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Abstract. For seismic resistant design of critical structures, a dynamic analysis, either response
spectrum or time history is frequently required. Owing to the lack of recorded data and the randomness of
earthquake ground motion that may be experienced by structure in the future, usually it is difficult to
obtain recorded data which fit the requirements (site type, epicenteral distance, etc.) well. Therefore, the
artificial seismic records are widely used in seismic designs, verification of seismic capacity and seismic
assessment of structures. The purpose of this paper is to develop a numerical method using Artificial
Neural Network (ANN) and wavelet packet transform in best basis method which is presented for the
decomposition of artificial earthquake records consistent with any arbitrarily specified target response
spectra requirements. The ground motion has been modeled as a non-stationary process using wavelet
packet. This study shows that the procedure using ANN-based models and wavelet packets in best-basis
method are applicable to generate artificial earthquakes compatible with any response spectra. Several
numerical examples are given to verify the developed model.

Keywords: artificial ground motion; wavelet packet transform; best basis algorithm; generalized regression
neural network; target spectrum.

1. Introduction

The major imperfect of the response spectrum analysis in seismic design of structures lies in its

inability to provide temporal information of the structural responses. Such information is sometimes

necessary in achieving a satisfactory design. Because of the complex nature of the formation of

seismic waves and their travel path before reaching recording station, and considering lack of

enough earthquake records, generation of artificial earthquake recodes is the best method in this

regard. The natural phenomena are usually nonlinear and the majority of the signals have changing

frequency contents so separated time analysis and frequency analysis by themselves do not fully
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describe the nature of these non-stationary dynamic loads. However, a rigorous detailed study on the

dynamic behavior of a linear or nonlinear structure requires a time domain analysis along with the

use of an accelerogram consistent with the design response spectra of the particular site under

investigation. 

The problem of generating such artificial accelerograms has been studied by researches using a

variety of methods (Karabalis et al. 2000). The natural phenomena are usually nonlinear and the

majority of the signals have changing frequency contents. There are, however, several instances

where acceleration time histories are required as seismic input instead. For example, to determine

the ultimate resistance and to identify modes of failure of structures, a nonlinear time history

analysis is needed. In other cases, acceleration time histories are required for linear analyses. For

instance, many seismic codes require this type of analysis for buildings witch pronounced

irregularities. In these cases, it is common to use acceleration time histories whose response spectra

are compatible with the code-prescribed design spectrum. To provide input excitations to structural

models for sites with no strong ground motion data, it is necessary to generate artificial

accelerograms. It has long been established that due to parameters such as geological conditions of

the site, distance from the source, fault mechanism, etc. different earthquake records show different

characteristics. Thus, the simulated earthquake records must have realistic duration, frequency

content, and intensity, representing the physical conditions of the site (Refooei et al. 2001). Thus,

there is need for generating ensembles of realistic artificial earthquake ground motion to cover a

variety of uncertainties in seismic design of structures (Fan and Ahmadi 1990). 

Spectral analysis using the Fourier Transform has been one of the most important and most

widely used tools in earthquake engineering. Over the past few years, however, researchers have

become aware of the limitations of this technique, especially in the case of non-stationary signals,

and of nonlinear systems (Jaffard et al. 2001). As a new method with obvious advantage for time-

frequency analysis, wavelet transform is now applied in many fields of study. Wavelet transform is

a good tool adaptive to time-frequency analysis in earthquake engineering with good time-frequency

discrimination ability (Benedetto and Frazier 1994). Wavelet transform can improve the studies of

earthquake engineering from conventional frequency spectrum analysis to more accurate time-

frequency analysis. With good time-frequency discrimination ability and flexible time-frequency

windows, wavelet transform are now widely used to analysis various signals in time and frequency

domain simultaneously. 

The recently developed wavelet analysis has emerged as a powerful tool to analyze temporal

variations in frequency content. Recent applications of the wavelet transform to engineering

problems can be found in several studies that refer to dynamic analysis of structures, damage

detection, system identification, etc. Newland (1994) applied wavelets for analyzing vibration

signals, and developed special wavelets and techniques for engineering purpose. Ghodrati Amiri et

al. (2006, 2007, 2008), Ghodrati Amiri and Bagheri (2008), Suarez and Montejo (2005, 2007),

Rajasekaran et al. (2006), Hancock et al. (2006), Mukherjee and Gupta (2002a, b) and Iyama and

Kuwamura (1999) developed the wavelet analysis for generating earthquake accelerograms. 

In the other hand, ANN has been investigated to deal with the problems involving incomplete or

imprecise information. Several authors have used ANN in the structural engineering, especially in

the structural dynamic problems. Recently, Ghaboussi and Lin (1998), Lin and Ghaboussi (2000),

Lee and Han (2002), Rajasekaran et al. (2006), Ghodrati Amiri and Bagheri (2008) and Ghodrati

Amiri et al. (2008) have developed innovative methodologies for the generation of artificial

earthquake accelerograms using neural networks. Lin and Ghaboussi (2000) proposed using
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stochastic neural networks to generate the same artificial accelerogram compatible with the response

spectrum. Ghodrati Amiri and Bagheri (2008) proposed generating one artificial accelerogram

compatible with the response spectrum using wavelet theory and radial basic function neural

networks. Ghodrati Amiri et al. (2008) proposed to generate multiple spectrum compatible

earthquake accelerograms using the wavelet packet transform and stochastic neural networks.

In this paper, the decomposing capabilities of wavelet packet with best-basis transform and the

learning abilities of Generalized Regression Neural Network (GRNN) are used to develop a method

for generating accelerogram from response spectra. The proposed method validated using 40

accelerograms to train the neural networks. The performance of the trained GRNN is estimated by

generating accelerogram for new response spectra and design spectra. 

2. Overview on wavelet packet transform

Wavelet transform is a mathematical tool, which transforms sequential data in time axis such as

earthquake accelerations to spectral data in both time and frequency. Therefore, wavelet transform

provides information on non-stationary time dependent intensity of motions regarding a particular

frequency of interest. Wavelets are mathematical functions that cut up data or function into different

frequency components, and then study each component with a resolution matched to its scale

(Benedetto and Frazier 1994). Wavelets, which are oscillatory functions of zero mean and of finite

energy, can be used to obtain a time-frequency representation of a process. 

As a result of decomposition of only the approximation component at each level using the dyadic

filter bank, the frequency resolution in higher-level e.g., A1 and D1 (Fig. 1). Discrete Wavelet

Transform (DWT) decompositions in a regular wavelet analysis may be lower. It may cause

problems while applying DWT in certain applications, where the important information is located in

higher frequency components. The frequency resolution of the decomposition filter may not be fine

enough to extract necessary information from the decomposed component of the signal. The

necessary frequency resolution can be achieved by implementing a wavelet packet transform to

decompose a signal further. The wavelet packet analysis is similar to the DWT with the only

difference that in addition to the decomposition of only the wavelet approximation component at

Fig. 1 Wavelet decomposition tree
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each level, a wavelet detail component is also further decomposed to obtain its own approximation

and detail components as shown in Fig. 2.

Each component in this wavelet packet tree can be viewed as a filtered component with a

bandwidth of a filter decreasing with increasing level of decomposition and the whole tree can be

viewed as a filter bank. At the top of the tree, the time resolution of the WP components is good

but at an expense of poor frequency resolution whereas at the bottom of Thus with the use of

wavelet packet analysis, the frequency resolution of the decomposed component with high

frequency content can be increased. As a result, the wavelet packet analysis provides better control

of frequency resolution for the decomposition of the signal (Abhijeet Shinde 2004). 

A wavelet packet function  is defined as (Ogden 1997)

(1)

where j and k are the scaling parameter and the translation parameter, respectively; i = 0, 1, ... is the

oscillation parameter; and , without any subscript, is understood to be  with j = k = 0.

The wavelet is obtained by the following recursive relationships 

(2) 

(3)

where  is called as a mother wavelet and the discrete filters h(k) and g(k) are quadrature

mirror filters associated with the scaling function and the mother wavelet function. These two

filters, h(k) and g(k), are also called group-conjugated orthogonal filters (Fan and Zuo 2006).

The wavelet packet coefficients C corresponding to the signal f(t) can be obtained as 
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Fig. 2 Wavelet Packet decomposition tree 
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(4)

Provided the wavelet coefficients satisfy the orthogonality condition. 

The wavelet packet component of the signal at a particular node can be obtained as

 (5)

After performing wavelet packet decomposition up to jth level, the original signal can be

represented as a summation of all wavelet packet components at jth level as shown in equation

 (6)

In wavelet packet, standard structure composed of low and high pass filters is used in perfect

reconstruction filter bank (Strang and Nguyen 1996).

 

2.1 Best basis algorithm in wavelet packet transform

The wavelet packets can be used for numerous expansions of a given signal. The most suitable

decomposition of a given signal with respect to an entropy-based criterion was selected. Single

wavelet packet decomposition gives a lot of bases from, which can be looked for the best

representation with respect to a design objective.

The best basis search algorithm uses wavelet packets. In this model the signal is expressed as a

linear combination of time-frequency atoms. The atoms are obtained by dilations of the analyzing

functions, and are organized into dictionaries as wavelet packets. The best basis algorithm described

in Wickerhauser (1994) uses a minimum entropy criterion and gives the most concise description

for a signal for the dictionary in hand. The application of the best basis search for the wavelet

packet dictionary is equivalent to an optimal filtering of the signal. For any given signal, the best

basis algorithm decides which base represents the signal more efficiently. Comparisons with other

methods of analysis such as wavelet analysis using harmonic wavelets and classic Fourier analysis

have been conducted. As expected, this adaptive method gives better results (Ghodrati Amiri and
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parameters: position, scale (as in wavelet decomposition), and frequency. For a given orthogonal

wavelet function, a library of bases can be generated called wavelet packet bases. Each of these

bases offers a particular way of coding signals, preserving global energy, and reconstructing exact

features. The wavelet packets can be used for numerous expansions of a given signal. The most

suitable decomposition of a given signal can be selected with respect to an entropy-based criterion.

The application of the best basis search for the wavelet packet dictionary is equivalent to an optimal

filtering of the signal. For any given signal, the best basis algorithm decides which base represents

the signal more efficiently (Fig. 3).

3. Artificial neural networks 

Neural networks are biologically inspired soft computing methods that possess a massively

parallel structure. Neural networks are ideal for solving problems that do not have unique and

mathematically precise solutions proposed method (Ghaboussi and Lin 1998). Neural networks

solve complex problems by training sets. Neural networks have been used as an effective method

for solving engineering problems in a wide range of application areas (Haykin 1998). Neural

networks include the following important topics that are useful for complex problem solving such as

nonlinearity, input-output mapping, adaptability, evidential response, and contextual information

(Ghaboussi 1999).

3.1 Generalized regression neural networks 

GRNNs are feed-forward networks trained using a supervised training algorithm. A generalized

regression neural network is often used for function approximation. This network may require more

neurons than standard feed-forward back-propagation networks, but often they can be designed in a

fraction of the time it takes to train standard feed-forward networks. They work best when many

training vectors are available. Generalized regression neural network have several advantages, for

example they usually train much faster than back propagation networks and also they are less

susceptible to problems with non-stationary inputs because of the behavior of the radial basis

function hidden units. The architecture of generalized regression neural networks as was shown in

Fig. 4 contains three layers: input and output layers and one hidden layer. 

Fig. 4 The architecture of GRNN 
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4. Proposed methodology

Although the recently developed wavelet analysis has emerged as a powerful tool to analyze

temporal variations in frequency content that traditional approaches miss, but both Fourier and

wavelet analysis have limitations. Fourier analysis gives good results for regular periodic signals

and wavelet analysis is suitable for highly non-stationary signals that possess sudden picks and

discontinuities. Other approaches have been examined, and several algorithms and analyzing

functions have been proposed (Jaffard et al. 2001). One of them is the best basis search algorithm

which using wavelet packets. As were shown the wavelet packet method is a generalization of

wavelet decomposition that offers a richer range of possibilities for signal analysis. In this approach,

the signal is expressed as a linear combination of time-frequency atoms. The atoms are obtained by

dilations of the analyzing functions, and are organized into dictionaries as wavelet packets. The best

basis algorithm uses a minimum entropy criterion and gives the most concise description for a

signal for the dictionary in hand. 

The main objective of this study is to present a new way based on wavelet packet transform in

best basis algorithm and GRNN to generate artificial accelerograms which has a response spectrum

close to a specified response spectrum used as the input of the neural network. Further, the

accelerogram generated from a given response spectrum should also have the characteristics like the

group of accelerograms used in the training of the neural network. The suggested method is based

on expanding a GRNN which takes discretized ordinates of the pseudo-velocity response spectrum

of accelerogram as input, and the output of the neural network produces the wavelet packet

coefficients of the earthquake accelerograms in best basis method with defined entropy. 

Fig. 5 shows the proposed method for generating accelerograms compatible with response or

design spectrum. In the first step, wavelet packet transform is used to decompose earthquake

accelerograms to several levels that each level covers a special range of frequencies. It was

interesting that by using wavelet packet transform with best basis method and choosing only one

coefficient the results are too near to actual signal. So in this research only one network is

proposed that gives only the nodes with the maximum energy in wavelet packet tree with best

basis algorithm. After training the neural network, the trained neural network was tested with the

records from the training group. The trained neural network was tested by using the training

response spectra. A comparison of the input and output earthquake accelerograms and their

response spectra clearly indicate that the trained neural network learned the training cases very

well.

As was shown in Fig. 5 the input layer of neural network has the pseudo-velocity response

spectrum of accelerogram

(7)

(8)

where  and  are the fundamental frequency and the damping ratio of the single degree of

freedom system and the earthquake ground acceleration, respectively.

The input layer of the GRNN has 100 nodes; because they receive the values of the pseudo-

velocity response spectrum of accelerogram at 100 discrete frequencies. 
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The output layer of GRNN has the wavelet packet coefficients in best tree with maximum

energy. Wavelet packet coefficients of the earthquake ground acceleration  are embedded in

the inner product of the earthquake ground acceleration with every wavelet packet function, and

given below

(9)

where  denotes the ith set of wavelet packet decomposition coefficients at the jth scale

parameter and k is the translation parameter. 

The Daubechies wavelet mother of a high order which is used in this study gives a relatively

small overlap, which means that it has a good resolution in the frequency domain. Based on resent

work (Ghodrati Amiri and Asadi 2009) the DB10 was chosen as mother wavelet so that it gives

more better and efficient results because of its orthogonality and satisfactory resolution in both time

and frequency.
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Fig. 5 The proposed method for generating accelerogram 
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Table 1 Data of selected base accelerograms (Ramezi 1997)

Number Occurance date
Name of
station

Magnitude 
(Ms)

Modified PGA 
(cm/s2)

Ground Type 
(Table 2)

Duration
(Sec)

1 1976.11.07 Ghaen 6.4 115 19.54

2 1977.03.21 Bandar Abbas 6.9 90 IV 45.22

3 1977.40.06 Naghan 6.1 700 I 20.96

4 1978.09.16 Dayhouk 6.7 272 I 58.38

5 1978.09.16 Tabas 7.3 832 II 49

6 1978.09.16 Bajestan 7.3 78 III 39.58

7 1978.11.04 Moshtabar 6.2 171 18.96

8 1979.01.16 Khaf 6.8 69 III 32.42

9 1978.09.16 Ferdos 7.3 76 IV 53

10 1979.11.27 Kashmar 7.1 70 III 67.92

11 1979.11.27 Bajestan 7.1 104 III 33.20

12 1979.11.27 Ghaein 7.1 186 30.16

13 1979.11.27 Taeibad 7.1 75 III 60

14 1979.11.27 Ghonabad 7.1 69 IV 50.52

15 1979.11.27 Khaf 7.1 127 III 58.04

16 1981.07.28 Gholbaf 7 217 III 59.32

17 1984.06.01 Shalamzar 5 299 III 18.66

18 1985.02.02 Gheer 5.3 290 I 15.34

19 1988.12.06 NourAbad 5.6 85 III 17.28

20 1990.06.20 Abhar 7.7 127 29.48

21 1990.06.20 Roudsar 7.7 91 IV 53.10

22 1990.06.20 Lahijan 7.7 111 IV 60.54

23 1990.06.20 Tonekabon 7.7 130 IV 35.94

24 1990.06.20 Ghachsar 7.7 63 49.48

25 1990.06.20 Zanjan 7.7 125 III 59.78

26 1990.06.20 Robat Kareem 7.7 64 III 12.58

27 1990.06.20 Eshtehard 7.7 71 45.78

28 1991.11.28 Roudbar 5.7 268 I 19.94

29 1994.06.20 Meymand 6.1 394 27.14

30 1994.03.20 Zarrat 5.5 196 I 33.24

31 1994.06.20 zarrat 5.9 289 I 43.50

32 1994.06.20 Firouz Abad 5.9 235 II 38.36

33 1994.06.20 Zanjeeran 5.9 841 II 63.98

34 1994.01.24 Feen 4.9 433 31.96

35 1976.11.24 Mako 7.3 86 I 28.06

36 1977.03.21 Bandar Abas 6.9 98 IV 41.06

37 1979.11.14 Khaf 6.8 74 III 39.20

38 1980.01.12 Tabas 5.8 150 II 29.74

39 1979.11.27 Khezri 7.1 94 IV 35.98

40 1981.07.28 Kerman 7 98 38.04
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category of fast algorithms uses standard numerical optimization techniques. In this study, the fast

algorithm of Levenberg-Marquardt applied for training of neural network. 

The GRNN was trained by 34 earthquake accelerograms shown in Table 1. Given a response

spectrum as input, the GRNN will produce multiple wavelet packet coefficients and the generated

accelerograms using inverse wavelet packet transform are obtained.

The wavelet packet component of the generated accelerogram  can be represented by a

linear combination of wavelet packet functions  as follows

(10)

where  is the wavelet packet decomposition coefficient of the generated accelerogram by

GRNN. 

Finally, the generated accelerogram  can be obtained as

(11)

5. Analytical sample

The most important issue related to most neural networks is the lack of proper educational

records. Various records have been registered and modified in different centers in Iran for past

years. Usage of accelerogram for training is not proper, since selected records have to include

information related to a relatively strong and noticeable earthquake. Therefore, this proposed

method for generating accelerogram compatible with response or design spectrum in this study has

been applied to a sample including 40 selected records of Iran with different type of soil (Ramezi

1997). As was shown the type of soil has no influence in results. Tables 1 and 2 show lists of
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Table 2 Ground classification according to “Iranian Earthquake Code of practice, Standard No. 2800”

Ground
type

Explanation of materials
Shear wave 

velocity (m/s)

I
Un-weathered igneous rocks, hard sedimentary rocks and metamorphic rocks (as 
gneisses and crystalline silicate rocks)
Very hard conglomerates very compact and very hard sediment

Vs > 750

II

Soft igneous rocks e.g., tuffs, clay stones, shale and semi-weathered or altered 
rocks
Crushed (but not hardly) hard rocks , foliated metamorphic rocks, conglomerate 
and compact sand and gravel

375 < Vs < 750

III
Weathered rocks, semi-compact sands and gravels, other compact sediments
Compact sandy clay soils, with low ground water level

175 < Vs < 375

IV
Soft sediments, clay soils, weak cemented and un-cemented sands, incompact 
soils with high ground water level
Any kind of soft soils

Vs < 175
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training and testing records for neural network and the type of their soil (Iranian Code 2006),

respectively. These records were scaled with their peak ground acceleration to 1g. Besides, response

spectra are calculated with ζ = 0.05 and the values of the pseudo-velocity response spectra were

calculated at 100 discrete frequencies. It is noted that the records have been decomposed with db-10

wavelet. The 34 accelerograms were used for training and the 6 accelerograms were used for

testing. In this section, the proposed method has been applied with MATLAB software for neural

networks. All records have ∆t = 0.02 sec, and 211= 2048 points consequently. Therefore, a series of

zeros is added to the records which are shorter than desired length (2048 × 0.02 = 40.96 sec) to gain

proper length and for the longer ones, the strong duration of records of longer length is considered

according to MacCann and Shah Algorithm (1979). The output layers of neural networks have the

Fig. 6 Accelerogram of Tabas 1978 earthquake (top), neural network generated accelerogram (middle) and
comparison between pseudo-acceleration response spectra of original and generated accelerograms
(below)
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wavelet packet coefficients best tree of the wavelet packet transform of the earthquake

accelerograms. In this section, coefficients of wavelet packet and inversion are calculated with an

adaptive filtering algorithm, based on work by Coifman (1999) and Wickerhauser (1994). Such

algorithms allow the Wavelet Packet tools to include “Best Tree” features that optimize the

decomposition both globally and with respect to each node. By the results of our last paper

(Ghodrati Amiri and Asadi 2009) here the third level of the wavelet packet transform was chosen

and used so eight neural networks were trained. After training the neural network, the trained neural

network was tested with the records from the training group. The trained neural network was tested

by using the training response spectra. 

Fig. 7 Accelerogram of Gachsar 1990 earthquake (top), neural network generated accelerogram (middle) and
comparison between pseudo-acceleration response spectra of original and generated accelerograms
(below)
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A comparison of the input and output earthquake accelerograms and their response spectra clearly

indicate that the trained neural network learned the training cases very well. Figs. 6-8 show the

performance of the trained neural network on two of the earthquake accelerograms from the training

set Figs. 6-8 shows the results of Tabas, Gachsar and Rudbar-1, tests of the trained neural networks

from the training group, with comparison of the actual and generated accelerograms, and their

pseudo-velocity response spectra clearly displays that the trained neural networks have learnt the

training cases very well. 

In case there are no earthquake accelerograms in the neural network’s training set which have a

response spectrum close to the input response spectrum, the trained neural network generates a

reasonable accelerogram shape from its training set.

Figs. 9-10 show tests of trained neural networks with novels accelerogram with the accelerogram

of Bandar Abas 1977 and Khaf 1979 earthquakes and the generated accelerograms are very close to

Fig. 8 Accelerogram of Rudbar-1 1991 earthquake (top), neural network generated accelerogram (middle) and
comparison between pseudo-acceleration response spectra of original and generated accelerograms 
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the earthquake records. From these and other tests examples it is reasonable to conclude that the

trained neural network is able of generating accelerograms for any novel response spectra. The

generated accelerograms are plausible accelerograms with similar characteristics as those in the

training set and their response spectrums are very close to the input design spectrum. Finally, it is

interesting to determine whether the trained neural networks are capable of generating reasonable

looking accelerograms from design spectra, even though it has been trained with actual recorded

earthquake accelerograms. In Fig. 11, the trained neural network is provided with a design response

spectrum as input, and the generated accelerogram and the comparison of the response spectra of

Fig. 9 Accelerogram of Bandar Abas-1 1977 earthquake (top), neural network generated accelerogram
(middle) and comparison between pseudo-acceleration response spectra of original and generated
accelerograms (below)
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the generated accelerograms with the design spectrum are shown in the top portion of the figure. As

were shown although thse training sets in this method is not much, but the results are suitable. The

GRNN that introduce in this paper was trained in less time than other methods. This is a useful

property of this neural network based methodology, in that it will enable generation of

accelerograms compatible with any specified design spectra. The generated accelerograms can then

be used in time history analysis of linear and nonlinear structures.

Fig. 10 Accelerogram of Khaf 1979 earthquake (top), neural network generated accelerogram (middle) and
comparison between pseudo-acceleration response spectra of original and generated accelerograms
(below)
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6. Conclusions

In this study, a new neural network-based methodology by using wavelet packet transform with

best-basis algorithm for generation of artificial accelerograms from the pseudo-velocity response

spectra has been proposed. This method shows with computation of the best-tree for given entropy,

the optimal wavelet packet tree is computed to balance the amount of compression and retained

energy. By using this method the results can be optimized. The proposed method is validated by

using 34 accelerograms to train the GRNNs and 6 accelerograms for testing it. In testing the trained

neural networks, it was found out that, when given a pseudo-velocity response spectrum as input,

the generated neural network either generates an accelerograms very similar to one from its training

set; one which has a pseudo-velocity response spectrum close to input, or it synthesizes a new and

Fig. 11 Neural network generated accelerogram (top) and comparison between design spectrums with pseudo-
acceleration response spectrum (below) 
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realistic looking accelerogram. The performance of the trained GRNN is estimated by generating

accelerogram for new response spectra. It is shown that both the time domain characteristics and the

response spectra of the generated accelerograms are similar to the original recorded accelerograms.

The advantages of this method can be summeraized as follows:

• High flexibility, so it is possible to answer to a certain input with only a few patterns.

• High training pace, in a way that it is possible to train all networks in less than a few minutes.

• Proper use of wavelet packets for thorough identification and extraction of frequency

characteristics of each record.

• Non-random characteristic of outputs, in a way that each record is considered to be the product

of two or more

Finally, with the proposed method, an artificial earthquake accelerogram compatible with a single

design spectrum is generated. The generated accelerogram can then be used in time history analysis

of linear and nonlinear structures

References

Abhijeet Shinde, D. (2004), “A wavelet packet based sifting process and its application for structural health
monitoring”, Master Thesis, Faculty of Worcester Polytechnic Institute.

Benedetto, J.J. and Frazier, M.W. (1994), WAVELETS: Mathematics and Applications, CRC Press, Boca Raton.
Building and Housing Research Center (BHRC) (2006), Iranian Code of Practice for Seismic Resistance Design

of Buildings, Standard No.2800, 3rd Edition, Tehran, Iran.
Chui, C.K. and Wang, J.Z. (1992), “On compactly supported spline wavelets and a duality principle”, T. Am.

Math. Soc., 330, 903-915.
Coifman, R.R. and Wickerhauser, M.V. (1992), “Entropy-based algorithms for best-basis selection”, IEEE T.

Inform. Theory, 38(2), 713-718.
Daubechies, I. (1992), “Ten lectures on wavelets”, CBMS-NSF Conference Series in Applied Mathematics,

Montpelier, Vermont.
Daubechies, I. (1988), “Orthonormal bases of compactly supported wavelets”, Commun. Pure Appl. Math., 41,

909-996.
Fan, F.G. and Ahmadi, G. (1990), “Nonstationary Kanai-Tajimi models for El Centro 1940 and Mexico City

1985 earthquake”, Prob. Eng. Mech., 5, 171-181.
Fan, X. and Zuo, M.Z. (2006), “Gearbox fault detection using Hilbert and wavelet packet transform”, Mech.

Syst. Signal Pr., 20, 966-982.
Chopra, A.K. (1995), Dynamics of Structures, Englewood Cliffs, NJ, Prentice-Hall.
Ghaboussi, J. and Lin, C.J. (1998), “New method of generating spectrum compatible accelerograms using neural

networks”, Earthq. Eng. Struct. D., 27, 377-396.
Ghaboussi, J. (1999), “Biologically inspired soft computing method in structural mechanics and engineering”,

Proceeding of the 1st International Conference of Artificial Neural Networks in Engineering (ANNIE’97),
Seoul, Korea.

Ghodrati Amiri, G., Bagheri, A. and Fadavi, M. (2007), “New method for generation of artificial ground motion
by a nonstationary Kanai-Tajimi model and wavelet transform”, Struct. Eng. Mech., 26(6), 709-723.

Ghodrati Amiri, G. and Bagheri, A. (2008), “Application of wavelet multiresolution analysis and artificial
intelligence for generation of artificial earthquake accelerograms”, Struct. Eng. Mech., 28(2), 153-166.

Ghodrati Amiri, G., Ashtari, P. and Rahami, H. (2006), “New development of artificial record generation by
wavelet theory”, Struct. Eng. Mech., 22(2), 185-195.

Ghodrati Amiri, G., Bagheri, A. and Razaghi, A. (2008), “Generation of multiple earthquake accelerograms
compatible with spectrum via the wavelet packet transform and stochastic neural networks”, J. Earthq. Eng.



592 A. Asadi, M. Fadavi, A. Bagheri and G. Ghodrati Amiri

(Accepted for publication).
Ghodrati Amiri, G. and Asadi, A. (2009), “Processing ground motion records by using an advanced method in

wavelet packet”, Intl. J. Eng. Sci., Iran University of Science & Technology (Submitted for review).
Hancock, J., Waston-Lamprey, J., Abrahamson, N.A., Bommer, J.J., Markatis, A., Macoy, E. and Mendis, R.

(2006), “An improved method of matching response spectra of recorded earthquake ground motion using
wavelets”, J. Earthq. Eng., 10(special issue 1), 67-89.

Haykin, S. (1998), Neural Networks: A Comprehensive Foundation, 2nd Edition, Pearson Education.
Iyama, J. and Kuwamura, H. (1999), “Application of wavelets to analysis and simulation of earthquake

motions”, Earthq. Eng. Struct. D., 28, 255-272.
Jaffard, S., Meyer, Y. and Ryan, R.D. (2001), “Wavelets: tools for science & technology”, Soc. Ind. Appl. Math.,

Philadelphia.
Karabalis, D.L., Cokkinides, G.J. Rizos, D.C. and Mulliken, J.S. (2000), “Simulation of earthquake ground

motions by a deterministic approach”, Adv. Eng. Soft., 31, 329-338.
Lee, S.C. and Han, S.W. (2002), “Neural-network-based models for generating artificial earthquakes and

response spectra”, Comput. Struct., 80, 1627-1638.
Lin, C.J. and Ghaboussi, J. (2000), “Recent progress on neural network based methodology for generating

artificial earthquake accelerograms”, Proceedings of the 12th World Conference on Earthquake Engineering,
Auckland, New Zealand, January-February.

Mac Can, W.M. and Shah, H.C. (1979), “Determining strong-motion duration of earthquake”, B. Seismol. Soc.
Am., 69, 1253-1265.

Mallat, S.G. (1989), “A theory of multi-resolution signal decomposition, the wavelet representation”, IEEE T.
Pattern Anal., 11, 674-693.

MATLAB Reference Guide (2004), The Math Works Inc.
Meyer, Y. (1989), Orthonormal Wavelets in Wavelets, Springer, Berlin.
Mukherjee, S. and Gupta, K. (2002a), “Wavelet-based characterization of design ground motions”, Earthq. Eng.

Struct. D., 31, 1173-1190.
Mukherjee, S. and Gupta, K. (2002b), “Wavelet-based generation of spectrum-compatible time-histories”,

Earthq. Eng. Struct. D., 22, 799-804.
Naeim, F. (1999), The Seismic Design Handbook, Van Nostr.
Newland, D.E. (1994), Random Vibrations, Spectral and Wavelet Analysis, 3rd Edition, Longman Singapore

Publishers.
Ogden, R.T. (1997), Essential Wavelets for Statistical Applications and Data Analysis, Birkhauser, Boston.
Rajasekaran, S., Latha, V. and Lee, S.C. (2006), “Generation of artificial earthquake motion records using

wavelets and principal component analysis”, J. Earthq. Eng., 10(5), 665-691.
Ramezi, H. (1997), “Base accelerogram data of iranian accelerograph network”, Building and Housing Research

Center, BHRC-PN S 253, Tehran, Iran.
Refooei, F.R., Mobarake, A. and Ahmadi, G. (2001), “Generation of artificial earthquake records with a

nonstationary Kanai-Tajimi model”, Eng. Struct., 23, 827-837.
Strang, G. and Nguyen, T. (1996), Wavelets and Filter Banks, Wellesley-Cambridge Press, Wellesley,

Massachusetts
Suarez, L.E. and Montejo, L.A. (2005), “Generation of artificial earthquake via the wavelet transform”, Solid.

Struct., 42, 5905-5919.
Suarez, L.E. and Montejo, L.A. (2007), “Applications of the wavelet transform in the generation and analysis of

spectrum-compatible records”, Struct. Eng. Mech., 27(2), 185-198.
Wickerhauser, M.V. (1994), Adapted Wavelet Analysis from Theory to Software, (Ed. Peters, A.K.), Wellesley,

MA.




