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Estimation of structure system input force using the 
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Abstract. This study proposes an inverse estimation method for the input forces of a fixed beam
structural system. The estimator includes the fuzzy Kalman Filter (FKF) technology and the fuzzy
weighted recursive least square method (FWRLSM). In the estimation method, the effective estimator are
accelerated and weighted by the fuzzy accelerating and weighting factors proposed based on the fuzzy
logic inference system. By directly synthesizing the robust filter technology with the estimator, this study
presents an efficient robust forgetting zone, which is capable of providing a reasonable trade-off between
the tracking capability and the flexibility against noises. The period input of the fixed beam structure
system can be effectively estimated by using this method to promote the reliability of the dynamic
performance analysis. The simulation results are compared by alternating between the constant and
adaptive and fuzzy weighting factors. The results demonstrate that the application of the presented method
to the fixed beam structure system is successful. 
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1. Introduction

In the structure design and reliability assessment of bridge system, the most important procedure

is to obtain the values of active input forces to the system. However, in the practical engineering

problem, there are always difficulties in installing the force transducers used to measure the active

forces to the structure system (Yang et al. 1997). Furthermore, the force is sometimes large and

transient so that the direct measurements will not be easily obtained. To resolve this situation, the

active forces to the structure system can be estimated in real time by using the inversely technique.

This will be verified as a great benefit on the design and reliability evaluation of the structure

system by this means.

The input estimation is an analysis method for the dynamic structure system and is widely

adopted to cope with the system with inputs that cannot be easily measured directly. This method

does not need the load transducer to be equipped to directly measure the active loads. Instead, the

structure system has actually been regarded as a load sensor (Inoue et al. 2001), and the results

have verified this idea. There are various researches with regard to the input estimation of the

structure system in recent years. For example, Michaels and Pao (1985) presented an iterative
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method of deconvolution which determines the orientation and time-dependent amplitude of the

force from the transient response of the plate surface at a minimum number of two locations.

Fabunmi (1986) presented the pseudoinverse technique to determine the effects produced on several

structural modes due to the vibratory forces. Inoue et al. (1995) used the least square method, which

is based on the wiener filtering theory, the mean square error, and the singular value decomposition

(SVD), to improve the estimation precision and to obtain the optimal estimates. Martin et al. (1996)

analyzed the motion of wave transmission to estimate the impact loads. Doyle (1997) developed the

wavelet deconvolution to estimate the impact loads on the beam and plate structure. Recently,

Haung (2001) adopted the conjugate gradient method (CGM) to estimate the force of the one-

dimensional mass-spring-damper structure with the time-varying system parameters. Taking a

comprehensive review of the above references, the estimation algorithms are all implemented in the

batch forms. This kind of method is time-consuming and is not an on-line procedure for the

unknown input estimation.

In order to solve the problem mentioned above, Tuan et al. (1996, 1997) presented an input

estimation approach which can recursively solve the IHCPs in real time. Ma et al. (1998, 2003)

presented an inverse method to estimate the excitation forces by analyzing the dynamic responses of

structure system. The input estimation method is using the recursive form to process the

measurement data. As opposed to the batch process, the recursive form is an on-line process and

has higher effectiveness. However, although the processes in the studies mentioned above can be

implemented in real time, they merely adopt the constant weighted estimator to estimate the

unknown time-varying inputs. The access to the optimal constant weighting factor should go

through the trial-and-error analyses, that is to say, the overall tracking performance of the estimator

will be degraded or the measurement error will be magnified when an inappropriate weighting

function is chosen in the estimation process.

The unknown inputs usually have slow or quick time-varying state which cannot be predicted in

the estimation process. Therefore, it is difficult to choose an adaptive and efficient weighting

function for any input variation. Tuan et al. (1998) presented an adaptive robust weighted input

estimation method for the one-dimensional inverse heat conduction problem. Lee et al. (2008)

utilized the adaptive weighted input estimation method to inversely solve the burst load of the truss

structure system. Chen et al. (2008) investigated the adaptive input estimation method applied to the

inverse estimation of load input in the multi-layer shearing stress structure and the identification of

moving load in the bridge structure system. The overall input estimation performance is acceptable

by analyzing the dynamic response of structure system. However, the estimates converge slowly in

the initial state when the adaptive weighting function is used in the RLSE. The increase of the

process noise variance will influence the estimation precision. With a larger process noise variance

assumed, the better capability of tracking the time-varying force inputs can be obtained, but the

overall measurement noise reduction effectiveness will be degraded. Therefore, Chen et al. (2007)

developed an intelligent fuzzy weighted estimator with higher target tracking performance and better

noise reduction effectiveness. Lee et al. (2010) applied an intelligent fuzzy weighted input

estimation method to estimate the unknown input force in a plate structure system. The estimator

proposed in this paper provides an efficient and robust estimation procedure to any unknown input

situation. However, the overall measurement noise reduction effectiveness may be degraded when a

larger initial process noise variance is assumed in the intelligent fuzzy weighted estimator. Besides,

the estimates may be divergent in the high order of severity when an inappropriate initial process

noise variance is assumed. In this study, the effective estimator are accelerated and weighted by
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adopting the fuzzy accelerating and weighting factor proposed based on the fuzzy logic inference

system. The efficiency and robustness of the proposed method will be demonstrated through the

simulation of case studies. The results will be compared with the results produced using other

inverse estimation methods. The feasibility, adaptability and robustness of proposed method will be

verified by implementing the case studies.

2. Problem formulation

In this paper, a uniform dynamic loading on the fixed beam structural system is considered as

shown in Fig. 1. The inverse estimation of the inputs by analyzing the active reaction of the

structure system is investigated in this research. According to the Euler-Bernoulli theory, the

equation of motion of the structure system can be expressed as (Mario 1986)

(1)

where EI represents the flexural rigidity.  and  are the mass and the dynamic loading per

unit length, respectively. The boundary condition of the fixed end beam can be described as 

for  (2)

for (3)

Assuming the general solution of motion equation is the sum of normal model shape function

 multiplied by the unknown model amplitude , the general solution can be described

mathematically as

(4)

The normal model shape function must satisfy the solution of free vibration of Eq. (1). Therefore,

the differential equation of position is concluded and given as
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Fig. 1 Uniform dynamic loading on the fixed beam structural system 
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where . The natural frequency, , where . aL can be solved

by the equation of system frequency which satisfies the boundary condition (Tuan and Hou 1998).

Substituting Eq. (4) in Eq. (1) gives

(6)

Substituting Eq. (5) in Eq. (6), multiplying it by , integrating it over the length of the

beam, and then applying the orthogonal conditions, the equation of motion in terms of the model

amplitude can be rewritten as 

(7)

Eq. (7) can be rewritten as 

(8)

where  is the model mass, and  is the model force of the

nth node. Eq. (8) represents the motion of the nth node.

The input estimation algorithm is a calculation method using the state space. Therefore, the state

equation and the measurement equation have to be constructed before implementing this method. In

order to satisfy this situation, the equality,  is used to transfer the movement

equation to the state space form. The continuous-time state equation and measurement equation of

the structure system can be presented as follows (Tuan et al. 1996) 

(9)
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,
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the noise turbulence in the practical engineering environment. Nevertheless, Eqs. (9) and (10) do not

take the noise turbulence into account. In order to construct the statistic model of the system state

characteristics, a noise disturbance term, which can reflect these statistical characteristics of the

state, will need to be added into these two equations. For this reason, the continuous-time state

Eq. (9) can be sampled with the sampling interval, ∆t, to obtain the discrete-time statistic model of

the state equation shown as the following (Tuan et al. 1996)

(11)

where

 is the discrete state vector. Φ is the state transition matrix. Γ is the input matrix.  is the

sampling interval. U(k) is the sequence of deterministic dynamic input, and w(k) is the processing

error vector, which is assumed as the Gaussian white noise. In Eq. (11), when describing the active

characteristics of the structure system, the additional term, w(k), can be used to represent the

uncertainty in a numerical manner. The uncertainty could be the random disturbance, the uncertain

parameters, or the error due to the over-simplified assumption of numerical models. Note that

, , Q is the discrete-time processing noise covariance matrix.

 is the Kronecker delta function. 

Generally speaking, the system state can be determined by measuring the output of the system.

The measurement usually has a certain relationship with the system output. However, there is also

the noise issue with the measurement. As a result, the discrete-time statistic model of the

measurement vector can be presented as the following 

(12)

X(k) is the discrete observation vector. v(k) represents the measurement noise vector and is

assumed as the Gaussian white noise with zero mean and the variance, ,

, R is the discrete-time measurement noise covariance matrix. 

3. Design of the fuzzy estimator

The fuzzy estimator are accelerated by the fuzzy accelerating factor in the processing noise

covariance matrix and weighted by the weighting factor of the input estimation method proposed

based on the fuzzy logic inference system. The presented method can inversely estimate the

unknown inputs by analyzing the active reaction of the structure system. This method is composed

of the fuzzy Kalman filter without the input term and the fuzzy weighted recursive least square

estimator. The fuzzy Kalman filter can produce the residual innovation sequence, which contains the

bias or systematic error caused by the unknown time-varying inputs and the variance or random

error caused by the measurement error. Therefore, the estimator utilizes the innovation sequence to

estimate the inputs over time by adopting the fuzzy weighted recursive least square method. The
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Kalman filter without the input term is shown as follows (Tuan et al. 1996) 

(13)

(14)

(15)

(16)

(17)

(18)

(19)

In Eqs. (13) to (19), the superscript ‘−’ indicates the value of filter estimation.  is the

state estimation.  is the state estimation error covariance.  is the residual of

predictor.  is the innovation covariance.  is the Kalman gain.  is the state filter.

 is the state filter error covariance.

The related equations of the recursive least square estimator are shown as follows (Tuan et al.

1996)
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gets larger according to Eqs. (16) and (17), that is to say, the measurement error is utilized to

contribute to the state estimation. In other words, the value of Kalman gain  depends on R
v

and Q
w
. The above-mentioned is an important principle and a key problem that the appropriate R

v

and Q
w
 can be chosen in accordance with the system property and the magnitude of noise

interference in the estimation process. R
v
 can be chosen in accordance with the precision of the

measurement instrument. Q
w
 can be chosen in accordance with the modular error of the system. The

Kalman gain can be slightly corrected with the higher precision of the measurement instrument, this

is to say, the modular error of the system can be reduced. For this reason, the processing noise

covariance can be defined as following

(25)

where  is the fuzzy accelerating factor, which is chosen within the interval, . The

estimation precision gets better as the  gets smaller. On the contrary, the estimation precision

gets worse as the  gets larger.

The weighting factor  is another important parameter which will affect the estimation

precision in the estimation process. It also plays the role as an adjustable parameter to control the

bandwidth or the gain magnitude of recursive least square estimator. It can operate at each step

based on the innovation produced by the Kalman filter. Furthermore, the weighting factor  is

employed as the tradeoff between the tracking capability and the estimation precision. The fuzzy

estimator in this paper is proposed based on the fuzzy logic inference system. The processing noise

covariance and the weighting factor can be adjusted by using the innovation produced by the

Kalman filter in each time step. The fuzzy logic system includes four basic components, which are

the fuzzy rule base, the fuzzy inference engine, the fuzzifier, and the defuzzifier. The value of fuzzy

logic system input, , may be chosen within the interval, . The Pythagorean theorem with

the transverse axle (time, t) and the vertical axle (residual of predictor, ) can be used to solve the

length of the hypotenuse. In other words, the length of the hypotenuse is the variation rate of the

residual in the sampling interval. The dimensionless input variable is defined as the following 
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small). A fuzzy rule base is a collection of fuzzy IF-THEN rules which are shown in Table 1.

where  is input variable, and  and  are the output variables of the fuzzy logic

system. The fuzzier maps a crisp point  into a fuzzy set A. Therefore, the nonsingleton fuzzier

can be expressed as the following (Wang 1994).

(27)

 decreases from 1 as  moves away from .  is a parameter characterizing the

shape of . 

The Mamdani maximum-minimum inference engine is used in this paper. The max-min-operation

rule of fuzzy implication of the output variable, , is shown as the following (Wang 1994).

(28)

The output variable  can be similarly shown as following (Wang 1994)

(29)

where c is the fuzzy rule, and d is the dimension of input variables.

The defuzzifier maps a fuzzy set B to a crisp point . The fuzzy logic system with the center

of gravity is defined as the following (Wang 1994).

(30)

The defuzzifier of the output variable  can be similarly shown as following 

(31)

n is the number of outputs.  is the value of the lth output.  and  represent

the membership of  and  in the fuzzy set B, respectively. Substituting  of Eq. (30)

in Eq. (25) and  of Eq. (31) in Eqs. (22) and (23) allows us to configure the fuzzy estimator.

A design flow chart of the fuzzy estimator is given in Fig. 2.

4. Results and discussion

To verify the practicability and robustness of the presented approach in estimating the uniform
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Fig. 2 The design flowchart of the fuzzy estimator
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function satisfying the boundary condition can be shown as (Mario 1986)

(32)

where , and .

The active model amplitude reaction of the beam structure system under various frequency

dynamic load inputs has to be determined first. Furthermore, by applying the active model amplitude

reaction to the presented estimation algorithm, the inverse load estimation of the structure system can

be simulated numerically. The estimation algorithm includes the fuzzy Kalman filter technique and

the fuzzy weighted recursive least square method. The initial conditions and other parameters of

simulation are shown as follows: , , and  is

assumed to be a zero matrix. The sampling interval,  secs. The weighting factor, γ, is

assumed as a fuzzy weighting factor, an adaptive weighting function, and a constant weighting factor,

respectively.

Example: Periodic sinusoidal dynamic loading

The uniform periodic sinusoidal dynamic loading is applied on the beam structure system. These

sinusoidal dynamic loading is shown as follows

 (33)

where , and . The uniform periodic sinusoidal dynamic loading of the

structure system is determined by using the presented approach when considering the influence due

to the initial processing noise and the measurement noise of the system. The initial processing noise

variance, . The measurement noise variance, . By applying the active

dynamic reaction which contains noise to the presented algorithm, the estimation result of the

uniform periodic sinusoidal dynamic loading can be obtained and plotted in Fig. 3. The coarse

estimation result in the initial response on account of the larger initial processing noise variance is

shown in Fig. 3. The presented estimator has the property of faster convergence with the regulated

processing noise variance in the estimation process.
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Fig. 3 The estimation result using the periodic sinusoidal load input



Estimation of structure system input force using the inverse fuzzy estimator 361

Fig. 4 The variance of the output variable α(k) Fig. 5 The variance of the fuzzy weighting factor γ (k)

Fig. 6 Comparison of the estimation results using different weighting factors 
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Fig. 4 shows that the estimator has the greater tracking performance, so that the larger output

variable, , can be chosen to generate the larger processing noise variance, , according to

Eq. (25). The estimator has the capability of reducing the effect of noise, so that the smaller output

variable, , can be chosen to generate the smaller processing noise variance, , when the

unknown system input is steady. Fig. 5 shows that the smaller weighting factor can be chosen in the

fuzzy recursive least square method when the unknown system input is larger.  gets larger as

 gets smaller according to Eq. (22).  gets larger as the forgetting effect becomes more

conspicuous to adapt the fast input state change according to Eq. (23). It should be noted that the

faster the forgetting effect is, the lower the smoothing effect will be, that is, it introduces oscillation.

The fuzzy weighting factor  is employed as the trade-off between the upgrade of tracking

capability and the loss of estimation precision.

The estimates of  using the fuzzy weighting function, the adaptive weighting function, and

the constant weighting factor, , are plotted in Fig. 6. The estimation results show that the

tracking performance of estimators is not good enough, and they are not suitable in reducing the

effect of the noise. This case has been compared by using presented estimator as shown in Fig. 3. It

shows that if the initial process noise variance increases, it will have greater performance in

tracking and in reducing the effect of measurement noise. This case has been compared by using

different values of initial process noise variance, such as , and  as shown

α k( ) Qw k( )
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γ k( ) Pb k( )

γ k( )

U x t,( )
γ 0.1=

Qw 0( ) 10
2

10
4

10
8, ,= 10

12

Fig. 7 Comparison of the estimation results using different initial modeling errors
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in Fig. 7. It shows that if the initial process noise variance  increases, it will influence the

estimation resolution. A larger initial process noise variance will affect the capability of tracking the

time-varying force inputs. Fig. 8 shows the estimation results of the fuzzy estimator with the initial

process noise variance fixed ( ), and with different measurement error variances

(  and ). The result shows that when R
v
 is small, the transient performance

of the estimator will be better against the noise effect. On the other hand, the fluctuation will

become severer when R
v
 increases. The transient performance of the estimator will be poorer with

more influence caused by the noise. The smaller R
v
 indicates that the measurement is more precise.

The effort made to obtain a more precise measurement will be higher.

5. Conclusions

This paper proposes the fuzzy Kalman filter technology combined with the fuzzy weighted

recursive least square method to develop the fuzzy estimator, which can estimate the active loads of

the structure system over time by analyzing the active reaction of the system. The assumption of the

inaccurate initial process noise variance and the measurement noise are considered, that is to say,

the larger random variable will be added into the statistic model of the system state characteristics

Qw 0( )

Qw 0( ) 10
8

=

Rv 10
4–

10
6–

10
8–, ,= 10

10–

Fig. 8 Comparison of the estimation results using different measurement errors 
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in the estimation process. The fuzzy estimator has the properties of fast tracking and effective noise

reduction, since it is accelerated and weighted by the fuzzy accelerating factor  of the

processing noise covariance matrix and the weighting factor  of the method proposed based on

the fuzzy logic inference system. The simulation results are compared by alternating between the

fuzzy weighting, adaptive and constant factors. The results demonstrate that this method has the

properties of faster convergence in the initial response, better target tracking capability, and more

effective noise and measurement bias reduction. 
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