient for the biaxial state of

stresses in FRC concrete cover; - the derivation of a simplified expression for prediction of the

load-carrying capacity; - the derivation of the minimum amount of transverse steel able to ensure

that the strength reduction due to the cover spalling is balanced by the strength increase of confined

core.

The model was verified against data obtained from concentric compressive tests on concrete

specimens reinforced with transverse steel and fibers.
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Notations

Asl1 : area of longitudinal steel bars at the corners
Asl2 : area of longitudinal steel bars at the flat portion
b : external width of square section 
bc : width of concrete core of square R.C. members
Es : modulus of elasticity of steel 
Er : reduced modulus of elasticity of longitudinal steel 
Et : tangent initial modulus of elasticity of concrete in tension
Ef : modulus of elasticity of fiber
Ectf : tangent initial modulus of elasticity of fibrous concrete in tension
F : reinforcing index
fc : peak longitudinal compressive stress of stress-strain curves of unconfined concrete
fctf : peak stress of fibrous concrete in tension
fctu : post-cracking stress of fibrous concrete in tension
ft' : peak stress of plain concrete in tension
fcc : peak longitudinal compressive stress of stress-strain curves of confined concrete
fl : lateral confining stress acting on concrete
fle : effective lateral confining stress acting on concrete
fyl : yield strength of longitudinal steel
fy : yield strength of steel stirrups 
fr : post-cracking tensile strength
L : length of buckled bar 
Lf : equivalent length of fiber
I : moment of inertia of longitudinal steel bar
k2 : confinement effectiveness coefficient
Pe : Eulerian load of longitudinal bar on the length s
Pcrir : critical load of longitudinal bar in the length L
k : stiffness for unit length of stirrups and cover
ke : effectiveness coefficient
s : centre-to-centre spacing of spirals, hoops of stirrups
s' : interior spacing between sets of transverse steel reinforcement
s1 : distance between two successive longitudinal bars
vf : volume percentage of fibers
α : stiffness of single stirrups and cover 
β : shape parameter of stress-strain curve
δ : effective cover of stirrup
εct : peak tensile strain in concrete
εctf : peak tensile strain in fibrous concrete
εcc : strain at peak stress of confined concrete 
εo : strain at peak stress of unconfined concrete 
εs : strain value of stirrups in tension 
εy : yielding strain of stirrups in tension 
εt : tensile strain in concrete
εu : ultimate strain of stirrups in tension
φlong : diameter of longitudinal bar
ρst : ratio of volume of transverse reinforcement to volume of concrete core
ϖst1 : area of external transverse cross-section of stirrup 
ϖst2 : area of internal transverse cross-section of stirrup




