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Abstract. The dynamic response of a Timoshenko beam on a tensionless Pasternak foundation is
investigated by assuming that the beam is subjected to a concentrated harmonic load at its middle. This
action results in the creation of lift-off regions between the beam and the foundation that effect the
character of the response. Although small displacements for the beam and the foundation are assumed, the
problem becomes nonlinear since the contact/lift-off regions are not known at the outset. The governing
equations of the beam, which are coupled in deflection and rotation, are obtained in both the contact and
lift-off regions. After removing the coupling, the essentials of the problem (the contact regions) are
determined by using an analytical-numerical method. The results are presented in figures to demonstrate
the effects of some parameters on the extent of the contact lengths and displacements. The results are also
compared with those of Bernoulli-Euler, shear, and Rayleigh beams. It is observed that the solution is not
unique; for a fixed value of the frequency parameter, more than one solution (contact length) exists. The
contact length of the beam increases with the increase of the frequency and rotary-inertia parameters,
whereas it decreases with increasing shear foundation parameter. 

Keywords: Timoshenko beam; Pasternak foundation; lift-off.

1. Introduction

The vibration, buckling, and bending problems of beams or beam-columns on elastic foundations

are important in many fields of structural and foundation engineering. The Winkler model of elastic

foundations is the most basic model, in which the foundation pressure at any point is proportional to

the vertical deflection at that point (Hetényi 1946). The Winkler model represents the soil medium

as a system of identical but mutually independent elastic springs. Although the model is simple and

widely used, it does not accurately represent the characteristics of many practical foundations as the

interactions between the springs are not considered. To overcome this problem, several two-

parameter models have been suggested. Mathematically, all these models are equivalent and differ

only in their definitions of the foundation parameters (Selvadurai 1979, Dutta and Roy 2002). In

this paper, Pasternak’s model has been employed to represent the soil foundation, in which shear

interaction between the springs is considered. This is accomplished by connecting the top ends of
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the springs to an incompressible layer that resists only transverse deformation (Fig. 1(a)). 

A number of studies have investigated the dynamic responses of beams and beam-columns on

two-parameter elastic foundations within the scope of classical Bernoulli-Euler beam theory

(Eisenberger and Clastornik 1987, Valsangkar and Pradhanang 1988, Karamanlidis and Prakash

1989, Franciosi and Masi 1993, De Rosa and Maurizi 1998, Filipich and Rosales 2002, Rao 2003,

Mallik et al. 2006), and using Timoshenko beam theory (Wang and Stephens 1977, Wang and

Gagnon 1978, Filipich and Rosales 1988, Yokoyama 1991, De Rosa 1995, El-Mously 1999,

Kargarnovin and Younesian 2004, Arboleda-Monsalve et al. 2008). In these studies, the problems

have been analyzed by assuming that the foundation reacts in tension as well as in compression.

This assumption that the contact between the beam and the foundation is established continuously

simplifies the problem. However, in several engineering applications, the foundation can not provide

tensile reactions and, under certain conditions, some parts of the beam may lift-off. Therefore, a

one-way or tensionless foundation, which reacts to compressive stresses but is incapable of

experiencing tension, should be used for realistic results. The problem of beams resting on a

Fig. 1 (a) A Timoshenko beam resting on a tensionless Pasternak foundation subjected to a harmonic load,
(b) Forces, moments, and deformations on the differential element 
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tensionless foundation is complicated because the contact region, which appears as the primary

unknown in the governing equations, is not known in advance. Thus, even for cases involving linear

foundation models and linear beam theories, the problem is nonlinear and needs to be solved

iteratively. Studies on this subject have mainly been concerned with the determination of the

location, magnitude, and extent of the lift-off region(s), as well as the beam deflection at any point. 

The static response of infinite beams resting on a tensionless Winkler foundation subjected to a

concentrated load and to a uniformly distributed load was studied by Tsai and Westmann (1967),

Weitsman (1970), and Ioakimidis (1996). For more complex loads and tensionless Pasternak

foundation, a similar study was carried out by Ma et al. (2009). The dynamic response of an infinite

beam resting on a tensionless foundation and subjected to a moving load was studied by Weitsman

(1971). The same problem, but for different configurations, was studied by Choros and Adams

(1979) and by Lin and Adams (1987). The response of finite beams on tensionless foundations has

been considered in various studies. Kerr and Coffin (1991), for example, studied the response of

free beams resting on a tensionless Pasternak foundation subjected to a concentrated central load.

Zhang and Murphy (2004) and Silveira et al. (2008) studied the response of free-free and pinned-

pinned beams on a tensionless Winkler foundation for different loading cases. Celep and Demir

(2005) studied the behaviour of a rigid beam on a tensionless two-parameter elastic foundation

subjected to a concentrated load and a moment. The same authors also studied the response of an

elastic beam on such a foundation by considering a uniformly distributed load and concentrated

edge loads (Celep and Demir 2007). Recently, the response of a pinned-pinned beam resting on a

tensionless Reissner foundation under symmetric and asymmetric loading was studied by Zhang

(2008). By considering the same loading case but a tensionless Pasternak foundation, the response

of a free-free beam was studied by Co kun et al. (2008). These studies dealt with static loading

conditions. Studies involving dynamic behaviour of finite beams on the one and-two parameter

tensionless elastic foundation do appear in the literature. Celep et al. (1989), for example, studied

the forced vibrations of a free beam resting on a tensionless Winkler foundation under the combined

actions of concentrated and uniformly disributed loads and external moments. Co kun and Engin

(1999) and Co kun (2003) studied the harmonic vibrations of a free beam on a nonlinear tensionless

Winkler and tensionless Pasternak foundation subjected to a concentrated load, respectively. Finally,

Lancioni and Lenci (2007) studied nonlinear vibrations of a semi-infinite beam on a tensionless

Winkler foundation subjected to a uniformly distributed load. However, in these studies the

formulations were based on the Bernoulli-Euler beam theory, and therefore the effects of rotatory

inertia and shear deformation are not accounted for. These effects, which are important for short

beams and beams where higher modes are excited, can be taken into account by using the well-

known Timoshenko beam model. According to the authors’ knowledge, there have been no studies

addressing the dynamic response of Timoshenko beams on a tensionless elastic Pasternak-type

foundation.

In this paper, the dynamic response of a finite Timoshenko beam resting on a tensionless

Pasternak foundation is investigated. The beam is subjected to a concentrated harmonic load at the

centre. The study is carried out by assuming that the beam separates from the foundation

symmetrically. Closed-form solutions of the differential equations of motion in each of the contact

and noncontact regions are determined by using trigonometric-hyperbolic functions. The boundary

and continuity conditions are then satisfied, which leads to a system of algebraic equations that are

linear in certain unknown coefficients and nonlinear in the unknown contact region lengths. With

the elimination of the linear coefficients, the contact and noncontact lengths are obtained
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numerically from the resulting transcendental equation by using the Newton Raphson technique.

Numerical results are presented in dimensionless graphical form to illustrate the effect of some

parameters on the extent of the contact lengths and the vertical displacements of the beam.

2. Formulation of the problem 

Consider a Timoshenko beam of length L resting on a tensionless elastic foundation subjected to a

concentrated central load  as shown in Fig. 1(a). Since the foundation is

assumed to be tensionless, the beam can lift off the foundation at the points x = ±l. The elastic

foundation is idealized as a two-parameter Pasternak model characterized by two moduli, the

Winkler foundation modulus K and the shear foundation modulus KG. The forces and the

deformations of a differential beam element are shown in Fig. 1(b). All the symbols shown in this

figure are defined as follows: w, γ, and ψ represent the deflection, shear distortion, and bending

rotation of the beam, ρ, I, and A represent the beam material density, second moment of area, and

cross-sectional area of the beam, and V and M represent the shear force and bending moment at any

beam section, respectively. In the present formulation, the normal inertia and damping of the

foundation are neglected. Also, it is assumed that both the beam and foundation are isotropic,

homogeneous and linearly elastic, and the vibration amplitudes of the system are sufficiently small.

The governing equations are derived by applying the basic concepts of dynamic equilibrium on the

differential element shown in Fig. 1(b). The transverse and rotational equilibrium equations are

 (1)

and

 (2)

From Fig. 1(b), the shear distortion can be expressed as

 (3)

The bending moment and the shear force are then computed from the familiar relations

 (4)

  (5)

in which E and G are the modulus of elasticity and shear modulus, respectively, and k* is the

sectional shear coefficient. Substituting Eqs. (4) and (5) into Eqs. (1) and (2), utilizing symmetry,

and denoting the vertical displacements and rotations as  and  in the contact and

noncontact regions, respectively, the following differential equations are obtained

P t( ) P0exp iΩt( )=

∂V
∂x
------ ρA

∂2w

∂t2
--------- Kw KG

∂2
w

∂x2
---------–+=

∂M
∂x
-------- V ρI

∂2
ψ

∂t2
---------–=

γ
∂w
∂x
------- ψ–=

M EI
∂2
w

∂x2
---------– EI

∂ψ

∂x
-------–= =

V GAk
*
γ GAk

*
= =

∂w
∂x
------- ψ–⎝ ⎠
⎛ ⎞

w1 ψ1, w2 ψ2,
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, (6)

,   (7)

,  (8)

, (9)

in which P0, Ω, δ(x), and l are the magnitude of the load, the forcing frequency, the Dirac delta

function, and the extent of the unknown contact region, respectively. These equations, which govern

the dynamic behaviour of the beam, are second-order differential equations coupled in w1 and ψ1

(also in w2 and ψ2). On the other hand, the governing equation of the free foundation surface (see

Fig. 1(a)) can be written as (Kerr and Coffin 1991)

,  (10)

Since the forcing is harmonic in time, and thus the response of the beam and the foundation is

harmonic, the displacement and rotation can be written as 

,  (11)

where  and  represent the shape functions. For convenience, the nondimensionalized

variable ξ, displacement W(ξ), rotation Ψ(ξ), contact length X, Winkler foundation constant λw,

shear (Pasternak) foundation constant λp, beam rotary-inertia parameter R, beam shearing-flexibility

parameter S, frequency parameter Ωf, and applied load parameter F0, are introduced as follows 

 

(12)

Introducing Eqs. (11) and (12) into Eqs. (6)-(10), and removing the coupling between the

displacement and rotation in Eqs. (6) and (7) (also, in Eqs. (8) and (9)), one obtains the following

nondimensional equations for W and Ψ

 

 

(13) 

GAk
* ∂ψ1

∂x
---------

∂2
w1

∂x2
-----------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

ρA
∂2w1

∂t2
----------- Kw1 KG

∂2w1

∂x2
-----------–+ + P0e

iΩt
δ x( )= 0 x l< <

GAk
* ∂w1

∂x
--------- ψ1–⎝ ⎠
⎛ ⎞ EI

∂2ψ1

∂x2
-----------+ ρI

∂2
ψ1

∂t2
-----------= 0 x l< <

GAk
* ∂ψ2

∂x
---------

∂2w2

∂x2
-----------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

ρA
∂2
w2

∂t2
-----------+ 0= l x L/2< <

GAk
* ∂w2

∂x
--------- ψ2–⎝ ⎠
⎛ ⎞ EI

∂2ψ2

∂x2
-----------+ ρI

∂2ψ2

∂t2
-----------= l x L/2< <

Kw3 KG

∂2w3

∂x2
-----------– 0= l x ∞< <

wi x t,( ) Wi x( )eiΩt
ψi x t,( ), Ψi x( )eiΩt

= = i 1 2,=

Wi x( ) Ψi x( )
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 (14)

 (15)

 (16)

 (17)

Notice that if the effect of rotatory inertia is neglected  and only the effect of shear

deformation is considered, Eqs. (13)-(16) represent the behaviour of a shear beam on the tensionless

Pasternak foundation. If only the effect of rotatory inertia is considered and the effect of shear is

neglected , the Rayleigh model is the result. If we neglect both the effect of shear and the

effect of rotatory inertia , we obtain the classical Bernoulli-Euler beam model.

Moreover, for , these equations represent the behaviour of a Bernoulli-Euler beam

on a tensionless Winkler foundation. The boundary and continuity conditions in dimensionless form

are as follows

(i) at point ξ = 0: (18a)

(ii) at point ξ = X:  

(18b)

(iii) at point : , (18c)

(iv) (18d)

Eq. (18a) is due to the symmetry assumption. Eq. (18b) is the geometric and natural boundary

conditions that require the continuity of the displacement, slope, rotation, bending moment, and

shear force at the separation point X. Eq. (18c) represents the natural boundary conditions at the free

and unloaded end of the beam, indicating that there is no moment or shear force at that point.

 

 

 

 

R 0=( )

S 0=( )
R 0= S 0=,( )

R S λp 0= = =

 

 

ξ
1

2
---= L

dΨ2

1

2
---
⎝ ⎠
⎜ ⎟
⎛ ⎞

ξd
----------------- 0=

dW2

1

2
---
⎝ ⎠
⎜ ⎟
⎛ ⎞

ξd
----------------- LΨ2

1

2
---
⎝ ⎠
⎜ ⎟
⎛ ⎞

– 0=

W3 ξ( ){ } finite→
ξ +s∞→

lim
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Finally, Eq. (18d) physically states that the displacements of the free foundation surface approach

zero as ξ gets larger.

In the formulation given above, it is assumed that the ends of the beam separate from the

foundation. However, in some cases, the beam may be completely compressed into the foundation

(no separation develops). In this complete contact case, the slope of the foundation surface at the

beam ends will have discontinuity. Thus, the boundary conditions that will be satisfied at 

are

, ,  (19)

The third boundary condition is the force equilibrium at the end of the beam between the

foundation concentrated force and the shearing force of the beam. In addition to the complete

contact case, the beam may separate from the foundation completely or contact and non-contact

regions may interchange as the excitation is harmonic. When the beam separates from the

foundation completely, the governing equation of the beam for deflections becomes 

, and can be solved with the appropriate

boundary/continuity conditions and the jump condition on the shear. When the contact and non-

contact regions interchange (i.e., the middle part of the beam lifts off the fondation while the ends

of the beam make contact with the foundation), it is necessary to reformulate the problem with

different boundary/continuity conditions. These conditions are given in the Appendix.

3. Solution

Eqs. (13) and (14) are, respectively, fourth order nonhomogeneous and homogeneous differential

equations with constant coefficients. However, Eq. (13) can be put in a homogeneous form, and the

external load can be treated as a jump in the shear force and can be included in the boundary

conditions. The solution of these homogeneous equations is of the form .

Substituting this solution into Eq. (13) or (14), one obtains the following characteristic polynomial

 (20)

where  and  with

. It is clear that the solutions of Eqs. (13) and (14) depend on the nature of the

characteristic roots  of Eq. (20). Defining , the following cases can be

distinguished with 

 (21a)

 (21b)

ξ 1/2=

W1

1

2
---⎝ ⎠
⎛ ⎞ W3

1

2
---⎝ ⎠
⎛ ⎞= L

dΨ1

1

2
---
⎝ ⎠
⎜ ⎟
⎛ ⎞

ξd
----------------- 0= λp

dW1

1

2
---
⎝ ⎠
⎜ ⎟
⎛ ⎞

ξd
-----------------

dW3

1

2
---
⎝ ⎠
⎜ ⎟
⎛ ⎞

ξd
-----------------–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

1

S
2

-----

dW1

1

2
---
⎝ ⎠
⎜ ⎟
⎛ ⎞

ξd
----------------- LΨ1

1

2
---⎝ ⎠
⎛ ⎞–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

+ 0=

W″″ ξ( )  +

Ωf

2
R

2
S
2

+( )W″ ξ( ) Ωf

2
R
2
S
2Ωf

2
1–( )W ξ( )+ F0δ ξ( )=

W1 Ψ1( ) Ce
mξ

=

m
4

bm
2

c+– 0=

b λp S
2
λw Ωf

2
S
2

R
2

R
2
S
2
λp+ +( )–+[ ]/r= c λw Ωf

2
R

2
S
2Ωf

2
1 R

2
S
2
λw––( )+[ ]/r=

r 1 S
2
λp+( )=

mi i 1 4–=( )( ) ∆1 b
2

4c–=

i 1–=
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(22a)

 

 (22b)

 (23a)

 (23b)

(24a)

 (24b)

 

 (25a)

(25b)

(26a)

(26b)

In Eqs. (21)-(26), Ai and Bi ( ) are the integration constants, and the parameters γ, µ, θ, p,

α, and η are defined by ,

, and . Eqs. (15) and (16) are also fourth order homogeneous

differential equations with constant coefficients. Thus, the solution can be sought in the form

. After substituting into Eq. (15) or (16), the following polinomial is obtained

 (27)

where  and . The solutions of Eqs. (15) and (16) depend on the

nature of the characteristic roots  of Eq. (27). Defining , the following

cases can be distinguished with  

 

 

 

 

 

 

i 1 4–=

γ b ∆1+( )/2= µ b– ∆1+( )/2 θ b ∆1–( )/2= p b– ∆1–( )/2=, ,=,
α b/4 c/4+= η b/4– c/4+=

W2 Ψ2( ) De
nξ

=

n
4

dn
2

e+ + 0=

d Ωf

2
S
2

R
2

+( )= e Ωf

2
R

2
S
2Ωf

2
1–( )=

ni i i 4–=( )( ) ∆2 d
2

4e–=

i 1–=
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(28a)

(28b)

(29a)

 (29b) 

 (30a)

 (30b)

In Eqs. (28)-(30), Ci and Di ( ) are the integration constants, and the parameters χ, β, and

q are defined by , and . Note that the case

 does not exist in the solution. Finally, the solution of Eq. (17), which represents the vertical

displacements of the free part of the foundation surface, is given by 

 (31)

where .

There are a total of 18 unknown constants (Ai, Bi, Ci, Di ( ) and ) in these

equations. However, the constants Ai and Bi are not independent, but are related by Eq. (6). The

dimensionless form of this equation is

 (32)

Substituting the sets of solutions (a)-(f) into Eq. (32), the constants Bi can be obtained in terms of

the constants Ai. For example, substituting Eqs. (21a) and (21b) into Eq. (32) shows that

, , , (33)

where  and . In addition, the

constants  and  are not independent, but are related by Eq. (8). The dimensionless form of this

equation is 

(34)

 

 

 

i 1 4–=

χ d– ∆2+( )/2= β d ∆2+( )/2=, q d ∆2–( )/2=

∆2 0<

W3 ξ( ) E1e
sξ–

E2e
sξ

+=

s λw/λp=
i 1 4–= Ej j 1 2–=( )

1

S
2

----- λp+⎝ ⎠
⎛ ⎞d

2
W1

ξ
2

------------–
L

S
2

-----
dΨ1

dξ
---------- λw Ωf

2
–( )W1+ + 0=

B1 γ /L( )A2= B2 γ /L( )A1= B3 µ /L( )A4= B4 µ /L( )A3–=

γ 1 S
2
λp+( )γ2 S

2 Ωf

2
λw–( )+[ ]/γ= µ 1 S

2

λp+( )µ
2

S
2

λw Ωf

2–( )+[ ]/γ=
Ci Di

1

S
2

-----
d
2
W2

ξ
2

------------–
L

S
2

-----
dΨ2

dξ
---------- Ωf

2
W1–+ 0=
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Substituting the sets of solutions (g)-(i) into Eq. (34), the constants  can be obtained in terms

of the constants Ci. As before, substituting Eqs. (28a) and (28b) into Eq. (34), for example, shows

that 

, , ,  (35)

where  and . Due to these relations, the number of unknown

constants for the contact and noncontact regions reduces to 8. Thus, we have 10 constants (2 of

them are due to Eq. (31)). In addition to these constants, the separation point X is also unknown.

Hence, there are a total of 11 unknowns to be determined. These unknowns can be determined

using the boundary and continuity conditions given by Eqs. (18) (there are 11). At first glance, this

may appear to be a simple linear boundary problem. However, because the separation point X

appears in the argument to the solution, the problem is nonlinear. Hence, the problem is solved

numerically by applying an iterative scheme as follows. First, the boundary and continuity

conditions are satisfied, which leads to a system of algebraic equations that are linear in certain

unknown integral constants and nonlinear in the unknown separation point. Then, eliminating the

linear integral constants, the separation point (contact length) is determined from the resulting

transcendental equation using the Newton-Raphson technique. During the numerical calculations,

the vertical equilibrium of the beam is controlled at every step by considering 

 (36)

With the separation point determined, the deflections of the beam and the free foundation surface

can be calculated in a straightforward manner. It should be noted here that the response of the

system is harmonic due to the harmonic excitation. So, the system composed of Eqs. (13)-(17)

presents the steady motion of a Timoshenko beam resting on a two-parameter elastic foundation

subjected to a harmonic load with an excitation frequency Ω. Therefore, the contact lengths and

displacements obtained from the steady solutions given in Sec. 3 are independent of time, but they

depend on the frequency parameter Ωf and the other system parameters.

4. Numerical results and discussion

Numerical results are presented in this section for a Timoshenko beam subjected to a central

harmonic load and resting on a tensionless Pasternak foundation. In addition, some comparisons are

made by considering Rayleigh, shear, and Bernoulli-Euler beams. Since the analysis of the problem

depends on many parameters (E, G, A, I, k*, ρ, F0, L, l, K, KG, Ω), a parametric study is conducted

to investigate the effects of the rotary-inertia, shear foundation modulus and the forcing frequency

on the contact lengths and displacements of the beam. In all numerical computations, the shear

correction factor and Poisson’s ratio for the beam are taken to be  (rectangular cross

section) and  ( ), respectively. For these parameters, the relation between S and R

can be obtained as  (see Eqs. (12)). The values of R are choosen between 0.02 and 0.10

to show the differences among the above mentioned models. These values correspond to small

slenderness ratios (non-slender beams) as the slenderness ratio can be taken as the inverse of R. The

Di

D1 χ /L( )C2= D2 χ /L( )C1= D3 β /L( )C4= D4 β /L( )C3–=

χ χ
2

S
2Ωf

2
+( )/χ= β β

2
S
2Ωf

2
–( )/β=

F0

2
----- λpW1″ ξ( )– λw Ωf

2
–( )W1 ξ( )+[ ] ξd Ωf

2
W2 ξ( ) ξd

X

1/2

∫–

0

X

∫=

k* 5/6=

υ 1/3= E/G 8/3=

S
2

3.2R
2

=
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foundation parameters (λp and λw) used in the work of Yokoyama (1991) were selected for the

numerical computations as λp = 0, 1, 5, 10 and 25 ( ); λw values varying

from 1 to 106. Note that λp = 0 correspons to the usual Winkler model assumption. On the other

hand, the real foundation parameters K and KG appeared in Eq. (1) are based on the constrained

deformation of an elastic layer given by Vlasov and Leont’ev (1966). For a single layer of thickness

H with a linear variation of normal stresses, these parameters are given by ,

. The values of Es (the elastic modulus of the soil) and υs (the Poisson’s ratio of

the soil) can be determined from triaxial tests. 

Finally, in order to diminish the number of parameters, the first foundation parameter in the

Pasternak foundation model is assumed to be constant at λw = 1000, and the applied load is taken to

be  (except in Fig. 7). 

Fig. 2 shows the variation of the separation point (contact length) X with respect to the frequency

parameter Ωf for some values of the rotary-inertia parameter R. The shear foundation parameter is

selected as λp = 25. As seen in the figure, the contact length of the beam increases with an increase

of the frequency parameter. With the increase of Ωf, first one and then two solutions (two different

contact lengths at a fixed frequency) appear in the system. In other words, the solution is not

unique; for a given beam length and frequency more than one solution exists. The stability of the

solutions are not investigated here, but the actual solution can be obtained by using an energy

criterion. As is expected, the nonuniqueness of the solution is due to the nonlinear character of the

problem. With further increases in the frequency parameter, contact legths reach the beam length

 and complete contact develops in the system for the first solution (upper curves in the

figure). However, for the second solution (lower curves in the figure), the beam continues to

π
2

λG×≅ λG kL
4
/π

2
EI=,

K Es/H 1 νs+( ) 1 2νs–( )=

KG EsH/6 1 νs+( )=

F0 1=

X 1/2=( )

Fig. 2 Contact length versus frequency parameter for various values of the rotary-inertia parameter with
λp = 25. The upper and lower curves correspond to the first and second solutions, respectively



500 rfan Co kun, Hasan Engin and Ayfer TekinI
·

sç

separate from the foundation until about Ωf = 38. When Ωf increased beyond this value, the beam

deflections significantly increase and the contact and non-contact regions are interchanged. In other

words, the middle part of the beam lifts off the foundation while the two sides make contact with

the foundation. In this case, it is necessary to reformulate the problem with different boundary and

continuity conditions, which are given in the Appendix. Fig. 2 also shows the effect of R on the

contact length of the beam. As is seen, contact length increases with the increase of R for both of

the solutions. 

Figs. 3(a) and (b) show the middle displacements of the beam corresponding to the upper and

lower contact curves (the first and the second solutions) given in Fig. 2, respectively. As is seen,

displacements increase as frequency and rotational inertia increase for both of the solutions. As the

frequency is increased further, the displacements greatly increase (Fig. 3(b)) and the contact and

noncontact regions interchange as was described above. The effect of the rotational inertia on the

displacements and the contact length of the beam at a fixed frequency (Ωf = 20) can clearly be seen

in Fig. 4. The contact length of the beam and the displacements increase with the increase of

rotational inertia. This agrees with Figs. 2 and 3(b). Fig. 5 shows the variation of the contact length

with respect to the frequency parameter for some values of the shear foundation parameter λp. The

rotary-inertia parameter is selected as R = 0.04. As seen in the figure, two solutions for the system

exist, and the contact lengths of the beam increase as frequency increases. However, the contact

lengths decrease with the increase of λp as the foundation becomes stiffer. Note that the case λp = 0

corresponds to the Winkler foundation idealization. 

The variation of the middle displacements with respect to the frequency parameter is given in

Figs. 6(a) and (b) for the first and second solutions, respectively. It is seen that the displacements

Fig. 3 Middle displacement versus frequency parameter for various values of the rotary-inertia parameter with
λp = 25 (a) First solution, (b) Second solution 
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Fig. 4 Deflection curves showing lift-off for various values of the rotary-inertia parameter with λp = 25 and
Ωf = 20, for the second solution

Fig. 5 Contact length versus frequency parameter for various values of the shear foundation parameter with
R = 0.04. The upper and lower curves correspond to the first and second solutions, respectively
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increase with increasing frequency, whereas they decrease with increasing the foundation parameter

λp. Also, with further increases in the frequency, the displacements greatly increase for the second

solution (for the lower contact curves given in Fig. 5) as seen in Fig. 6(b), and the contact and

Fig. 6 Middle displacement versus frequency parameter for various values of the shear foundation parameter
with R = 0.04 (a) First solution, (b) Second solution

Fig. 7 Deflection curves showing lift-off for different loads with R = 0.04, Ωf = 20 and λp = 25 (a) First
solution, (b) Second solution
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noncontact regions interchange as was described before. Fig. 7 shows the deflections of the beam

and the foundation surface under different loads, , for , Ωf = 20, and

λp = 25. It also highlights the existence of two solutions (i.e., two different contact lengths for the

same parameters) in the problem. The contact lengths of the beam for the first and second solutions

are  (Fig. 7(a)) and  (Fig. 7(b)), respectively. Figs. 7(a) and (b) show that the

displacements increase with the increase of load. However, the extent of the contact length does not

change, i.e., it is independent of the magnitude of the applied load. 

All the results given above deal with the response of the Timoshenko beam in which the rotatory

inertia and shear deformations are accounted for. The variations of the contact length and the middle

displacement with the frequency parameter for various beam models are given in Figs. 8 and 9,

respectively. The contact lengths and the middle displacements increase as the frequency increases

for all beam models. The rotatory inertia and the shear deformation effects have significant

influences on both the extent of the contact lengths and the displacements. As is seen in Fig. 8, the

contact length of the Timoshenko beam is greater than the contact lengths of the other beams. The

Bernoulli-Euler beam  has the smallest contact length. As is expected, the Rayleigh

 and shear beam  contact lengths are between those of the above mentioned cases.

Notice that if only the effect of rotatory inertia is considered (Rayleigh beam), the contact length is

smaller than that of the shear beam for small values of Ωf. However, with the increase of Ωf, the

effect of the rotatory inertia becomes dominant, and a larger contact length is obtained for the

Rayleigh beam. A similar trend is observed for the middle displacements, as shown in Fig. 9. 

F0 1 2 3 4, , ,= R 0.04=

X 0.383= X 0.151=

R 0= S, 0=( )
S 0=( ) R 0=( )

Fig. 8 Contact length versus frequency parameter for
different beam models with R = 0.06 and
λp = 25 

Fig. 9 Middle displacement versus frequency parameter
for different beam models with R = 0.06 and
λp = 25 
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Finally, Fig. 10 shows the variation of the middle displacements with respect to the shear

foundation parameter λp for various beam models with Ωf = 25 and . Displacement

decreases as λp increases for all beam models. This is due to the stiffening effect caused by the

shear layer of the two-parameter model of the foundation. A comparison of Fig. 10 with Fig. 9

shows that at a fixed value of Ωf or λp, the solutions for the Rayleigh and shear beams are between

those of the Timoshenko and Bernoulli-Euler beams. 

 

5. Conclusions

The lift-off problem of a free Timoshenko beam resting on a tensionless Pasternak foundation and

subjected to a concentrated harmonic load at the centre was investigated in this paper. Bernoulli-

Euler, Rayleigh, and shear beams were also studied for comparison. Closed-form solutions of the

differential equations, which depend on the system parameters, were obtained in both the contact

and lift-off regions. Due to the nonlinear character of the problem, the essentials of the problem (the

lift-off points) were determined numerically. From the numerical analysis, the following conclusions

can be drawn:

(1) The extent of the contact lengths and the vertical displacements of the Timoshenko beam

change considerably with the frequency parameter. The increase in the value of this parameter

inreases the contact lengths and the displacements of the beam. Depending on the values of this

R 0.06=

Fig. 10 Middle displacement versus shear foundation parameter for different beam models with R = 0.06 and
Ωf = 25 
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parameter, more than one solution (contact length) may exist in the system, i.e., the solution is not

unique. The nonuniqueness of the solutions is due to the nonlinearity associated with the existence

of the lift-off regions.

(2) The influence of the beam rotary-inertia parameter on the response is found to be significant.

The increase in the value of this parameter increases the extent of the contact lengths and

displacements. For a Timoshenko beam, these quantities are greater than those of the Bernoulli-

Euler, shear, and Rayleigh beams. The Bernoulli-Euler beam solution gives the smallest contact

lengths and displacements. These results show that the combined effects of the rotatory inertia and

shear deformation changes the response of the beam considerably. As is shown, if only one of these

effects is considered, the solutions are between those of the Timoshenko and Bernoulli-Euler beams. 

(3) The shear foundation parameter also has a significant effect on the response. In contrast to the

effect of the rotary-inertia parameter, an increase in the value of this parameter decreases the contact

lengths and displacements of the beam. This is due to the stiffening effect caused by the shear layer

of the Pasternak foundation model.

(4) The contact length of the Timoshenko beam is independent of the amplitude of the external

load, whereas the deflection profile is directly proportional to it. This holds for not only for the

Timoshenko beam but also for the Bernoulli-Euler, shear, and Rayleigh beams.
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Appendix

The boundary and contiunity conditions for the case when the contact and non-contact regions interchange
are as follows 

Here, W1 and W4 are the vertical deflections of the beam and shear layer in the non-contact region (i.e., in
the middle part of the beam), respectively; W2 is the beam deflection in the contact region; W3 is the deflec-
tion of the shear layer in the region . Note that the number of the boundary and continuity condi-
tions becomes 13 for this case.
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