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Fatigue life prediction based on Bayesian approach to 
incorporate field data into probability model
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Abstract. In fatigue life design of mechanical components, uncertainties arising from materials and
manufacturing processes should be taken into account for ensuring reliability. A common practice is to
apply a safety factor in conjunction with a physics model for evaluating the lifecycle, which most likely
relies on the designer’s experience. Due to conservative design, predictions are often in disagreement with
field observations, which makes it difficult to schedule maintenance. In this paper, the Bayesian technique,
which incorporates the field failure data into prior knowledge, is used to obtain a more dependable
prediction of fatigue life. The effects of prior knowledge, noise in data, and bias in measurements on the
distribution of fatigue life are discussed in detail. By assuming a distribution type of fatigue life, its
parameters are identified first, followed by estimating the distribution of fatigue life, which represents the
degree of belief of the fatigue life conditional to the observed data. As more data are provided, the values
will be updated to reduce the credible interval. The results can be used in various needs such as a risk
analysis, reliability based design optimization, maintenance scheduling, or validation of reliability analysis
codes. In order to obtain the posterior distribution, the Markov Chain Monte Carlo technique is employed,
which is a modern statistical computational method which effectively draws the samples of the given
distribution. Field data of turbine components are exploited to illustrate our approach, which counts as a
regular inspection of the number of failed blades in a turbine disk.

Keywords: fatigue life; prior distribution; posterior distribution; Bayesian approach; Markov Chain
Monte Carlo Technique; field inspection; turbine blade.

1. Introduction

Performance of mechanical components undergoes a change by uncertainties such as

environmental effects, dimensional tolerances, loading conditions, material properties and

maintenance processes. Especially when the design criterion is fatigue life, it is significantly

affected by system uncertainties. Even with today’s modern computing systems, it is infeasible to

include all the relevant uncertain variables into the analytical prediction, since many of the potential

inputs are not characterized in the design phase. Approximation methods, such as the response
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surface method with Monte Carlo simulation (MCS) (Voigt et al. 2004, Weiss et al. 2009), were

often employed to overcome excessive computational cost in reliability assessment. 

To account for the unknown variables, common practices use so called “safety factors” or

statistical minimum properties in conjunction with the analytical prediction when evaluating

lifetimes. Due to these conservative estimations, analytical predictions are often in disagreement

with field experience, and a gap exists in correlating the field data with the analytical predictions.

Thus, there is an increasing need to improve the analytical predictions using field data, which

collectively represents the real status of a particular machine.

Field failure data can be helpful in predicting fatigue life that has uncertainties due to the unknown

potential inputs. Recently, for more reliable life prediction, many studies using field data have been

undertaken. In non-fatigue life prediction, Orchard et al. (2005) used particle filtering and learning

strategies to predict the life of a defective component. Marahleh et al. (2006) predicted the creep life

from test data, using the Larson-Miller parameter. Park and Nelson (2000) used an energy-based

approach to predict constant amplitude multiaxial fatigue life. Guo et al. (2009) performed reliability

analysis for wind turbines using maximum likelihood function, incorporating test data.

In this paper, the Bayesian technique is utilized to incorporate field failure data with prior

knowledge to obtain the posterior distribution of the unknown parameters of the fatigue life (Kim et

al. 2010). The analytical predictions are obtained either from numerical models or laboratory tests.

The field data, although noisy, invariably portray environmental factors, measurement errors, and

loading conditions, or in short, reality. Since the predictions incorporate field experience, as time

progresses and more data are available, the probabilistic prediction is continuously updated. This

results in a continuous increase of confidence and accuracy of the prediction. In this paper, Markov

Chain Monte Carlo (MCMC) technique is employed as an efficient means to draw samples of given

distribution (Andrieu et al. 2003). Consequently, the posterior distribution of the unknown

parameters of the fatigue life is obtained in light of the field data collected from the inspection.

Subsequently, fatigue life is predicted a posteriori based on the drawn samples. The resulting

distributions can then be used directly in risk analysis, maintenance scheduling, and financial

forecasting by both manufacturers and operators of heavy-duty gas turbines. This presents a

quantification of the real time risk for direct comparison with the volatility of the power market.

The paper is organized as follows. In Section 2, the Bayesian technique is summarized,

particularly with estimating the distribution of fatigue life through identifying the distribution of

parameters. Section 3 discusses the effect of noise and bias on the accuracy of posterior distribution.

In Section 4, five different cases are considered with varying priors and likelihoods, followed by

conclusions in Section 5.

2. Bayesian technique for life prediction

In this section, Bayesian inference is explained in the view of updating distribution of fatigue life

using test data. The Bayesian theorem is first presented in a general form, followed by a specific

expression for estimating the distribution of fatigue life.

2.1 Bayes’ theorem

Bayesian inference estimates the degree of belief in a hypothesis based on collected evidence.
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Bayes (1763) formulated the degree of belief using the identity in conditional probability 

(1)

where P(X|Y) is the conditional probability of X given Y. In the case of estimating the probability of

fatigue life using test data, the conditional probability of event X (i.e., fatigue life) when the

probability of test Y is available can be written as

(2)

where P(X|Y) is the posterior probability of fatigue life X for given test Y, and P(Y|X) is called the

likelihood function or the probability of obtaining test Y for a given fatigue life X. In Bayesian

inference, P(X) is called the prior probability, and P(Y) is the marginal probability of Y and acts as a

normalizing constant. The above equation can be used to improve the knowledge of P(X) when

additional information P(Y) is available. 

Bayes’ theorem in Eq. (2) can be extended to the continuous probability distribution with

probability density function (PDF), which is more appropriate for the purpose of the present paper.

Let fX be a PDF of fatigue life X. If the test measures a fatigue life Y, it is also a random variable,

whose PDF is denoted by fY. Then, the joint PDF of X and Y can be written in terms of fX and fY, as

(3)

When X and Y are independent, the joint PDF can be written as  and

Bayesian inference cannot be used to improve the probabilistic distribution of fX(x). Using the above

identity, the original Bayes’ theorem can be extended to the PDF as (Athanasios 1984) 

(4)

Note that it is trivial to show that the integral of fX(x|Y = y) is one by using the following property

of marginal PDF

 (5)

Thus, the denominator in Eq. (4) can be considered as a normalizing constant. By comparing

Eq. (4) with Eq. (2),  is the posterior PDF of fatigue life X given test Y = y, and

 is the likelihood function or the probability density value of test Y given fatigue life

X = x.

When the analytical expressions of the likelihood function, , and the prior PDF, fX(x),

are available, the posterior PDF in Eq. (4) can be obtained through simple calculation. In practical

applications, however, they may not be in the standard analytical form. In such a case, the Markov

Chain Monte Carlo (MCMC) simulation method can be effectively used, which will be addressed in

Section 2.3 in detail. 

When multiple, independent tests are available, Bayesian inference can be applied either

iteratively or all at once. When N number of tests are available; i.e., y = {y1, y2, …, yN}, the Bayes’

theorem in Eq. (4) can be modified to
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(6)

where K is a normalizing constant. In the above expression, it is possible that the likelihood

functions of individual tests are multiplied together to build the total likelihood function, which is

then multiplied by the prior PDF followed by normalization to yield the posterior PDF. On the other

hand, the one-by-one update formula for Bayes’ theorem can be written in the recursive form as

, (7)

where Ki is a normalizing constant at i-th update and  is the PDF of X, updated using up to

(i−1)th tests. In the above update formula,  is the initial prior PDF, and the posterior PDF

becomes a prior PDF for the next update.

In the view of Eqs. (6) and (7), it is possible to have two interesting observations. Firstly, the

Bayes’ theorem becomes identical to the maximum likelihood estimate when there is no prior

information; e.g., fX(x) = constant. Secondly, the prior PDF can be applied either first or last. For

example, it is possible to update the posterior distribution without prior information and then to

apply the prior PDF after the last update. 

An important advantage of Bayes’ theorem over other parameter identification methods, such as

the least square method and maximum likelihood estimate, is its capability to estimate the

uncertainty structure of the identified parameters. These uncertainty structures depend on that of the

prior distribution and likelihood function. Accordingly, the accuracy of posterior distribution is

directly related to that of likelihood and prior distribution. Thus, the uncertainty in posterior

distribution must be interpreted in that context.

2.2 Application to fatigue life estimation

In deriving Bayes’ theorem in the previous section, two sets of information are required: a prior

PDF and a likelihood function. In estimating fatigue life, the prior distribution can be obtained from

numerical models and laboratory tests. Since they can be performed multiple times with different

input parameters that represent various uncertainties, it is possible to evaluate the distribution of

fatigue life, which can be served as a prior PDF of fatigue life.

On the other hand, the field data cannot be obtained in a laboratory environment. In this section,

using field data in calculating the likelihood function is presented. When a gas turbine engine is

built and installed in the field, the maintenance/repair reports include the history of the number of

parts that were defective and replaced at specific operating cycles. Although these data are not

obtained under a controlled laboratory environment, they represent reality with various effects of

uncertainties in environmental factors, measurement errors, and loading conditions. Thus, it is

desirable to use these data to update the fatigue life of the specific machine using Bayes’ theorem.

The standard approach to applying Bayes’ theorem is to use the field data to build the likelihood

function, which is basically the same as the PDF form with fatigue life. However, different from

specimen-level tests, the field data cannot be repeated multiple times to construct a distribution.

Only one data point exists for the specific operation cycles. Thus, the original formulation of Bayes’

theorem needs to be modified. First, instead of updating the PDF of fatigue life, it is assumed that

the distribution type of fatigue life is known in advance. This can be a big assumption, but it is
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possible that different types of distributions can be assumed and the most conservative type can be

chosen. Once the distribution type is selected, then it is necessary to identify distribution

parameters. For example, in the case of normal distribution, the mean (µ) and standard deviation (σ)

need to be identified. In this paper, these distribution parameters are assumed to be uncertain and

Bayes' theorem is used to update their distribution; i.e., the joint PDF of mean and standard

deviation will be updated. In this case, the vector of random variables is defined as X = {µ, σ}, and

the joint PDF fX is updated using Bayes’ theorem. Initially, it is assumed that the mean and standard

deviation are uncorrelated.

A field data set consists of the number of hours of operation until inspection (Nf), and the number

of defective blades (r) out of the total number of blades (n). Thus, the field data are represented by

y = {Nf, n, r}, which are given in the Table 1. Then, the likelihood function is the PDF fY for given

X = {µ, σ}. Since the field data is given at fixed Nf and n, fY can be represented in terms of r.

Unfortunately, the number of defective blades cannot be a continuous number because it is an

integer. Thus, the likelihood function fY can be represented using the following probability mass

function 

(8)

where pf is the probability of defects at given Nf for given X = {µ, σ}. Since the distribution of

fatigue life is given as a function of X, the probability of defects can be calculated by

(9)

where, flife is the PDF of fatigue life distribution. The probability mass function in Eq. (8) is a
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0

Nf
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Fig. 1 Probability of defects calculation from life distribution

Table 1 Field data for inspected turbine blades

Engine Hours (Nf ) Failed (r)/Total (n) Engine Hours (Nf) Failed (r)/Total (n)

1 0.836 2/40 8 0.281 0/40

2 0.604 1/40 9 5.053 13/40

3 0.290 1/40 10 0.707 0/40

4 1.770 0/40 11 1.652 0/40

5 2.321 12/40 12 1.265 10/40

6 2.254 3/40 13 3.615 18/40

7 1.162 6/40
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binomial distribution, which models the probability distribution of having ‘r’ defects out of ‘n’

samples with defect probability of pf. Fig. 1 illustrates the relation in Eq. (9). The predictive

distribution of life can be estimated using the mean and standard deviation obtained from the

updated joint PDF as

(10)

In this paper, since the distribution type of the fatigue life is unknown, two different types are

assumed: normal and Weibull. The strategy is to select the one that can provide a more conservative

estimate. In the case of the Weibull distribution, the scale and shape parameters  are used in

the Bayesian technique.

As mentioned above, the predictive distribution of fatigue life depends on that of the prior

distribution and likelihood function. The PDF of life  and the prior PDF  are

therefore assumed as the following cases 

Case 1: : normal dist. and = constant  (11)

Case 2: : normal dist. and  (12)

Case 3: : normal dist. and (13)

Case 4: : Weibull dist. and =constant (14)

Case 5: : Weibull dist. and (15)

For the likelihood function, normal and Weibull distributions are first considered as fatigue life

distributions, and then, are used to calculate the fatigue failure probability pf in likelihood

calculation as in Eq. (8). In the model, the associated model parameters are  in the case of

normal and  in the case of Weibull distribution, respectively. These are taken to be unknown

and are estimated using the inspected data. In terms of prior distribution, the probability distribution

of fatigue life that was obtained numerically by conducting reliability analysis is exploited, in which

the mean and standard deviation of fatigue life are given by normalized fatigue life 1 and 0.154

respectively. Based on these values, different kinds of prior distributions for the two parameters are

undertaken for the Cases 2, 3 and 5, in which the coefficient of variation (COV) for the mean and

standard deviation are assumed as 0.5 in common.

2.3 MCMC simulation

Once the expression for the posterior PDF is available as in Eq. (6), one can proceed to sample

from the PDF. A primitive way is to compute the PDF values at a grid of points after identifying

the effective range, and sample by the inverse CDF method. This method, however, has several

drawbacks such as the difficulty finding correct location and scale of the grid points, the spacing of

the grid, and so on. Especially when a multi-variable joint PDF is required, the computational cost

is proportional to , where N is the number of grids in one-dimension and m is the number of

variables. On the other hand, the MCMC simulation can be an effective solution as it is less

sensitive to the number of variables (Andrieu et al. 2003). The Metropolis-Hastings (M-H)

algorithm is a typical method of MCMC, which is given in the case of two parameters  by

the following procedure

flife t( ) N µ σ,( )=

η m,( )

flife t X( ) f X( )

flife t µ σ,( ) f µ σ,( )

flife t µ σ,( ) f µ σ,( ) N 1 0.5,( ) N 0.154 0.077,( )⋅=

flife t µ σ,( ) f µ σ,( ) N 1 0.5,( ) Inv-χ
2

4 1,0.154
2

–( )⋅=

flife t η m,( ) f η m,( )

flife t η m,( ) f η m,( ) LogN 0.049– 0.472,( ) LogN 1.912 0.472,( )⋅=

µ σ,
η m,

N
m

µ σ,( )
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1. Initialize 

2. For i = 0 to 

- Sample u ~

- Sample 

- If u < A

           

else

           (16)

where  is the initial value of unknown parameters to estimate, N is the number of

iterations or samples, U is the uniform distribution,  is the joint posterior PDF (target PDF),

and  is an arbitrarily chosen distribution. A uniform distribution is used in this study for the

sake of simplicity. Thus,  and  become constants, and 

can be ignored. As an example of MCMC, the joint posterior PDF of the unknown parameters 

of the fatigue life using only the first data is shown in Fig. 2, which represents the degree of belief

on the concerned parameters in the form of PDF. The joint posterior PDF using the grid method as

well as MCMC sampling are shown in Fig. 2(a) and (b), respectively. In Table 2, statistical

moments by the two methods are compared. As shown in the table, the two methods agree quite

closely but MCMC used 10(10)3 samples, whereas gird used 250(10)3 samples. The difference in

the number of samples will be significantly increased as more variables are identified.
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Fig. 2 Joint posterior PDF of Case 2 in Eq. (12) with one test data

Table 2 Statistical moments by the two methods

µµ µσ σµ σσ Cov(µ, σ)

Grid 1.1476 0.1854 0.1265 0.0656 0.0000 

MCMC 1.1353 0.1797 0.1241 0.0656 0.0000 
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3. Analytical example

Although the Bayesian approach has been used extensively in literature (Gelman et al. 2004), it is

important to investigate its performance. In particular, it is important to characterize how this

method identifies unknown parameters when the experimental data have noise and bias. In this

section, the properties of Bayes’ theorem are studied using analytical examples. In particular, the

effects of noise and bias of data on the final distribution are discussed. The data here are simulated

to demonstrate the new analytical technique. These data are then perturbed in order to study the

effects of noise and bias errors on the algorithm.

3.1 Field data governed by a distribution

The first study is to test the accuracy of the updated distribution using Bayes’ theorem. Table 3

shows an example of field data that are used in this section. The total number of blades is n = 50.

The field data are generated from a distribution, B~N(12000, 2000) (B is actually unknown

distribution which should estimated based on the field data but is used to generate the field data)

and the objective is to test if the updated distribution recovers the distribution B. For the prior

distribution, the mean is uniformly distributed in the interval of [0, 30000], while the standard

deviation is also uniformly distributed in the interval of [0, 4500]. Using the four sets of field data

in Table 3, the joint posterior PDF are calculated using Bayes’ theorem. After obtaining the joint

posterior PDF, samples obtained from the MCMC simulation are used to estimate the distribution of

life. Fig. 3 compares the updated distribution of fatigue life with the distribution B, along with the

estimated probability of defects from field data. In this figure, the red curves represent the 5% lower

bound, mean, and 95% upper bound from the left hand, respectively. It is clear that both

Table 3 Sample field data for inspected turbine blades

Engine 1 2 3 4

Operating hours 9303 14255 12700 11402

Number of defective blades 4 44 32 19

Fig. 3 Comparison between the updated life distribution using Bayes’ theorem and the original distribution 
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distributions match each other quite well, that is, the results reproduce the provided true data

closely. After several trials with different number of data set, we have found that if the field data

are governed by a particular distribution of two parameters, the Bayesian method works fine when

at least 3 sets of data are available. When we process this using only 2 sets of data, the Bayesian

method fails due to the too few number of data.

3.2 Effect of bias and noise

In practice, the field data are often accompanied by noise and bias. The former is caused by

variability in measurement environment, while the latter represents systematic departure, such as

device error. The difference is that the former is random, while the latter is deterministic, although

its value is unknown. In some cases, a positive bias is consciously applied to remain conservative.

This section analyzes the effect of bias and noise on the updated life distribution using the same

sample data shown in Table 3. 

First, the bias is given in terms of the operating hours of blades. For example, bias = 10% means

that the operating hours of blades is 10% more than the nominal operating hours. Fig. 4(a) shows

the effect of bias on the distribution of fatigue life. Both positive and negative biases are considered.

As expected a negative bias leads to a conservative estimate of the updated life distribution. From

Table 4, it can be observed that the standard deviation of the life distribution remains about the

same as the true value 2000, while the mean values are shifted by ±1200 due to the biases.

Next, the effect of noise in the data is investigated by randomly perturbing the original data by

10% and 20%. Fig. 4(b) shows the updated distribution of fatigue life with the two different levels

of noise, and more specific results are shown in Table 4, which also includes the effect of the

number of data. Different from the case of bias, as the number of data increases, the means

converge to a nominal mean. However, the standard deviation is relatively insensitive to the number

of data; it shows a slight increase with 50 points of data. Although the estimated distribution is

inaccurate with high levels of noise, it tends to be conservative when the life with a low probability

of failure is estimated. In general, bias can be identified with many data by using the least-square

method or the Bayesian approach with the bias as an unknown system parameter (Coppe et al.

2009). 

Fig. 4 Effect of bias and noise 
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4. Identification of model parameter and prediction of fatigue life

4.1 Posterior distribution of model parameter

The results of Case 1 where the likelihood is a normal distribution and non-informative prior are

shown in Fig. 5. In Fig. 5(a), the contours of prior distribution, likelihood function and joint

posterior PDF of the unknown parameters are plotted. In these figures, the updated prior and the

likelihood are obtained from the joint posterior distribution previously obtained and the inspection

data, respectively. The joint posterior distribution is obtained by multiplying the prior and

likelihood, and is used in the next updating step as the prior distribution. Since a non-informative

prior is used, the first update is identical to the first likelihood function. Since data from a single

test can be represented by infinite combinations of means and standard deviations, the contours of

likelihood become straight lines. In Fig. 5(b), the joint posterior PDFs are plotted in the form of

Table 4 Mean and standard deviation of unknown parameter µ, σ

No bias and 
noise

Bias Noise 10% Noise 20%

+10% -10% data = 4 data = 10 data = 50 data = 4 data = 10 data = 50

µµ 12008 13209 10795 12907 11854 12148 10350 11514 12024 

Error (%) 0.07 10.08 (-)10.04 7.55 1.21 1.24 13.75 4.05 0.20 

µσ 2054 2039 2017 3187 3024 3080 4166 4225 4473 

Error (%) 2.69 1.94 0.86 59.34 51.18 53.98 108.32 111.23 123.65 

σµ 404 404 397 453 408 196 453 347 208 

 σσ 322 319 326 640 381 157 262 211 89 

Fig. 5 Updated joint posterior PDF of Case 1
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contours. Even if the contours of individual likelihood functions are straight, the uncertainty in the

joint posterior distribution is reduced and show correlation between the mean and standard

deviation. It is shown that as more data are added, the location and range of  moves and

narrows down to converge to a certain point. The results indicate our knowledge on the unknown

parameters based on the field inspection.

The results of Cases 2-5 are shown in Fig. 6~Fig. 9. The results of Case 2 where the likelihood is

still a normal distribution but with normally distributed priors are shown in Fig. 6(a) and (b).

Different from the non-informative prior case in Fig. 5, the level of uncertainties remains almost

constant, but their locations continuously change for different field data. As illustrated in Fig. 6(a),

the joint posterior distribution is already narrowed due to the prior distribution. However, since the

prior distribution is quite different from the field data, the centers of joint posterior distributions

gradually move as more field data are used. In addition, the final joint posterior distribution moves

toward to the prior distribution compared to that of Fig. 5. Fig. 5 and Fig. 6 clearly provide the

effect of prior distribution. When there is a strong inclination to the prior distribution, then its use

can yield the posterior distribution closer to it than the non-informative prior. Then due to field data

that predict a longer fatigue life, the expected life will gradually increase. 

The results of Case 3 where the likelihood is normal and the prior for the sigma is changed to a

chi-square distribution with degree of freedom n(=4)-1 and scale parameter σ0 0.154, which are

µ σ,

Fig. 6 Updated joint posterior PDF contours of Case 2

Fig. 7 Updated joint posterior PDF contours of Case 3
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more reasonable assumptions due to non-negativity, are shown in Fig. 7(a) and (b). In this case, the

standard deviation of the joint posterior distribution increases with more field data because the prior

has a small standard deviation than that of field data. If the likelihoods are considered first with a

non-informative prior, as is found in the 1st~4th data and 1st~10th data of Fig. 7(c), and the joint

posterior is obtained by applying the prior at the last stage, which is 1st~13th data in the figure, one

gets the standard deviation decreased as more field data are added, with the final joint posterior

being updated by the prior.

The results of Case 4 where the likelihood is the Weibull distribution with scale (η) and shape (m)

parameter and a non-informative prior are shown in Fig. 8, and the results of Case 5 where the

likelihood is still the Weibull distribution but with the prior being lognormally distributed are shown

in Fig. 9. Both cases show the convergent behavior, but the range of  of Case 5 is narrower

than that of Case 4 due to the prior. The case of a non-informative prior shows a strong correlation

between the mean and standard deviation, which is significantly reduced with the lognormal prior.

These cases are the most reasonable because the Weibull distribution is the best model for the

lifetime (Haldar and Mahadevan 2000).

m η,

Fig. 8 Updated joint posterior PDF contours of Case 4

Fig. 9 Updated joint posterior PDF contours of Case 5

Fig. 10 Final joint posterior PDFs of all cases
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The final joint posterior PDFs of all cases are shown in Fig. 10. Fig. 10(a) and (b) are the results

of µ and σ of the normal distribution and η and m of the Weibull distribution, respectively. Case 1

in Fig. 10(a) and Case 4 in Fig. 10(b) are the results of non-informative priors. As was expected,

the results are much wider than the others due to the non-informative prior. If specific prior

information is available, the precision of the posterior distribution is increased.

4.2 Posterior predictive distribution of fatigue life

The posterior PDF obtained in Section 4.1 can be used to predict the fatigue life. Recall that the

Bayesian inference updates the distribution of mean and standard deviation of the life distribution.

Each sample of mean and standard deviation yields a distribution of fatigue life, which can be

represented by a cumulative distribution function (CDF). Thus, as a result of Bayesian inference, a

distribution of CDF can be obtained. For explanatory purposes, this distribution of CDF can be

represented by a credible interval. It is expected that this interval will be wide when the uncertainty

in the mean and standard deviation is large. In general, the uncertainty in mean and standard

deviation reduces with greater numbers of field data, and the credible interval will also be reduced

with more field data.

Fig. 11 shows the updating process of the predicted fatigue life CDF along with field data for

Case 1. The red stars are the field data at the current update, while the blue stars are the field data

up to the previous update. In the same figure, the dashed red curve is the mean CDF of fatigue life,

while the two solid red curves are 5% and 95% credible bounds. Compared to the significant noise

in the field data, the credible interval of the estimated CDF is progressively reduced. In order to

Fig. 11 Updated Process of Case 1 
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accommodate safety, it is advised to take a 5% lower bound of the CDF. 

In order to show the difference between initial and final distributions of fatigue life, Fig. 12 plots

the credible intervals using prior and the final joint posterior distribution of mean and standard

deviation for Cases 2, 3, and 5. It is clear that all initial distributions are overly conservative. This

often happens because analytical models often assume all input random variables are independent,

when they may be correlated. In addition, material properties and design loads are often chosen to

be conservative.

For the purpose of planning scheduled maintenance, it is often required to choose either 1% or

10% life, which is also called B1 or B10 life. Table 5 shows the credible intervals of B1 and B10

life, along with lower- and upper-bounds of the 90% credible intervals. In Cases 1 and 3, which

employed a normal model, negative values for the life are calculated due to wrong assumptions on

the model; the normal distribution can have negative lives. On the other hand, Cases 4 and 5 are

reasonable because they only allow positive values. 

Since the type of distribution is assumed initially, it is advised to choose the most conservative

one, which is Case 4 in this study. Although Case 4 does not have prior information compared to

Case 5, its credible interval has significantly been reduced using enough field data; the credible

intervals at 1% Pf are 0.245 and 0.267, respectively. However, this may not always be true. For

example, Cases 4 and 5 are compared in Fig. 13 and Table 6 when only the first data are used in

Bayesian inference. Without having the prior distribution, Case 4 shows a significant uncertainty,

and the lower-bound of 1% Pf is 0.019, which is overly conservative and costly due to frequent

maintenance. Thus, when the number of field data is small or the field data have excessive noise,

Fig. 12 Final updated distribution of fatigue life 

Table 5 Credible interval of normalized fatigue life at the last stage

1% Pf 10% Pf

5% lower 95% upper Interval 5% lower 95% upper Interval

Case 1 -2.261 -0.562 2.065 1.160 2.013 0.853 

Case 2 0.658 1.272 0.615 1.872 2.320 0.448 

Case 3 -1.235 -0.127 1.107 1.182 1.814 0.632 

Case 4 0.093 0.338 0.245 1.035 1.750 0.715 

Case 5 0.229 0.496 0.267 1.223 1.769 0.546 
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the prior information plays an important role to determine acceptable maintenance intervals. In

summary, the ability to use the prior properly and the ability to choose appropriate statistical model

are the main advantages of Bayesian inference over the regression method. 

5. Conclusions

In this paper, a Bayesian updating technique is presented, which incorporates statistical prediction

with field data. By using MCMC simulation, samples of model parameters θ (  or ) are

drawn effectively, which are parameters of the fatigue life distribution. After obtaining samples for a

joint posterior PDF of θ, the fatigue life prediction results are obtained, which have a CDF in

Credible intervals due to the uncertainties of the model parameters. If there is specific prior

information of model parameters, the precision of the posterior distribution is increased. In case the

type of the distribution of the likelihood is not known a priori, it is advised to choose the most

conservative type after examining several candidates as was found in this study.
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Fig. 13 Comparison between Case 4 and Case 5 

Table 6 Credible interval of normalized fatigue life at the first stage

1% Pf 10% Pf

5% lower 95% upper Interval 5% lower 95% upper Interval

Case 4 0.019 0.862 0.843 0.562 3.930 3.368 

Case 5 0.473 0.776 0.303 0.789 1.155 0.366 
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