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Abstract. This paper investigates the aspect-ratio locking of the isoparametric 8-node quadrilateral
(QUAD8) element. An important finding is that, if finite element solution is carried out with in exact
arithmetic (i.e., with no truncation and round off errors), the locking tendency of the element is
completely avoided even for aspect-ratios as high as 100000. The current finite element codes mostly use
floating point arithmetic. Thus, they can only avoid this locking for aspect-ratios up to 100 or 1000. A
novel method is proposed in the paper to avoid aspect-ratio locking in floating point computations. In this
method, the offending terms of the strain-displacement matrix (i.e., B-matrix) are multiplied by suitable
scaling factors to avoid ill-conditioning of stiffness matrix. Numerical examples are presented to
demonstrate the efficacy of the method. The examples reveal that aspect-ratio locking is avoided even for
aspect-ratios as high as 100000.

Keywords: finite element method; quadrilateral element; aspect-ratio; locking; exact arithmetic; ill-
conditioning.

1. Introduction

Although finite element method (FEM) has established itself as the single most powerful

numerical tool in mechanics over the last few decades, there is still some scope for further

improvements in areas such as ill-conditioning of stiffness matrix due to locking or other causes. 

Shear locking, volumetric locking and membrane locking have been extensively investigated by

several researchers. Locking may be broadly defined as a pathological condition of a finite element

leading to grossly excessive stiffness for a particular deformation mode (e.g., see MacNeal 1994).

Consequently, a locking-prone element cannot represent that particular deformation mode correctly

even with a very fine mesh. Under certain conditions, the locking-prone element virtually fails to

respond to the applied forces, leading to extremely small displacements. In other words, the element

behaves as if “locked” out of that particular deformation mode. For instance, this situation arises

when modeling a thin cantilever beam subjected to a transverse load. Since the beam is thin, it is

natural to expect more of a bending deformation than the shear deformation. However, locking-

prone finite elements, such as the classical isoparametric bilinear quadrilateral (QUAD4) element,
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are unable to respond to the bending action correctly in view of excessive stiffness due to shear

terms in the stiffness matrix. This pathological condition is termed shear locking. Nevertheless, the

shear locking tendency in higher order elements such as QUAD8 element, is known to be very mild

(e.g., see Prathap 1993). For the normal deformation modes of interest in engineering, this mild

locking tendency can often be ignored. 

Literature available on the locking behavior of finite elements is too vast for an exhaustive review

in this paper. Over the last four decades, extensive research has been carried out on the locking

tendency of finite elements and several techniques to combat locking have been proposed (e.g., see

MacNeal 1994, Prathap 1993). One of the classical techniques to alleviate the locking problem is to

use a lower order integration for the numerical evaluation of the stiffness matrix. This technique,

often called the reduced integration or under integration in the literature, was proposed as a

practical remedy to locking problems around 1970 (Doherty et al. 1969, Zienkiewicz 1971).

Initially, this technique tended to be disregarded as an extra-variational trick or a variational crime

although, subsequently, it proved to be the main source of inspiration for a spate of techniques to

treat locking problems. An excellent account of locking and effect of reduced integration on the

performance of QUAD8 element can be found in the literature (MacNeal 1994, Prathap 1993, Cook

1989, MacNeal and Harder 1992). Reduced integration generally tends to soften an element, which

counters the excessive stiffness caused by locking. However, a naïve application of reduced

integration technique for both offending and non-offending terms of the stiffness matrix has been

found to introduce spurious modes (zero energy modes) that ruin the performance in some types of

elements (such as QUAD9, the nine node quadrilateral element based on Lagrangian shape

functions). This observation motivated the development of selective reduced integration technique

wherein the reduced integration is applied selectively only to the offending terms of the stiffness

matrix.

Many other techniques have also been proposed to eliminate different types of locking in finite

elements. Addition of bubble functions (e.g., see Wilson et al. 1973), assumed strain/stress

formulations (e.g., see Hughes 1980, Pian 1964), mixed or hybrid approaches are notable ones. The

field-consistency approach to treat the locking problems, pioneered by Prathap and his co-

researchers (e.g., see Chandra and Prathap 1989, Ramesh Babu 1985, Rajendran and Prathap 1999,

Naganarayana 1991, Prathap 1994, 1997), has been another systematic approach to avoid locking

problems in several types of elements. In this approach, the locking tendency of finite elements is

viewed as a consequence of lack of consistency in representing the stress field. The corrective

action to enforce consistency involves the use of a lower order best-fit of the stress expression

corresponding to the offending mode. 

Many of the techniques proposed to eliminate locking can be viewed as a rationalization or

generalization of the idea of selective reduced integration technique. In mixed formulations, for

example, the offending terms are ameliorated not simply by reduced integration but by an

equivalent modification in the design of interpolation functions. Polynomial functions of different

orders are used for interpolating the displacements and the strains/stresses. The relation between

mixed formulation and reduced integration technique is discussed by Malkus and Hughes (1978).

Function space approach (Sangeeta et al. 2005, Mukherjee and Prathap 2001) and selective

smoothed finite element (Nguyen et al. 2007) are two recent approaches to understand locking in

finite elements.

Aspect-ratio locking, sometimes known as aspect-ratio stiffening, is another kind of locking which

is of considerable importance in modeling very thin structures. Although there have been numerous
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studies on the locking tendency of finite elements, papers focusing on aspect-ratio locking are

limited (Pitkäranta 2000). Whatever be the type of locking, the root cause of locking tendency is the

large difference between the magnitudes of the offending and non-offending stiffness terms. In the

case of shear locking, this difference is caused by the spurious shear terms, whereas in the case of

aspect-ratio locking, it is caused by the large difference in dimensions between the thickness and

length directions arising in slender structures like beams and plates.

In Section 2, the aspect-ratio locking of QUAD8 element is investigated for thin beam

applications. A practical remedy to the aspect-ratio locking is investigated in Section 3. The

computer code used for the work is discussed in Section 4. Important observations are summarized

in Section 5.

2. Aspect-ratio locking in thin beams

Exact arithmetic calculations are necessary to illustrate an interesting feature of aspect-ratio

locking. Hence, finite element computer codes written in Mathematica@ (Wolfram 1999) are used

for the purpose. The code is listed in Appendix A. The details of the code will be discussed in

Section 4.

2.1 Cantilever beam with unit tip-moment load

A cantilever beam is subjected to a unit tip-moment is shown in Fig. 1. The depth of the beam,

D, is taken as 1 unit while the length, L, is varied from 10 units to 100000 units. The thickness of

the beam is taken as 1 unit. The Young’s Modulus, Y, and the Poisson’s ratio, ν, are taken as 600

units and 0.25, respectively. The problem is modeled with a single serendipity type QUAD8

element. The stiffness integral is evaluated using four different integration schemes, viz., exact

integration, 3 × 3 Gaussian quadrature, uniform reduced integration (i.e., 2 × 2 Gaussian quadrature

for both shear and other terms) and selective reduced integration (i.e., 2 × 2 Gaussian quadrature for

the shear terms and 3 × 3 Gaussian quadrature for the rest). The reference vertical tip displacement

for the problem is calculated as  where M is the moment and I is the sectional area

moment of inertia. This solution, which is based on strength of materials approach, is sufficiently

accurate for thin beam modeling which is the focus of this paper. The computed vertical tip

vref ML
2
/2YI=

Fig. 1 A cantilever beam with a unit tip-moment load 
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displacements (at node 6, Fig. 1) obtained using the Mathematica@ code are listed in Table 1. The

main observations from Table 1 are:

(i) The accuracy of computed displacements deteriorates with the increase in aspect-ratio

irrespective of the integration schemes employed.

(ii) Only a slight deterioration is seen for aspect-ratios 10, 100 and 1000.

(iii) Severe deterioration is seen for aspect-ratios 10000 and 100000.

It is important to note that, for the results reported in Table 1, the input data to the Mathematica@

code (such a dimensions of the cantilever, loads and material properties) are in the decimal format.

However, when all the input values are entered in integer/fractional format (e.g., 0.31 changed to

31/100 and 4.0 changed to 4), the computed displacements turn out to be surprisingly very accurate

with no trace of ‘locking’ whatsoever, yielding exact displacements (see Table 2). 

The reason for this intriguing accuracy has been investigated. It transpires that whenever the input

data is entered in integer or fractional format, all computations done by Mathematica@ are in exact

arithmetic, whereby no approximations such as truncation and round off enter the computations.

Thus, exact arithmetic computations have been responsible for the excellent accuracy of results in

Table 2. It is well-known that reduced integration of stiffness matrix alleviates shear locking

problem in many types of finite elements. However, this general trend is not seen in columns 4 and

5 of Table 1. Thus, the reduced integration is unable to avoid deterioration of results, but exact

arithmetic is. This observation clearly suggests that the deterioration of results in the present case is

not caused by shear locking, but by the aspect-ratio locking induced by the large differences in

lateral and longitudinal stiffness values due to the high aspect-ratios.

It is to be mentioned here that even if any one of the input values, for example the Young’s

Table 1 Vertical displacement at node 6 for tip-moment load with all the input data in decimal format 

Aspect-
ratio 
(L/D)

Exact integration
Uniform 3 × 3 

integration
Uniform reduced 
(2 × 2) integration

Selective reduced 
integration

Reference
solution

(vref)

10 1.0000000000121245 1.0000000000052944 0.9999999999892633 0.9999999999990412 1

100 100.00000311771221 100.00000348167083 99.99997508816216 100.00000194356474 100

1000 9985.976455413136 9992.93808193509 9993.32563023032 10014.440983747296 10000

10000 -912436.0024432316 -85658.65407183554 36145.92082289764 66668.72957898416 106

100000 309.6015444357179 418.9506213170821 1056.8435116900973 -2799.4250665808036 108

Table 2 Same as Table 1, but with all the input data in integer/fractional format 

Aspect-
ratio

 (L/D)

Exact
 integration

Uniform 3 × 3
 integration

Uniform 
reduced (2 × 2)

 integration

Selective reduced 
integration

Reference 
solution

(vref)

10 1 1.0000000000000002 1 1.0000000000000002 1

100 100 100.00000000000001 100 100.00000000000001 100

1000 1000 10000.000000000002 1000 10000.000000000002 10000

10000 1 × 106 1.0000000000000001 × 106 1 × 106 1.0000000000000001 × 106 106

100000 1 × 108 1.0000000000000001 × 108 1 × 108 1.0000000000000001 × 108 108
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modulus, is entered in decimal format, the computations done by Mathematica@ switch over to

floating point arithmetic. Consequently, the truncation and round off errors tend to plague the

accuracy of computations and hence the deterioration of results in Table 1.

2.2 Cantilever beam with unit tip-shear load

The geometry and boundary conditions are the same as in Section 2.1. However, the Young’s

modulus is taken as 4000 units while the Poisson’s ratio value is the same as in Section 2.1. A tip-

shear force of P = 1 unit is applied as shown in Fig. 2. The reference displacement for this problem

(based on strength of materials approach) is given by . Here again, the computations

have been carried out in exact (integer) as well as floating point arithmetic by entering all the input

data in integer/fractional format or decimal format, respectively. The corresponding tip

displacements computed are listed in Table 3 and 4, respectively. The following observations

emerge from Table 3:

(i) The displacements shown (in any of the columns) reveal a slight deterioration in accuracy as

the aspect-ratio is increased up to 1000, but a very severe deterioration for aspect-ratios

beyond 10000.

(ii) Columns 4 and 5 show that, for aspect-ratios up to 1000, uniform reduced (2 × 2) integration

vref PL
3
/3YI=

Fig. 2 A cantilever beam with a unit tip-shear load 

Table 3 Vertical displacement at node 6 for tip-shear load with all the input data in decimal format 

Aspect-
ratio 
(L/D)

Exact integration
Uniform 3 × 3 

integration
Uniform reduced 
(2 × 2) integration

Selective reduced 
integration

Reference 
solution

(vref)

10 0.784238866722784 0.7842388667658277 1.0068781250142023 1.0068781249952705 1

100 750.3760535881969 750.3762323623826 1000.0686712109683 1000.069139872639 1000

1000 749186.1856437577 749335.3105193361 998024.2914658628 1000354.1456111355 1000000

10000 -0.048438934078823
× 109

-0.079692701231378
× 109

0.045475810748153
× 109

-0.0 389677023510543 
× 109

109

100000 0.000002027627867
× 1012

-0.00000474008002
× 1012

0.00000 885599275
× 1012

-0.0000099949801286
× 1012

1012
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and selective reduced integration are able to recover very accurate nodal displacements as

compared to that of exact integration or uniform 3 × 3 integration. (It should be noted that this

increase in accuracy is not related to locking. The sampling points of reduced integration are

in fact the points of optimal stress recovery and as a result, when the stiffness integrals are

evaluated using reduced integration, the displacements turn out to more accurate.) 

The following are the observations from Table 4:

(i) The displacements listed (in any of the columns) show no sign of deterioration with aspect-

ratio.

(ii) As in Table 3, here again, uniform reduced (2 × 2) integration and selective reduced

integration are able to recover very accurate nodal displacements as compared to exact

integration or uniform 3 × 3 integration.

2.3 Cantilever bar with unit tip-tensile load

The dimensional details and boundary conditions are the same as in Section 2.1. However, the

Young’s modulus is taken as 1000 units while the Poisson’s ratio value is the same as in Section

2.1. A tensile force of P = 100 units is applied at the right end as in Fig. 3. The reference

displacement for this problem is given by  where A is the cross-sectional area of the

bar. 

vref PL/AY=

Table 4 Same as Table 3, but with all the input data in integer/fractional format 

Aspect-
ratio
(L/D)

Exact integration
Uniform 3 × 3

 integration
Uniform reduced 
(2 × 2) integration

Selective reduced
integration

Reference 
solution

(vref)

10 0.7832541030573198 0.78325410305732 1.0071041666666667 1.005059949334577 1

100 750.3667975450328 750.366797545033 1000.0708354166667 1000.0500060540812 1000

1000 750003.6718359556 750003.6718359558 1000000.7083335416 1000000.5000006056 1000000

10000 0.750000036718746
× 109 

0.750000036718746 
× 109 

1.0000000070833334 
× 109 

1.0000000050000001 
× 109 

109

100000 0.75000000036719
× 1012 

0.75000000036719
× 1012 

1.0000000000708334 
× 1012 

1.0000000000500002 
× 1012 

1012

Fig. 3 A cantilever bar with a unit tip-tensile load 
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The computed results are shown in Tables 5 and 6. Table 5 shows that very mild ill-conditioning

exists. Table 6 shows that even this mild ill-conditioning effect is completely removed by exact

arithmetic.

The above three problems have also been solved using ANSYS (Kohnke 1997). The

displacements for the three problems discussed in Sections 2.1-2.3 as given by PLANE82 (ANSYS)

are listed in Table 7, which reveal that, here again, the aspect-ratio locking seems to be plaguing the

results. For the tip-shear problem, the aspect-ratios 10000 and 100000 could not be handled by

ANSYS in view of high aspect-ratios.

Table 5 Horizontal displacement at node 6 for tip-tensile load with all the input data in decimal format 

Aspect-
ratio
(L/D)

Exact integration
Uniform 3 × 3

 integration
Uniform reduced 
(2 × 2) integration

Selective reduced
 integration

Reference 
solution

(vref)

10 1.000000000000006 0.9999999999999765 1.0000000000000084 0.9999999999999938 1

100 9.999999999999615 10.000000000006999 9.999999999983073 10.000000000001535 10

1000 100.00000000321863 100.00000003490622 99.99999999551623 99.99999998431846 100

10000 999.9999913266515 999.9999851985052 999.999999461749 999.9999741747741 1000

100000 9999.987045460732 10000.020893922572 10000.004208029446 9999.946309214758 10000

Table 6 Same as Table 5, but with all the input data in integer/fractional format 

Aspect-
ratio

 (L/D)

Exact 
integration

Uniform 3 × 3 integration
Uniform reduced 
(2 × 2) integration

Selective reduced
 integration

Reference 
solution

(vref)

10 1 1.0000000000000002 1 1.0000000000000002 1

100 10 10.000000000000002 10 10.000000000000002 10

1000 100 100.00000000000001 100 100.00000000000001 100

10000 1000 1000.0000000000001 1000 1000.0000000000001 1000

100000 10000 10000.000000000002 10000 10000.000000000002 10000

Table 7 Results* of ANSYS Plane 82 element

Aspect-ratio (L/D) Tip-moment problem Tip-shear problem Tip-tension problem

10 1.0000 1.0069 1.0000

100 100.00 1000.1 10.000

1000 9998.2 0.99993 × 106 100.00

10000 0.39803 × 106 - 1000.0

100000 3230.4 - 10000.0

*Rounded to only 5 significant places
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3. Ill-conditioning correction to avoid aspect-ratio locking

Although the aspect-ratio locking could easily be avoided by exact arithmetic computations, use

of exact arithmetic is not a practically attractive approach to solve the locking problem. This is

because most of the finite element packages available today do not employ symbolic computation,

and floating point arithmetic is prevalent in all practical finite element packages. Hence, in this

section a more practical technique, called progressive ill-conditioning correction (PIC), is introduced

for avoiding the aspect-ratio locking in floating point computations.

3.1 Progressive ill-conditioning correction (PIC)

The ill-conditioning of a stiffness matrix generally arises due to large differences in the entries of

the stiffness matrix. In turn, the large differences in the entries of the stiffness matrix arise from the

large differences in the entries of strain-displacement matrix [B].

(1)

For beams which are thin in the y-direction, the derivative, , will turn out to be very large

as compared to . For instance, for a beam with a length of 100000 units (in the x direction)

and depth of 1 unit (in the y direction),  will be of the order of 1/100000 units whereas

 will be of the order of 1 unit. This large difference leads to entries of very large as well as

very small magnitudes in the stiffness matrix. This ruins the conditioning of the stiffness matrix and

thereby the accuracy of computed solution.

The idea behind the PIC method is to multiply the offending terms in the [B]-matrix by an

appropriate (penalty like) correction factor that varies progressively with the aspect-ratio of the

element. The objective is to adjust the condition number of the element stiffness matrix so that ill-

conditioning does not affect the element performance for thin beams. For the present work, the

 terms appearing in the second row of the [B]-matrix is multiplied by a variable correction

factor, αy. The modified [B]-matrix becomes 

(2)

The variable correction factor, αy, is a function of the parameter, s, which is a measure of the

aspect-ratio, defined as

 

∂Ni/∂y

∂Ni/∂x

∂Ni/∂x

∂Ni/∂y

∂Ni/∂y
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 (3)

where ξ and η are the natural (parametric) coordinates. For a rectangular beam of length L (in x-

direction) and depth D (in y-direction), we can show that . Thus, for 

a rectangular beam, the parameter s turns out to be the inverse of the aspect-ratio, L/D. 

An appropriate choice of the function, αy, is crucial for the success of the present method. Based

on a trial and error process, the following choice has been found to be satisfactory

(4)

A plot of αy versus s is shown in Fig. 4. 

s
yd

ηd
------

ξd

xd
-----=

s
yd

ηd
------

ξd

xd
-----

D

2
----

2

L
---

D

L
----

1

L/D( )
--------------= = = =

αy s
1– e

1

5
---– log

10
s( )

+
= for 0 s 1≤ ≤

    1                     for s 1>=

Fig. 4 Aspect-ratio dependent correction factor (see Eq. (4)) 

Table 8 Same as Table 1, but with PIC1 

Aspect-
ratio

 (L/D)
Exact integration

Uniform 3 × 3
 integration

Uniform reduced 
(2 × 2) integration

Selective reduced 
integration

Reference 
solution

(vref)

10 1.0000000000033253 1.0000000000090163 1.0000000000006848 1.0000000000042324 1

100 100.00000000618486 100.00000047339321 99.99999973682857 100.00000016447505 100

1000 9999.999896102003 9999.99996472898 9999.999807618442 10000.000444540796 10000

10000 1.0000000471041086
× 106

0.9999999919084449 
× 106

0.9999998483984278 
× 106

0.9999999674771561 
× 106

106

100000 9.999986747845925 
× 108

1.0000045930621749 
× 108

0.9999934888859335 
× 108

1.000003437579662 
× 108

108

1PIC stands for Progressive ill-conditioning correction.
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The displacements computed with the PIC are summarized in Tables 8-10. It is seen from these

tables that the PIC method is indeed very effective in removing the locking effects even for aspect-

ratios as high as 100000. The computed displacements are now very close to that of exact

arithmetic (listed in Tables 2, 4 and 6). 

Note that the y-derivative term, , appears not only in row 2 but also in row 3 of [B]-

matrix (Eq. (2)). However, in this paper, the correction is applied only to row 2. Numerical

experiments (not reported here) show that a similar correction applied to row 3 slightly improves

the results for the tip-moment problem, but completely ruins the results for the tip-shear problem,

and has practically no effect for the tip-tensile problem. Hence, for all the results reported here on,

no correction has been applied to row 3.

The variable correction factor as defined in Eq. (4) applies to thin beams that are thin in y-

direction. For beams that are thin in x-direction, we may similarly define another variable correction

factor as

(5)

∂N1/∂y

αx r
1– e

1

5
---log

10
– r( )

+
= for 0 r 1≤ ≤

    1                     for r 1>=

Table 9 Same as Table 3, but with PIC1 

Aspect-
ratio 
(L/D)

Exact integration
Uniform 3 × 3

integration
Uniform reduced 
(2 × 2) integration

Selective reduced
 integration

Reference
solution

(vref)

 10 0.7843821998474318 0.7843821998555516 1.0072992602376556 1.007299260235363 1

 100 750.3897416391114 750.3897422027492 1000.1227194625654 1000.1227201446147 1000

 1000 750008.3170000897 750008.3389638492 1000018.9042145895 1000018.9323219948 1000000

 10000 0.7500125028352147 
× 109

0.7500125118896408 
× 109

1.0000499494341776 
× 109

1.0000499088701078 
× 109

109

 100000 0.750610178351064 
× 1012

0.750610224108150 
× 1012

1.0024809681419504 
× 1012

1.0024831587425344 
× 1012

1012

1PIC stands for Progressive ill-conditioning correction.

Table 10 Same as Table 5, but with PIC1 

Aspect-
ratio 
(L/D)

Exact integration
Uniform 3 × 3 

integration
Uniform reduced 
(2 × 2) integration

Selective reduced 
integration

Reference
 solution

(vref)

10 1.000000000000006 0.999999999999977 0.9999999999999963 0.9999999999999943 1

100 9.999999999999615 10.000000000010692 9.99999999997128 10.000000000000256 10

1000 100.00000000321863 100.00000002970569 100.00000000273887 99.9999999821905 100

10000 999.9999913266515 999.9999894833795 1000.0000010683636 999.9999760287732 1000

100000 9999.987045460732 10000.020930516754 10000.00174698653 9999.954840800394 10000

1PIC stands for Progressive ill-conditioning correction.



A technique to avoid aspect-ratio locking in QUAD8 element for extremely large aspect-ratios 643

where 

(6)

For a general case, where the beam may be thin either in the x- or y- direction, the [B]-matrix is

written as

(7)

For thin beams that are oriented arbitrarily (neither parallel to x- nor y-axis), the above approach

cannot be applied in a straight forward manner. The correction, in such a case, needs to be applied

in three steps: 

(i) Apply the ill-conditioning correction to the [B]-matrix in an element-based coordinate system.

(ii) Obtain the stiffness matrix in the element-based coordinate system. 

(iii) Transform the stiffness matrix to global coordinate system.

3.2 Condition number of the stiffness matrix

The condition number, C, of a matrix is defined as the ratio of its largest eigenvalue, λmax, to the

smallest eigenvalue, λmin. C = λmax/λmin. The larger the condition number, the more severe is the ill-

conditioning. The condition number of the element stiffness matrix for the element in Fig. 1,

computed for various aspect-ratios, is listed in Table 11. The numbers are presented in the format,

a × 10b, with the mantissa a being rounded to one decimal place. Many observations emerge from

Table 11. 

Firstly, we note from Table 11 that the condition number generally increases with aspect-ratio,

which is rather an expected trend. However, even with PIC, we see the same trend, although we

r
xd

ξd
-----

ηd

yd
------=

 

Table 11 Condition number of the stiffness matrix (3 × 3 stiffness integration) 

Aspect-ratio (L/D)

Before applying PIC1 After applying PIC

Exact arithmetic
Floating-point 

arithmetic
Exact arithmetic

Floating-poin
 arithmetic

 10 3.1 × 105 3.1 × 105 1.1 × 105 1.1 × 105

100 3.0 × 109 3.0 × 109 1.0 × 109 1.0 × 109

1000 3.0 × 1013 3.0 × 1013 1.0 × 1013 1.0 × 1013

 10000 3.0 × 1017 5.3 × 1016 1.2 × 1017 1.3 × 1017

100000 3.0 × 1021 2.9 × 1016 1.0 × 1018 3.6 × 1018

1PIC stands for Progressive ill-conditioning correction.
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would expect a decreasing trend. The reason for this has been traced to the fact that we have not

applied PIC to row 3 of the [B]-matrix (see Section 3.1), so the corresponding terms in the stiffness

matrix remain very large compared to the rest. 

The next observation is that, the application of PIC actually tends to increase the condition

number for aspect ratios 10000 and 100000 (compare columns 2 and 3 with columns 4 and 5,

respectively) although we would expect a decrease. The reason for this can be explained as follows.

For high aspect ratios without ill-conditioning correction (PIC), λmin is over-estimated due to

stiffening effect caused by aspect-ratio locking, and therefore the condition number, C = λmax/λmin, is

under-estimated. With the application of PIC, λmin is no more over-estimated, and hence the

condition number, C = λmax/λmin, now appears to increase with the application of PIC.

Before attempting to interpret the results of Table 11, it is important to appreciate a special

problem associated with the floating point computation of matrix condition number. Whenever the

stiffness matrix is ill-conditioned, any computation involving the matrix entries will be affected

adversely by the ill-conditioning of the matrix. Consequently, the computed condition number itself

may be in error whenever the ill-conditioning seriously affects the computation of λmin or λmax.

However, exact arithmetic is free from this problem, in which case the computed condition number

turns to be exact.

Columns 2 and 3 of Table 11 show the condition numbers before applying PIC. It is seen that

exact arithmetic and floating point arithmetic give same condition numbers for aspect ratios 10 to

1000. However, for aspect-ratios 10000 and 100000, they give condition numbers of different orders

of magnitude. This large difference suggests that ill-conditioning must be seriously affecting the

floating point computations. This inference is supported by the extremely poor displacements results

(obtained before applying PIC) in Tables 1, 3 and 5.

Columns 4 and 5 of Table 11 show the condition numbers after applying PIC. Here, exact

arithmetic and floating point arithmetic give condition numbers of the same order of magnitude for

all aspect-ratios from 10 to 100000. This suggests that ill-conditioning is not seriously affecting the

floating point computations any more. This conclusion is supported by the excellent displacement

results in presented in Tables 8-10. Thus, as long as the condition numbers given by exact and

floating point arithmetic are of comparable magnitudes, ill-conditioning does not seem to affect the

results of floating point computations much.

4. A discussion on the code listing

The code listing shown in Appendix A is for tip-moment loading with 3 × 3 integration. Using the

code as it is, the last entry of column 3 of Table 8 can be generated, which corresponds to an

aspect-ratio of 100000. The vertical tip displacement (of node 6) computed by the code appears on

the last line of listing. The aspect-ratio can be changed by editing line In[4]. Note that the MCC

correction is applied through lines In[24] and In[25]. 

For generating the results of third column of Table 1, 

(i) remove line In[24], and 

(ii) replace line In[25] by In[25]:=penalty=1.

For generating the results of third column of Table 2, 

(i) remove line In[24], 
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i(ii) replace In[25] by In[25]:=penalty=1, and 

(iii) replace the Poisson’s ratio value of 0.25 in line In[7] by 1/4 

For other integration schemes (exact integration, 2 × 2 and selective reduced integration), the code

needs to be modified appropriately. In particular, for the case of exact integration, lines In[31]-

In[37] are to be replaced by 

K = Simplify [Integrate [ker, {xi, -1, 1}, {et, -1, 1}]];

For tip-shear and tip-tensile problems, line In[44] must be replaced by

P = Transpose [{{0, 0, 0, 1/6, 0, 1/6, 0, 0, 0, 0, 0, 2/3, 0, 0, 0, 0}}] and

P = Transpose [{{0, 0, 100/6, 0, 100/6, 0, 0, 0, 0, 0, 200/3, 0, 0, 0, 0, 0}}], respectively.

5. Conclusions

The aspect-ratio locking of isoparametric QUAD8 element has been investigated. The following

are some of the important observations from the present work:

1) The aspect-ratio locking effect vanishes completely whenever all the finite element

computations are carried out in exact arithmetic, i.e., in terms of integer and fractional arithmetic. 

2) In most finite element computer programs available today, computations are usually carried out

in floating point arithmetic rather than exact arithmetic. The progressive ill-conditioning correction

(PIC) method proposed in Section 3 is useful in such situations. With this approach, even aspect-

ratios as high as 1000 to 100000 can now be handled by the finite element program. With the PIC

method, the computed results for aspect-ratios in the range 1000 to 100000 are far superior to that

of ANSYS (compare the results of Tables 8-10 with that of Table 7).

3) The PIC method, as the name suggests, is a continuous correction method. In other words, the

extent of correction applied varies continuously with aspect-ratio. For thick beams i.e., for  or

, PIC effectively applies no correction. For extremely thin beams (for s → 0 or r → 0), the

maximum correction is applied so as to nullify the offending terms. 

4) Although the choice of suitable functions for the variable correction factors αx and αy has been

rather adhoc in this paper, the results clearly demonstrate the effectiveness of the PIC method. This

may motivate further research by other researchers leading to a more rational choice of functions

for αx and αy.
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Appendix A. Listing of Mathematica@ code

In[1]:=(* One element model for tip-moment problem using quadratic quadrilateral element and 3x3 inte-
gration *)
In[2]:=(* Legend: L=length of the element; d=depth of the element; thick=thickness of the element;
Y=Young’s modulus; nu=Poisson’s ratio; NN=shape function matrix;  *)
In[3]:=(* Input data *)
In[4]:=aspectratio=1/100000;L=10;d=L*aspectratio;
In[5]:=x1=0;y1=0;  x2=L;y2=0;  x3=L;y3=d;  x4=0;y4=d;  
In[6]:=x5=L/2;y5=0;  x6=L;y6=d/2;  x7=L/2;y7=d;  x8=0;y8=d/2;  
In[7]:=Y=600; nu=0.25;thick=1;
In[8]:=xc=Transpose[{{x1,x2,x3,x4,x5,x6,x7,x8}}];
In[9]:=yc=Transpose[{{y1,y2,y3,y4,y5,y6,y7,y8}}];
In[10]:=(* Shape functions *)

In[11]:=NN = 

 

 

 ;

In[12]:=(* Local derivatives of shape functions *)
In[13]:=dNdxi=Flatten[D[NN,xi]];
In[14]:=dNdet=Flatten[D[NN,et]];
In[15]:=dNxiet={dNdxi,dNdet};
In[16]:=(* Jacobian matrix *)
In[17]:=dxdxi=Simplify[dNdxi.xc][[1]];dxdet=Simplify[dNdet.xc][[1]];
In[18]:=dydxi=Simplify[dNdxi.yc][[1]];dydet=Simplify[dNdet.yc][[1]];
In[19]:=Jac={{dxdxi,dxdet},{dydxi,dydet}};
In[20]:=JacInv=Inverse[Jac];
In[21]:=(* Global derivatives of shape functions *)
In[22]:=dNxy=Simplify[JacInv.dNxiet];
In[23]:=(* B-matrix *)
In[24]:=s=dydet/dxdxi;
In[25]:=penalty=s(-1+Exp[-N[Log[10,s]/5]])

Out[25]=2.56207×10-9

In[26]:=Bmat={{dNxy[[1,1]],0,dNxy[[1,2]],0,dNxy[[1,3]],0,dNxy[[1,4]],0,dNxy[[1,5]],0,
                    dNxy[[1,6]],0,dNxy[[1,7]],0,dNxy[[1,8]],0},
           penalty*{0,dNxy[[2,1]],0,dNxy[[2,2]],0,dNxy[[2,3]],0,dNxy[[2,4]],0,
                    dNxy[[2,5]],0,dNxy[[2,6]],0,dNxy[[2,7]],0,dNxy[[2,8]]},
                    {dNxy[[2,1]], dNxy[[1,1]],dNxy[[2,2]],dNxy[[1,2]],dNxy[[2,3]],dNxy[[1,3]],
                    dNxy[[2,4]],dNxy[[1,4]],dNxy[[2,5]],dNxy[[1,5]],dNxy[[2,6]],
                    dNxy[[1,6]],dNxy[[2,7]],dNxy[[1,7]],dNxy[[2,8]],dNxy[[1,8]]}};
In[27]:=(* D-matrix *)
In[28]:=const=Y/(1-nu*nu);
In[29]:=Dmat=const*{{1,nu,0},{nu,1,0},{0,0,(1-nu)/2}}
Out[29]={{640.,160.,0},{160.,640.,0},{0,0,240.}}
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In[30]:=(* Stiffness-matrix by 3×3 integration *)
In[31]:=ker=Simplify[Transpose[Bmat].Dmat.Bmat]*thick*Det[Jac];
In[32]:=g=Sqrt[3/5];
In[33]:=K11=Simplify[ker/.xi[Rule]-g/.et[Rule]-g];K12=Simplify[ker/.xi[Rule]0/.et[Rule]-g];
                 K13=Simplify[ker/.xi[Rule]g/.et[Rule]-g];
In[34]:=K21=Simplify[ker/.xi[Rule]-g/.et[Rule]0];K22=Simplify[ker/.xi[Rule]0/.et[Rule]0];
                 K23=Simplify[ker/.xi[Rule]g/.et[Rule]0];
In[35]:=K31=Simplify[ker/.xi[Rule]-g/.et[Rule]g];K32=Simplify[ker/.xi[Rule]0/.et[Rule]g];
                 K33=Simplify[ker/.xi[Rule]g/.et[Rule]g];
In[36]:=w1=5555555555555555/10000000000000000; w2= 8888888888888888/10000000000000000;
          w3=5555555555555555/10000000000000000;
In[37]:=K=(K11*w1*w1 + K12*w1*w2 + K13*w1*w3)+(K21*w2*w1 + K22*w2*w2 + 
          K23*w2*w3)+(+K31*w3*w1 + K32*w3*w2 + K33*w3*w3);
In[38]:=K=Simplify[K];
In[39]:=(* Application of boundary conditions and loads *)
In[40]:=Do[{K[[1,i]]=0,K[[i,1]]=0},{i,1,16}]; K[[1,1]]=1;
In[41]:=Do[{K[[7,i]]=0,K[[i,7]]=0},{i,1,16}]; K[[7,7]]=1;
In[42]:=Do[{K[[15,i]]=0,K[[i,15]]=0},{i,1,16}]; K[[15,15]]=1;
In[43]:=Do[{K[[16,i]]=0,K[[i,16]]=0},{i,1,16}]; K[[16,16]]=1;
In[44]:=P=Transpose[{{0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0}}];
In[45]:=(* Solving for displacements *)
In[46]:=U=Inverse[K].P
Out[46]={{0.}, {243945}, {1000.0051241442894`}, {1.0024440432498237`*8}, {-1000.01}, 
{1.00244×108}, {0.}, {243944}, {500.003}, {2.52441×107}, {0.000529244}, {1.×108}, 
{-500.002}, {2.52441×107}, {0.}, {0.}}
In[47]:=(* Verical displacement of node 6 *)
In[48]:=SetPrecision[N[U[[12]]],17]
Out[48]={1.0000045930621749×108}




