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Abstract. The Integrated Force Method (IFM) is a novel matrix formulation developed for analyzing
the civil, mechanical and aerospace engineering structures. In this method all independent/internal forces
are treated as unknown variables which are calculated by simultaneously imposing equations of
equilibrium and compatibility conditions. This paper presents a new 12-node serendipity quadrilateral plate
bending element MQP12 for the analysis of thin and thick plate problems using IFM. The Mindlin-
Reissner plate theory has been employed in the formulation which accounts the effect of shear
deformation. The performance of this new element with respect to accuracy and convergence is studied by
analyzing many standard benchmark plate bending problems. The results of the new element MQP12 are
compared with those of displacement-based 12-node plate bending elements available in the literature. The
results are also compared with exact solutions. The new element MQP12 is free from shear locking and
performs excellent for both thin and moderately thick plate bending situations. 

Keywords: displacement fields; stress-resultant fields; Mindlin-Reissner plate theory; Integrated Force
Method. 

1. Introduction

The Mindlin-Reissner theory based plate bending elements consider C0 continuity and avoid C1

continuity which is rather difficult to adopt for higher order finite elements. Quite a good number of

8-node and lower order quadrilateral plate bending elements are available in the literature. Few of

them are (Choi and Park 1999, Choi et al. 2002, Kim and Choi 2005, Kanber and Bozkurt 2006,
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Ozgan and Daloglu 2007, Pian 1964, Tong 1970, Lee et al. 1982, Pian et al. 1982, Chen and

Cheung 1987, Dimitris et al. 1984, Dar lmaz 2005, Dar lmaz and Kumbasar 2006, Spilker 1982,

Dhananjaya et al. 2007, 2009). Though considerable amount of research work has been carried out

over the past few decades by research engineers and scientists on the Mindlin-Reissner theory based

plate bending elements, a very few higher order (12 node and above) quadrilateral plate bending

elements have been developed in displacement-based finite element method and it is almost void in

hybrid or mixed finite element method. Higher order (12 node and above) quadrilateral plate

bending elements give results with good accuracy even for the coarse mesh size of the order 3×3

and also generally avoids shear locking problem. In this paper IFM has been used to develop the

Mindlin-Reissner theory based 12-node quadrilateral plate bending element which considers C0

continuity and effect of shear deformation.

A new novel matrix formulation of the classical force method of analysis termed “Integrated

Force Method (IFM)” has been developed (Patnaik 1973) for analyzing civil, mechanical and

aerospace engineering structures. In this method, all independent/internal forces are treated as

unknown variables which are computed by simultaneously imposing equations of equilibrium and

compatibility conditions. Unlike classical force method of analysis, the IFM is independent of

redundants and the basic determinate structure. It requires explicit generation of compatibility

conditions for skeletal as well as continuum structures. The advantages of IFM compare to

displacement-based finite element method are reported in the reference (Patnaik et al. 1991). 

The applications of IFM on various areas of structural engineering field are briefly summarized in

reference (Dhananjaya et al. 2007): Generation of compatibility conditions for elasticity and discrete

models have been reported by Patnaik et al. (2000). Nagabhushanam and Patnaik (1990) have

developed a general purpose program to generate compatibility matrix for the IFM. Automatic

generation of sparse and banded compatibility matrix for the Integrated Force Method has been

reported by Nagabhushanam and Srinivas (1991). IFM has been successfully implemented for

analyzing, plane stress problems (Nagabhushanam and Srinivas 1991), two/three dimensional

problems (Kaljevic et al. 1996a, b), dynamics (Patnaik and Yadagiri 1976), optimization (Patnaik et

al. 1986) and non-linear problems (Krishnam Raju and Nagabhushanam 2000). A 4-node

rectangular plate bending element based on the Kirchhoff theory has been formulated using the IFM

(Patnaik et al. 1991). The element considers a transverse displacement and two rotations as degrees

of freedom at each node. The performance of this element was compared with those obtained by

force method (Przemieniecki 1968, Robinson 1973). Dhananjaya et al. (2007), developed a 4-node

bilinear plate bending element based on the Mindlin-Reissner theory using IFM. The results of this

element were compared with those of similar displacement- based 4-node quadrilateral plate

bending elements available literature. Dhananjaya et al. (2009), proposed a new 8-node quadrilateral

plate bending element for the analysis of thin and moderately thick plates using IFM and compared

the results with those obtained from similar displacement based quadrilateral plate bending finite

elements.

In this paper, a new 12-node serendipity quadrilateral plate bending element MQP12 has been

presented by assuming suitable stress-resultants and displacement fields for analysis of thin and

moderately thick plate bending problems using Integrated Force Method. Mindlin-Reissner theory

has been employed in the formulation which accounts the effect of shear deformation. The shear

correction factor as suggested by Reissner (1945) has been considered in the formulation. Many

standard plate bending benchmark problems are analyzed to test the accuracy and convergence of

the element presented. The results obtained by this element are compared with those of similar

i i
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displacement-based 12-node quadrilateral plate bending elements available in the literature.

Results are also compared with the exact solutions. Numerical results indicate that proposed

element MQP12 is free from spurious/zero energy modes and shear locking problem. The

proposed element MQP12 has produced, in general, excellent results in the numerical problems

considered. 

2. Formulation of element equilibrium and flexibility matrices 

In this section brief formulation on the development of equilibrium and flexibility matrices of

plate bending element is described. The Mindlin-Reissner theory has been employed in the

formulation. In the Mindlin-Reissner theory, a line that is straight and normal to mid-surface of the

un-deformed plate remain straight but not necessarily normal to the mid-surface of the deformed

plate. This leads to the following definition of the displacement components u, v, w in the x, y, z

Cartesian coordinates system

 (1)

where

x, y are coordinates in the reference mid-surface

z is the coordinate through the thickness of the plate t with −t/2 ≤ z ≤ t/2

w is the transverse (lateral) displacement

θx, θy represent the rotations of the normal in x-z and y-z planes respectively

Engineering strains for the Mindlin-Reissner plate theory can be written as

 

(2)

The stress-strain relations for an isotropic two-dimensional plate material is given by

(3)
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  = constitutive matrix = 

  E = Young’s modulus 

  ν = Poisson’s ratio

The stress-resultants for plates can be written as

  (4)

Eqs. (2), (3) and (4) yield the moment-curvature relations as

  (5)

Where {M} = vector of stress-resultants

   = 

[C1] = matrix relating stress-resultants to curvatures

{k} = vector of curvatures

     = 

From the Eq. (5), the curvature-moment relations can be written as

   (6)

where 

            = matrix relating curvatures to stress-resultants 
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 (7)

where 

The strain energy Up of the elastic plate in bending and shear is written as 

(8)

The vectors {M} and {k} for a discrete plate bending element can be expressed in matrix

notations in terms of assumed stress-resultants and displacement fields respectively as

   (9)

(10)

where

[ψ]  = matrix of polynomial terms for stress-resultant fields

{Fe} = vector of force components of the discrete element

[φ1] = matrix of polynomial terms for displacement fields

[φ] = [φ1][A]−1

[A] = matrix formed by substituting the coordinates of the element nodes into the polynomial of

displacement fields

{α} = coefficients of the displacement field polynomial

{Xe} = vector of displacements of the discrete element

[Dop] = differential operator matrix 

Substituting Eqs. (9) and (10) into the Eq. (8), the strain energy for the discrete element can be

H[ ] 1

D1

------

1  ν– 0 0 0

ν–   1 0 0 0

0  0 2 1 ν+( ) 0 0

0  0 0
t
2

1 ν+( )
5

-------------------- 0

0  0 0 0
t
2

1 ν+( )
5

--------------------

=

D1 Et
3
/12=

Up

1

2
--- Mx

∂θx

∂x
-------- My

∂θy

∂y
-------- Mxy

∂θx

∂y
--------

∂θy

∂x
--------+⎝ ⎠

⎛ ⎞ Qy θy

∂w

∂y
-------–⎝ ⎠

⎛ ⎞ Qx θx

∂w

∂x
-------–⎝ ⎠

⎛ ⎞+ + + + x ydd∫∫=

M{ } ψ[ ] Fe{ }=

k{ } Dop[ ] φ1[ ] α{ } Dop[ ] φ[ ] Xe{ }= =

 

0
∂
∂x
-----  0

0 0  
∂
∂y
-----

0
∂
∂y
-----  

∂
∂x
-----

∂
∂y
-----  – 0  1

∂
∂x
-----  – 1  0

=



630 H.R. Dhananjaya, J. Nagabhushanam, P.C. Pandey and Mohd. Zamin Jumaat

expressed as

(11)

where [Be] represents the element equilibrium matrix and is given by

(12)

The complementary strain energy for the elastic plate in bending and shear is expressed as

 

 

Using the Eq. (7), the complementary strain energy for the discrete element is written as

(13)

where [Ge] represents the element flexibility matrix and is given by

 (14)

The Eqs. (12) and (14) are used to obtain element equilibrium matrix [Be] and element flexibility

matrix [Ge] respectively. These element matrices [Be] and [Ge] of all elements are assembled to

obtain the global equilibrium matrix [B] and global flexibility matrix [G] of the structure and they

are used to setup the IFM governing equation to analyze the plate problems by IFM.

Displacement and stress resultant fields for MQP12

The typical 12-node quadrilateral plate bending element is shown in the Fig. 1. Three degrees of

freedom namely a transverse displacement w and two rotations θx, θy are considered at each node of

this element. 

The assumed polynomials for displacement fields in Integrated Force Method should satisfy the
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Fig. 1 A typical 12-node quadrilateral plate bending element
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convergence requirements. Assumed displacement fields for w, θx and θy in terms of generalized

displacement parameters  are given in the Eq. (15) for this proposed 12-node

quadrilateral element. 

 (15)

Shape functions (Ni) in terms of natural coordinate system (ξ and η) for 12 node element using

displacement fields as given in the Eq. (15) can be written as:

For the corner nodes (i =1, 2, 3, 4) : Ni = 1/32 (1+ ξ ξi)(1 + η ηi)[9(ξ2 + η2) – 10]

where ξi = −1, 1, 1, −1 for i = 1, 2, 3, 4

  ηi = −1, −1, 1, 1 for i = 1, 2, 3, 4

For the nodes i = 7, 8, 11, 12 : Ni = 9/32 (1 + ξ ξi)(1 + η ηi) (1 − η2), with ξi = ±1, ηi = ±1/3

For the nodes I = 5, 6, 9, 10 : Ni = 9/32 (1 + η ηi) (1 + ξ ξi) (1 − ξ 2), with ηi = ±1, ξi = ±1/3

In the Integrated Force Method, the assumed stress-resultant fields must satisfy the equilibrium

equations. Eq. (16) shows the assumed stress-resultant fields for this proposed 12-node quadrilateral

plate bending element. in terms of polynomials with independent generalized force parameters

. The stress-resultant fields for the shear forces Qy and Qx are obtained by

considering plate equilibrium equations of the element. 

 

(16)

The equilibrium and flexibility matrices of the element MQP12 are obtained by substituting

Eqs. (15) and (16) into the Eqs. (12) and (14). 

3. Numerical results and discussions

A square plate with simply supported/clamped boundary conditions, cantilever strip plate

subjected to a point load/uniform load over the entire plate, the Morley’s plate problem and the

Razzaque’s plate problem are considered. These problems are analyzed for deflections and moments

considering various meshes using the proposed 12-node quadrileral plate bending element MQP12

via IFM. The performance of the proposed element MQP12 is examined with respect to accuracy
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and convergence comparing results with the exact solutions (Timoshenko1959, Liu et al. 2000). The

results of MQP12 are also compared with those of a few existing 12-node displacement-based

quadrilateral plate bending elements available in the reference (Spilker 1980) and in the commercial

software (NISA, Version 9.3). The details of the example problems considered are given below.

1. A square thin plate (t/L = 0.01) with simply supported/clamped boundary conditions subjected

to uniform load/central point load. The parameters of the problem are : size of the plate = 10 ×

10, t = 0.1, E = 107, ν = 0.3, q = 10 and P = 100 (Spilker 1980)

2. A square moderately thick plate (t/L = 0.1) with simply supported boundary conditions

subjected to uniform load. The parameters of the problem are : size of the plate = 10 × 10,

t = 1, E = 107, ν = 0.3 and q = 10 (Spilker 1980)

3. A long cantilever beam (strip plate Fig. 2) subjected to point load at the tip or uniform load

over the entire plate. The parameters of the problem are: L = 1000, B = 30, t = 5, E = 2 × 105,

ν = 0.0, P = 25 and q = 0.01. Here the Poisson’s ratio is considered as zero to compare the

results with the beam solution.

4. The Morley’s plate problem (Fig. 3). Parameters of the problems are: L = 100, B = 100, t = 1,

E = 1092000.0, ν = 0.3 and q = 1, inclination of the plate θ = 30o, w = 0 on all boundaries

(Morley 1963)

5. The Razzaque’s plate problem (Fig. 4). Parameters of the problems are: L = 100, B = 100, t = 1,

E = 1092000.0, ν = 0.3 and q = 1, inclination of the plate θ = 60o (Razzaque 1973)

Fig. 2 Cantilever plate (strip plate): L = 1000, B = 30, t = 5, E = 2 × 105, ν = 0.0, P = 25, q = 0.01

Fig. 3 Morley’s plate: L = 100, B = 100, t = 1, E = 1092000.0, ν = 0.3 and q = 1, inclination of the plate θ =
30o, w = 0 on all sides of the plate
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Due to symmetry of the plate, loading and boundary conditions in the example problems 1 and 2,

one quadrant of the plate is analyzed for central deflections and moments. The typical mesh (2×2)

in one quadrant of the plate is as shown in the Fig. 5.

Displacements and moments are computed using the proposed element MQP12 via IFM for the

above example problems. Computed results are compared with those obtained by displacement-

based 12-node quadrilateral plate bending elements CH1 and CSDR available in the reference

(Spilker 1980) for the example problems 1 and 2. For example problems 3, the computed results

using MQP12 are compared with the results obtained from 12-node quadrilateral plate bending

element available in the commercial software (NISA, version 9.3).

Exact displacements and moments for the plates with various boundary conditions and loadings

are obtained from the reference (Timoshenko 1959) for the example problems 1. The formulae

given in the reference (Liu et al. 2000) are used to obtain exact displacements and moments for the

Fig. 5 A typical (2×2) mesh in one one quadrant of the plate 

Fig. 4 Razzaque’s plate: L = 100, B = 100, t = 1, E = 1092000.0, ν = 0.3 and q = 1, inclination of the plate
θ = 60o (Two opposite edges simply supported while other two free)
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Table 2 Normalized central moment for a simply supported square thin plate with uniform load

M
c 
(t/L = 0.01, Example Problem 1)

 Elements CH1 CSDR MQP12

 1×1 0.580 1.620 0.740

 2×2 0.985 1.025 0.990

 3×3 0.999 1.010 0.999

Table 1 Normalized central deflection for a simply supported square thin plate with uniform load

W
c 
(t/L = 0.01, Example Problem 1)

 Elements CH1 CSDR MQP12

 1×1 0.935 0.750 0.935

 2×2 0.997 0.975 0.997

 3×3 0.999 0.985 0.999

example problems 2. The beam solution is used to obtain exact displacements and moments for

example problems 3. Central displacements and moments obtained for example problems 1 and 2

are normalized respectively with respect to exact solutions of thin and moderately thick plate

bending theories.

The normalized central deflections and moments for various mesh sizes of simply supported

square thin plate (t/L = 0.01) with uniform load are summarized in Tables 1 and 2 respectively and

corresponding convergence trends are shown in Figs. 6 and 7 respectively. Table 1 shows that the

central deflections estimated by the proposed element MQP12 is extremely close to the exact

solution (percentage of error = 0.09) for the grid size (3×3). It also shows that the central deflections

of MQP12 and CH1 are almost close to each other and are superior to the element CSDR. Table 2

Fig. 6 Normalized central deflection for a simply
supported square thin plate with uniform load 

Fig. 7 Normalized central moment for a simply
supported square thin plate with uniform load 
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shows that central moments estimated by MQP12 along with those obtained with elements CH1 and

CSDR. The results of MQP12 and CH1 are almost same each other for the grid size (3×3) and are

superior to those of element CSDR. The percentage of error of the element MQP12 for the grid size

(3×3) is 0.1 with respect to the exact solution. Central deflections for the case of clamped thin plate

(t/L = 0.01) with uniform load are shown in the Table 3. Fig. 8 shows the corresponding converging

trends. It is observed that estimations of central deflections by the element MQP12 are better than

those with elements CH1 and CSDR. The MQP12 has estimated the central deflection equal to the

exact value for the grid size (3×3). 

Table 4 presents central deflections for simply supported square thin plate (t/L = 0.01) subjected

to the central point load and the corresponding converging trends are shown in the Fig. 9. It shows

that elements MQP12 and CH1 have estimated almost identical deflections for all grid sizes and

Fig. 8 Normalized central deflection for a clamped square thin plate with uniform load 

Table 4 Normalized central deflection for a simply supported square thin plate with point load

W
c 
(t/L = 0.01, Example Problem 1)

 Elements CH1 CSDR MQP12

 1×1 0.925 0.820 0.925 

 2×2 0.990 0.940 0.990

 3×3 0.996 0.982 0.996

Table 3 Normalized central deflection for a clamped square thin plate with uniform load

W
c (t/L = 0.01, Example Problem 1)

 Elements CH1 CSDR MQP12

 1×1 0.960 0.300 0.975

 2×2 0.970 0.650 0.980

 3×3 0.980 0.920 1.000
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these deflections are superior to those of the element CSDR. The percentage of deflection error of

the element MQP12 for the grid size (3×3) is 0.0047 with respect to the exact solution. 

Normalized central deflections of the clamped square thin plate (t/L = 0.01) subjected to the

central point load are summarized in the Table 5. Fig. 10 presents the corresponding converging

Table 5 Normalized central deflection for a clamped square thin plate with central point load

W
c (t/L = 0.01, Example Problem 1)

 Elements CH1 CSDR MQP12

 1×1 0.960 0.200 0.970

 2×2 0.970 0.670 0.980

 3×3 0.990 0.920 0.999

Fig. 10 Normalized central deflection for a clamped square thin plate with central point load 

Fig. 9 Normalized central deflection for a simply supported square thin plate with point load
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trends. It shows that the predicted central deflection by the element MQP12 are superior to those

obtained by elements CH1 and CSDR. The percentage of deflection error of the MQP12 for the

grid size (3×3) is 0.0023 with respect to the exact solution. 

Concerning the studies on moderately thick plates, Figs. 11 and 12 present the converging trends

of central deflections and moments respectively for a simply supported square moderately thick

plate (t/L = 0.1) with uniform load and their numeric values are summarized in Tables 6 and 7.

Central deflections estimated by the elements MQP12 and CH1 are almost identical and are

superior to those of the element CSDR. The central deflection estimated by MQP12 for the grid size

(3×3) is reached to the exact solution. The predicted normalized central moments of the element

Fig. 11 Normalized central deflection for a simply
supported moderately thick square thin plate
with uniform load

Fig. 12 Normalized central moment for a simply
supported moderately thick square plate with
uniform load 

 

Table 6 Normalized central deflection for a simply supported moderately thick square thin plate with uniform
load 

W
c (t/L = 0.1, Example Problem 2)

 Elements CH1 CSDR MQP12

 1×1 0.940 0.900  0.940

 2×2 0.999 0.999 0.999

 3×3 1.000 1.000 1.000

Table 7 Normalized central moment for a simply supported moderately thick square plate with uniform load

W
c (t/L = 0.1, Example Problem 2)

 Elements CH1 CSDR MQP12

 1×1 0.760 1.090 0.840

 2×2 0.985 1.010 0.994

 3×3 0.990 1.001 0.999
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MQP12 are better than those of elements CH1 and CSDR for all grid sizes. The percentage error in

estimated central moment of the proposed element MQP12 for the grid size (3×3) is 0.104.

The variations of the moments along the central line of the simply supported thin (t/L = 0.01) and

moderately thick (t/L = 0.1) plates with uniform load (the example problems 1 and 2) are estimated

by the proposed element MQP12 for the mesh size (3×3). These values are summarized in the Table 8

along with exact values. It can be seen in the Table 8 that the estimated values are much closer to

the exact values at all the points. These moment values of both thin (t/L = 0.01) and moderately

thick (t/L = 0.1) plates are plotted in the Fig. 13. 

The cantilever beam (strip plate, example problem 3) subjected point load at tip/uniform load over

the entire plate is analyzed for moments and deflections considering various mesh sizes (1×1, 2×1,

Table 8 Variation of moment M
x
 along central line of the simply supported square thin/thick plate with

uniform load for grid size (3×3)

 
M (t/L = 0.01, 0.1 Example Problem 1 and 2)

Length of the plate Moment in thick plate Moment in thin plate Exact Values 

 0.0 (L = 0) 0.142 0.148 0.0

 0.5556 12.75 12.75 12.69

 1.1111 22.72 22.72 22.73

 1.6667 30.63 30.63 30.55

 2.2222 36.45 36.45 36.51 

 2.7778 40.96 40.97 40.95

 3.3333 44.07 44.07 44.14

 3.8889 46.48 46.28 46.27

 4.4444 47.51 47.51 47.49

 5.0(L/2) 47.79 47.78 47.89

Fig. 13 Variation of moment M
x
 along central line of the simply supported square thin/moderately thick plate

with uniform load for grid size (3×3)
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4×1, 8×1, 16×1 and 32×1) using the proposed element MQP12 via Integrated Force Method. To

compare results with the beam solution, the Poisson's ratio is considered as zero in this example

problem. Deflections at the free edge and moments at the clamped edge are estimated by the

proposed element MQP12. These values of deflections and moments are compared with those

computed using 12-node quadrilateral plate bending element (NISA12) available in the commercial

software NISA (displacement-based FEM package). It is interesting to note that both the elements

MQP12 and NISA12 have produced identical results in all the cases and for all grid sizes, and they

are equal to the exact beam solutions. For tip load exact values of tip deflection and moment at the

clamped edge are 133.33 and 833.33 respectively. Similarly for uniform load over the entire plate,

exact values of tip deflection and moment at the clamped edge are 600.00 and 5000.00 respectively.

The Morley’s plate (Example problem 4) and the Razzaque’s plate (Example problem 5) are

analyzed for central deflections considering various mesh sizes using the proposed element MQP12

via the Integrated Force Method. Central deflections of the Morley’s plate and the Razzaque’s plate

are plotted in the Figs. 14 and 15 respectively along with the exact values. These Figs show that the

estimated central deflections using the proposed element MQP12 are fast converging to the exact

solutions. 

The simply supported square plate with various thickness-span ratio (very thin: t/L = 0.00001,

0.0001, thin t/L = 0.001, 0.01 and moderately thick t/L = 0.1) subjected to uniform load is analyzed

using the proposed element MQP12 for the grid size 3×3 in one quadrant of the plate to estimate

the central deflections and moments. The parameters of the problem considered are: L = 50, B = 50,

t = 5, 0.5, 0.05, 0.005, 0.0005, E = 200000, ν = 0.3, q = 1. The exact central displacements and

moments are calculated from the Kirchhoff theory (Timoshenko and Krieger 1959) and Mindlin

theory (Liu et al. 2000) solutions for thin and moderately thick plate bending problems respectively.

The results are shown in the Figs. 16 and 17. These Figures indicate that the proposed element

MQP12 performs quite well for both thin and moderately thick plate bending problems.

In all the above example problems, the proposed new quadrilateral plate bending element MOP12

has consistently, in general, produced excellent results for both thin and moderately thick plate

bending problems.

Fig. 14 Central deflection for Morley’s plate with
uniform load (Example problem 4)

Fig. 15 Central deflection for Razzaque’s plate with
uniform load (Example Problem 5)
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4. Conclusions

New 12-node serendipity quadrilateral plate bending element (MQP12) based on the Mindlin-

Reissner theory is presented for the analysis of thin and moderately thick plate bending problems

using Integrated Force Method. Three degrees of freedom namely a transverse displacement w and

two rotations θx, θy are considered at each node of element. The proposed element MQP12 is free

from zero/spurious energy modes. Further the proposed element MQP12 is free from shear locking.

The studies in all the example problems considered here, show that the proposed element MQP12

performs equally well for both thin and moderately thick plate bending situations and produced

excellent results. Therefore the proposed lement MQP12 can be used to anaylze both thin and

moderately thick plate bending problems. Also this proposed new quadrilateral plate bending

element (MQP12) becomes an alternative element to analyze thin and thick plate bending problems

compare to displacement based 12-node plate bending elements available in the literature. 
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