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Abstract. A concept of crash energy absorbing (CEA) lattice structure for an inflatable morphing
vehicle body (Lee et al. 2008) has been investigated as a method of providing rigidity and energy
absorption capability during a vehicular collision (Lee et al. 2007). A modified analytical model for the
CEA lattice structure design is described in this paper. The modification of the analytic model was made
with a stiffness approach for the elastic region and updated plastic limit analysis with a pure plastic
bending deformation concept and amended elongation factors for the plastic region. The proposed CEA
structure is composed of a morphing lattice structure with movable thin-walled members for morphing
purposes, members that will be locked in designated positions either before or during the crash. What will
be described here is how to model the CEA structure analytically based on the energy absorbed by the
CEA structure.
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1. Introduction 

 

Previous research on crashworthiness designs of automotive bodies usually focused on the tube

structure or material design, which includes cross section and shape (Kim and Wierzbicki 2001,

Han and Yamazaki 2003, Suh et al. 2002, Avalle et al. 2002, Alghamdi 2001), honeycomb

sandwich structures (Yasui 2000, Aktay et al. 2005), and alternative materials (Deb et al. 2004).

The current cars, unfortunately, contain fundamental handicaps including fixed front end structures

and limited crumple zones with the fatality rate dramatically increased in high speed impacts. In

order to design a successful lightweight vehicle and significantly improve the crash performance of

current cars, technology development is still needed. Therefore, Lee et al. (2008) proposed a new

concept called “inflatable bumper.” The expandable lattice structure (ELS) presented in this paper is

one of components of the inflatable bumper. Fig. 1 illustrates an example prototype of such ELS.

In this research, analytic modeling of the expendable lattice structure is conducted. This structure

is used to absorb the crash energy of colliding cars that have inflatable bumpers. As illustrated in
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Fig. 1, the ELS is folded while driving, and is expanded and locked during the crash in order to

absorb the crash energy. It is assumed that a sophisticated sensor and radar system is available to

detect an impending collision. Lee et al. (2007) have developed an analytic model for the ELS

based on strain energy using a stress and strain curve, Young’s modulus, as well as a reduced

modulus for elastic regions and a plastic limit analysis for plastic regions. In this paper, an advanced

model for the ELS was developed based on a stiffness approach and a modified plastic limit

analysis, which results in much improved prediction accuracy. 

Usually in mechanical or civil engineering, a lattice structure utilizes beam elements or bar

elements, analytic modeling of such lattice structures has been done for strength and stiffness

(Pedersen and Nielsen 2003, Sedaghati et al. 2001, Kawamura et al. 2002) and for frequency

constraints (Lingyun et al. 2005) to avoid resonance. Pedersen (2004) has also studied

crashworthiness design of a frame structure, for a passive (fixed) structure.

The thin-walled member of the proposed lattice structure is composed of plates. Therefore

analytic modeling should be performed for the plates instead of for beams or bars. It is assumed

that the pressure is evenly distributed between the upper and lower plates, that every thin-walled

member in the lattice structure is under the same boundary and loading conditions, and that every

thin-walled member has the same shape, size, and material properties. To calculate the crash energy

absorbed in the lattice structure, the deformation region can be separated into a pre-global buckling

region where a local buckling can occur and a post-global buckling region where plastic joints are

Fig. 1 Prototype of expandable lattice structure for crashworthiness 

Fig. 2 Pre-global buckling region and post-global buckling region in plate crush behavior
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formed (see Fig. 2). For the pre-global buckling region, the elastic deformation energy is superposed

of elastic deformation energy of individual thin-walled member elements in parallel and series based

on the stiffness of the single plate theory. For the post-global buckling region, this research applies

the theory of plastic limit analysis that is updated with pure plastic bending deformation and

amended elongation factors for plastic region from the previous paper (Lee et al. 2007) to an

absorbed energy in the lattice structure. In the previous paper, the plastic bending deformation

included an elastic bending deformation and the elongation factors were only based on the width of

cross section of thin-walled member. Final energy absorption by the lattice structure can be obtained

by summation of the absorbed energies in the pre-global buckling region and the post-global

buckling region.

Two kinds of elements for thin-walled members in the lattice structure have been considered in

this research. One is the U shape of the thin-walled member (see Fig. 3(a)) and the other is the

rectangular jagged thin-walled member (see Fig. 3(b)). Analytic modeling in this paper is based on

the U shape of the thin-walled member. The analytic model developed can be easily applied to the

rectangular jagged member with minor changes. For the material properties, it is assumed to be

elastic-perfect plastic material.

Many materials are strain rate sensitive, and the yield stress increases as the strain rate increases.

In this research, the strain rate effect has been neglected.

2. Absorbed energy in the pre-global buckling region based on the stiffness

approach

In this section, the approach for energy absorption in the pre-global buckling region is

investigated based on the stiffness theory (Malen and Kikuchi 2006). First of all, the analytic model

for energy absorbed in a single plate in the lattice structure is investigated and then the developed

analytic model is expanded to the whole lattice structure, including multiple plates based on

superposition theory of elastic elements connected serially and in parallel.

2.1 Stiffness of a single plate in the lattice structure

During a crash, a plate in the lattice structure will undergo buckling, possibly locally or globally.

In this subsection, we investigate an approach which is based on the stiffness derived from the plate

Fig. 3 Lattice structure with the U shape of (a) a thin-walled member and (b) rectangular jagged member
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buckling theory that is used to estimate the absorbed energy in a single plate for the pre-global

buckling region. The plate of the lattice structure will undergo a local buckling within the plate

before global buckling takes place during the crash. A plate can still carry an increased load before

global buckling occurs, even if it goes through local buckling under the axial load condition (see

Fig. 4). Therefore, we can calculate the energy absorbed in a plate before global buckling occurs

based on elastic stiffness.

Expressions for estimating the stiffness, K1 and K2, (see Fig. 4) of a single plate (see Fig. 5) in the

lattice structure before and after local buckling occurs, are developed. The developed expression can

then be applied to every single plate in this lattice structure without any modifications because it is

assumed that every plate in the lattice structure have the same shape, size, and material properties,

Fig. 4 Elastic region and plastic region in plate crush behavior based on plate buckling theory 

Fig. 5 Load path of a single plate in lattice structure 
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and the structure is constructed by repeating the same plate.

Fig. 5 shows the load path of a single plate in the lattice structure. The U shape of the thin-walled

member (see Fig. 3(a) and Fig. 9) will be considered in Section 2.2. In Fig. 5, the upper plate and

lower plate are assumed to be rigid. Actually, the load in the lateral direction, from the connection

of the upper plate and lower plate, has an insignificant influence on the axial and bending

deformation of the plate.

Work done by the external force ( ) is the same as strain energy stored in the structure, which

is

(1)

where displacement (∆) can be expressed as a force divided by a stiffness coefficient K  

(2)

Therefore, stiffness of a single plate can be expressed from Eqs. (1) and (2) as

(3)

Considering only the longitudinal stress, the strain energy stored in a single plate (Hibbeler 2005)

can be given simply as

(4)

where E, σ, a, b, and t denote Young’s modulus of plate, axial stress of plate, width of plate, length

of plate, and thickness of plate, respectively. It is necessary to find the stress of a plate in Eq. (4) in

order to determine the absorbed strain energy U. This stress can be considered in two cases: before

local buckling and after local buckling. First, consider the stiffness K1 of Fig. 4. The stress of plate

before local buckling is expressed by

(5)

From Eqs. (4) and (5), the strain energy stored by the plate is

(6)

Therefore, the stiffness of the plate before local buckling can be expressed as

(7)

Consider the stress and stiffness of the plate after local buckling occurs, but before global

buckling takes place. The stress on the compressive plate can be written on the basis of the effective

width theory (Malen and Kikuchi 2006) as

(8)
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where ae denotes an effective width,

σcr: critical compressive plate (local) buckling stress

σy: yield stress

The critical compressive plate buckling stress can be written as (Yu 2000)

(9)

where  and t denote the constant for the boundary condition of a single plate, Young’s

modulus, Poisson’s ratio, the width of a single plate, and the thickness of a single plate,

respectively. So, the strain energy stored in the plate from Eq. (4) yields

(10)

The average effective thickness during the local buckling can be assumed to be

(11)

Therefore, the average stiffness of the plate in the time between local buckling and global

buckling can be given by

(12)

Fig. 6 shows the comparison of stiffness of a single plate under compression obtained by our

measurements and those of Rhodes (2001). As can be seen, the stiffness (K1 and K2) before

buckling and after buckling is in a similar format.
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2.2 Stiffness of the lattice structure

The stiffness of a single plate has been obtained in Section 2.1. To obtain the stiffness

(represented by KS1 and KS2 in the F-D curve in Fig. 7) of a lattice structure composed of multiple

identical plates, plates are superimposed using the serial and parallel theories of connected elastic

elements represented by the springs (see Fig. 8). 

Assume the element in the truss structure to be the U shape of a thin-walled member as in Fig. 3.

Then the U section can be isolated with a given boundary condition, as in Fig. 9. Therefore the

critical stress (Eq. (9)) for each plate in the U section element can be obtained separately (Schafer

2002). So, the stiffness of the plate in the element will be calculated independently. 

For the connection of two adjacent plates in Fig. 9, if the thicknesses of two plates are different

(that is, one is thicker and the other one is thinner), the boundary condition for the connection can

be defined as fixed. However, if the thicknesses of two plates are the same, the boundary condition

Fig. 7 F-D curve of lattice structure

Fig. 8 Serial and parallel combination of plates in lattice structure
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for the joint can be considered to be simply-supported (Malen and Kikuchi 2006). In our lattice

structure, the thicknesses of all of the plates are assumed to be the same, so the plate edges can be

modeled as simply-supported as shown in Fig. 9.

Considering serial and parallel combination of Fig. 8 and the U-shape section of Fig. 9 with

Eqs. (7) and (12) results in

(13-1)

(13-2)

where KS1 and KS2 are extensions of Eqs. (7) and (12), respectively.  and  are the

critical stress for the web part and the critical stress for the flange part, and n_row, n_column, and

n_story are the number of elements in the direction of the row, the number of elements in the

direction of the column, and the number of elements in the direction of height, respectively (see

Fig. 3).

2.3 Critical forces, critical displacement, and absorbed energy in lattice structure

 

The total force on a U-shaped element can be obtained areas 

(14)

According to the superposition theory, the total force of lattice structure is affected only by

springs connected in parallel. The stress at the point where local buckling begins is a critical

compressive plate buckling stress (see Eq. (9)). Therefore, the critical force at the point where local

buckling begins (FS1) can be expressed as

(15)

At the point where failure (global buckling) begins 

(16)

KS1

nrowncolumn

nstory

-----------------------
Eat 2 E flange_h t⋅ ⋅ ⋅+

b
------------------------------------------------------⎝ ⎠
⎛ ⎞=

KS2

nrowncolumn

nstory

-----------------------

at 1
2σcr_web

σcr_web σy+
-------------------------+⎝ ⎠

⎛ ⎞ 2 flange_h t 1
2σcr_flange

σcr_flange σy+
-----------------------------+⎝ ⎠

⎛ ⎞⋅ ⋅ ⋅+⎝ ⎠
⎛ ⎞E

2b( )
-------------------------------------------------------------------------------------------------------------------------------------------

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

σcr_web σcr_flange

F σwebAweb 2σflangeAflange+=

FS1 nrowncolumn kweb
Eπ

2

12 1 µ
2

–( ) a/t( )2
--------------------------------------at 2kflange

Eπ
2

12 1 µ
2

–( ) flange_h/t( )2
-------------------------------------------------------- flange_h t⋅+⎝ ⎠

⎛ ⎞=

A aet, σ σy, where ae
a

2
--- 1

σcr

σy

-------+⎝ ⎠
⎛ ⎞= = =

Fig. 9 Element to be repeated in lattice structure and plate edge condition for buckling coefficient k 
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And the force for one element is

(17)

So, the critical force at the point where global buckling begins (FS2) can be expressed as

(18)

And, the critical displacements under the critical forces become 

(19)

Using the above equations, the absorbed energy of a lattice structure can be obtained as

(20)

3. Absorbed energy in the post-global buckling region

In this section, the energy absorbed in the post-global buckling region is investigated. In the post-

global buckling region, the plate will be deformed and some part of the plate will go through global

plastic bending as shown in Fig. 10. The energy absorbed in post buckling will be the same as the

plastic bending energy. To obtain the plastic bending energy, the plastic limit analysis can be

applied.

The energy absorbed by the plastic deformation of one element can be given by

(21)

where Mp means a full plastic bending moment and  means an average distortion angle in the
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Fig. 10 Deformation of a plate
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it is assumed that the plate has a rectangle cross section, he full plastic bending moment (Crandall

et al. 1978) can be expressed by

(23)

where My, expressed by  (Crandall et al. 1978), denotes a bending moment that

corresponds to the onset of yielding in the plate. , and t are yield stress, the width of a plate,

and the thickness of a plate, respectively. For the elements in the lattice structure (Fig. 9), the full

plastic bending moment can be modified to

(23)

where ape means an effective width for plastic moments determined by the function of the width of

web, the height of flange, the thickness of plate, and the extra elongation. It can be expressed by

(24)

where  and  are elongation factors for plastic bending (see Fig. 11), the value of which

can be determined by a numerical test. As shown in Fig. 11, after plastic bending, the total width

for the element will be increased by some amount. In this research, it can then be assumed that an

elongated length is a function of flange height of a plate, the width of a plate, and the thickness of

plate like  and .

Now, consider the amount of distortion of the elements. To find the analytic expression for the

amount of distortion, the shape of deformation has been assumed to be a circle or any other

polygon that has one loop and two hinges like Fig. 12. It is necessary to know the total deformation

angle for the loop and the hinges around the polygon that is modeled.

The deformation angle (exterior angle) for one polygon (loop) that has n sides will be given as the

constant
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Fig. 11 The cross section shape of plates before and after buckling
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(25)

Therefore, it can be considered that the deformation angle in any polygon is always 2π (see

Fig. 13). So, regardless of loop shape, the loop can be assigned 2π for its deformation angle, and

the hinge can be assigned π for its deformation angle. Then the total deformation angle for elements

with one loop and two hinges will be

(26)

2π for the loop shape and π for the hinge are not all associated with the plastic bending

deformation, some of them are associated with the elastic bending. This 4π includes a portion of

elastic bending deformation that should be not considered. Fig. 14 shows a moment-curvature

relation for the bending on the condition that the material is elastic-perfect plastic (Crandall et al.
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Fig. 12 The shape of the deformation of a plate (one loop and two hinges) 

Fig. 13 Deformation angles of some polygons

Fig. 14 Moment-curvature relation for loading and unloading of the bending moment
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1978). The curve is simplified at Fig. 15 from which the portion of elastic bending deformation can

be easily found. 

The deformation angle for the elastic bending part will be determined by the curvature,  of

Fig. 15. The curvature, , can be expressed by  because slope A and the slope B

are equal. Crandall et al. (1978) found the value

(27)

So, the corresponding elastic deformation angle can be determined by multiplying Eq. (27) by the

length of the arc associated with the elastic deformation angle, which can be expressed simply by

b/(number of hinges and loops)

Therefore, the elastic deformation angle will be

The elastic deformatio n angle = (28)

The pure plastic deformation angle can be obtained by subtraction of Eq. (28) from Eq. (26). 

The plastic deformation angle = (29)

The deformation angle of an element depends on the number of loops and the number of hinges.

In this research, those numbers are determined by a simulation using LS-DYNA. For a U shape of a

thin-walled member (see Fig. 3), one loop and two hinges are appropriate for almost all cases. 

The resulting equation of (21) for the energy absorbed in the post-global buckling region by one

element will be

 (30)

So, the total strain energy stored in the lattice structure will be the sum of individual plastic

bending energies in each element of the lattice structure. That is 
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Fig. 15 Simplified moment-curvature relation for loading and unloading of the bending moment
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Finally, the energy absorbed by the lattice structure during elastic and plastic deformation can be

described as 

(32)

4. Validation of the analytic model of a crash energy absorption structure using

LS-DYNA

The developed analytic model has been verified simply by using LS-DYNA. For the lattice

structure crash simulation, the impact mass is 1962 kg and the speed of the mass is 13.4 m/s. The

material used in this test is steel that is assumed to be elastic-perfect plastic. The U shape of the

thin-walled member (see Fig. 16) was applied to this test.

Fig. 17 and Table 1 demonstrate the total absorbed energy and show the comparison between

analytic results and LS-DYNA simulation results for various masses (2 kg~9 kg) of lattice structure.

As seen in Fig. 17, the values of the total crash energy absorbed of the analytic model and the FEM

model for the lattice structure are in good agreement. The results obtained from the modified

analytic model of this paper are much better than the results obtained in the previous paper (Lee

et al. 2007). Note that the semi-empirical formulation yields less energy absorption with respect to

LS-DYNA predictions in most cases. This is because the semi-empirical formulations ignored some

local buckling effects and the self-contact effects between the thin-walled members.

Ulattice Upre Eq.20( ) Upost Eq.31( )+=

Fig. 16 FEM model for verification of analytic solution
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Note that in this research, the number of lobes, and the elongation factor αlattice and βlattice were

obtained by using a finite element simulation. From the current simulation, 0.005 was used for

αlattice and βlattice. For this method to be faster and more economical, these values should be

determined by an analytic expression. These will be researched in the future.

5. Conclusions

The objective of this paper is to develop a reconfigurable lattice structure for the improved

crashworthiness of vehicles, and to develop an improved First Order Analysis model for predicting

crash energy absorption of an expandable lattice structure. In ELS, an identical unit element is

repeated in the directions of story, row, and column. To develop the modified analytic model, a

stiffness approach for the elastic region and a modified plastic limit analysis with pure plastic

bending deformation and amended elongation factors for plastic region were developed. The total

absorbed energy obtained with the previous model, current model, and a full finite element model

has been compared. It is seen that the modified model is in much better agreement with the full

Fig. 17 Absorbed energy of analytic model and LS-DYNA simulation (X axis: mass of lattice structure (kg),
Y axis: energy (Nm))

Table 1 Absorbed energy of analytic model and LS-DYNA simulation

Mass (kg)
Energy (Nm) 
LS-DYNA

Energy (Nm) 
Previous paper

Energy (Nm) 
This paper

2.00E+00 12910 3902 14537

3.00E+00 22930 8776 23405

4.00E+00 37530 26411 33266

5.00E+00 49030 37869 44152

6.00E+00 61120 51279 56119

7.00E+00 74810 66610 69250

8.00E+00 86696 83890 83665

9.00E+00 100773 103120 99524
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finite element model.

Future research will consider the ELS being supported by the vehicle body and the strain rate

effect as well as other possible deformation shapes of the thin-walled structural members in the

ELS. Manufacturability, sensing technology and actuation mechanism will be further investigated

for potential implementation of the new technology in innovative vehicle applications.
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