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Abstract. The Integrated Force Method (IFM) is a novel matrix formulation developed for analyzing
the civil, mechanical and aerospace engineering structures. In this method all independent/internal forces
are treated as unknown variables which are calculated by simultaneously imposing equations of
equilibrium and compatibility conditions. This paper presents a new 12-node serendipity quadrilateral plate
bending element MQP12 for the analysis of thin and thick plate problems using IFM. The Mindlin-
Reissner plate theory has been employed in the formulation which accounts the effect of shear
deformation. The performance of this new element with respect to accuracy and convergence is studied by
analyzing many standard benchmark plate bending problems. The results of the new element MQP12 are
compared with those of displacement-based 12-node plate bending elements available in the literature. The
results are also compared with exact solutions. The new element MQP12 is free from shear locking and
performs excellent for both thin and moderately thick plate bending situations.

Keywords: displacement fields; stress-resultant fields; Mindlin-Reissner plate theory; Integrated Force
Method.

1. Introduction

The Mindlin-Reissner theory based plate bending elements consider C, continuity and avoid C;
continuity which is rather difficult to adopt for higher order finite elements. Quite a good number of
8-node and lower order quadrilateral plate bending elements are available in the literature. Few of
them are (Choi and Park 1999, Choi et al. 2002, Kim and Choi 2005, Kanber and Bozkurt 2006,
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Ozgan and Daloglu 2007, Pian 1964, Tong 1970, Lee et al 1982, Pian et al. 1982, Chen and
Cheung 1987, Dimitris et al. 1984, Darilmaz 2005, Darilmaz and Kumbasar 2006, Spilker 1982,
Dhananjaya et al. 2007, 2009). Though considerable amount of research work has been carried out
over the past few decades by research engineers and scientists on the Mindlin-Reissner theory based
plate bending elements, a very few higher order (12 node and above) quadrilateral plate bending
elements have been developed in displacement-based finite element method and it is almost void in
hybrid or mixed finite element method. Higher order (12 node and above) quadrilateral plate
bending elements give results with good accuracy even for the coarse mesh size of the order 3x3
and also generally avoids shear locking problem. In this paper IFM has been used to develop the
Mindlin-Reissner theory based 12-node quadrilateral plate bending element which considers C
continuity and effect of shear deformation.

A new novel matrix formulation of the classical force method of analysis termed “Integrated
Force Method (IFM)” has been developed (Patnaik 1973) for analyzing civil, mechanical and
aerospace engineering structures. In this method, all independent/internal forces are treated as
unknown variables which are computed by simultaneously imposing equations of equilibrium and
compatibility conditions. Unlike classical force method of analysis, the IFM is independent of
redundants and the basic determinate structure. It requires explicit generation of compatibility
conditions for skeletal as well as continuum structures. The advantages of IFM compare to
displacement-based finite element method are reported in the reference (Patnaik ef al. 1991).

The applications of IFM on various areas of structural engineering field are briefly summarized in
reference (Dhananjaya et al. 2007): Generation of compatibility conditions for elasticity and discrete
models have been reported by Patnaik er al. (2000). Nagabhushanam and Patnaik (1990) have
developed a general purpose program to generate compatibility matrix for the IFM. Automatic
generation of sparse and banded compatibility matrix for the Integrated Force Method has been
reported by Nagabhushanam and Srinivas (1991). IFM has been successfully implemented for
analyzing, plane stress problems (Nagabhushanam and Srinivas 1991), two/three dimensional
problems (Kaljevic et al. 1996a, b), dynamics (Patnaik and Yadagiri 1976), optimization (Patnaik et
al. 1986) and non-linear problems (Krishnam Raju and Nagabhushanam 2000). A 4-node
rectangular plate bending element based on the Kirchhoff theory has been formulated using the IFM
(Patnaik et al. 1991). The element considers a transverse displacement and two rotations as degrees
of freedom at each node. The performance of this element was compared with those obtained by
force method (Przemieniecki 1968, Robinson 1973). Dhananjaya et al. (2007), developed a 4-node
bilinear plate bending element based on the Mindlin-Reissner theory using IFM. The results of this
element were compared with those of similar displacement- based 4-node quadrilateral plate
bending elements available literature. Dhananjaya et al. (2009), proposed a new 8-node quadrilateral
plate bending element for the analysis of thin and moderately thick plates using IFM and compared
the results with those obtained from similar displacement based quadrilateral plate bending finite
elements.

In this paper, a new 12-node serendipity quadrilateral plate bending element MQP12 has been
presented by assuming suitable stress-resultants and displacement fields for analysis of thin and
moderately thick plate bending problems using Integrated Force Method. Mindlin-Reissner theory
has been employed in the formulation which accounts the effect of shear deformation. The shear
correction factor as suggested by Reissner (1945) has been considered in the formulation. Many
standard plate bending benchmark problems are analyzed to test the accuracy and convergence of
the element presented. The results obtained by this element are compared with those of similar
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displacement-based 12-node quadrilateral plate bending elements available in the literature.
Results are also compared with the exact solutions. Numerical results indicate that proposed
element MQP12 is free from spurious/zero energy modes and shear locking problem. The
proposed element MQP12 has produced, in general, excellent results in the numerical problems
considered.

2. Formulation of element equilibrium and flexibility matrices

In this section brief formulation on the development of equilibrium and flexibility matrices of
plate bending element is described. The Mindlin-Reissner theory has been employed in the
formulation. In the Mindlin-Reissner theory, a line that is straight and normal to mid-surface of the
un-deformed plate remain straight but not necessarily normal to the mid-surface of the deformed
plate. This leads to the following definition of the displacement components u, v, w in the x, y, z
Cartesian coordinates system

u=-z0,(xy); v=-z6,(x,y); w=w(x,y) (1)

where
x, y are coordinates in the reference mid-surface
z is the coordinate through the thickness of the plate # with —#/2 < z < #/2
w is the transverse (lateral) displacement
6., 6, represent the rotations of the normal in x-z and y-z planes respectively

Engineering strains for the Mindlin-Reissner plate theory can be written as
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The stress-strain relations for an isotropic two-dimensional plate material is given by

(o} = [Cunliel G3)

T
where {o} = [0, 0, 7, 7, 7,,] = vector of stress components

_ T _ )
{e} =1le & %y % 7] = vector of strain components



628 H.R. Dhananjaya, J. Nagabhushanam, P.C. Pandey and Mohd. Zamin Jumaat

[C.,.] = constitutive matrix =

COVI]

(1-1)

E = Young’s modulus
v = Poisson’s ratio

The stress-resultants for plates can be written as

M, = zodz
112
12

M, = zo,dz

2
Qx - J.—I/Z szdZ

Egs. (2), (3) and (4) yield the moment-curvature relations as
{M} = [C]{k}

Where {M} = vector of stress—resulta;lts
= [Mx My Mxy Qy Qx]
[C1] = matrix relating stress-resultants to curvatures
{k} = vector of curvatures
T
[0 00,20.,90 5 o o 0w
ox oy Oy ox 7 Oy Ox

From the Eq. (5), the curvature-moment relations can be written as
k=[O (M) = [H){M}

where [H] = [C,]
= matrix relating curvatures to stress-resultants

“

®)

(6)

The matrix [H] for the Mindlin-Reissner plate with Reissner’s shear correction factor (Reissner

1945) of 5/6 can be written as
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where D, = Ef/12

The strain energy U, of the elastic plate in bending and shear is written as

17,, 006 06, (80 80) ( aw) ( aw)

U, = [[z| M\,(=—+M—=+M, =+ —=1+0,| 6,—=— |+ O,| 6.— | |dxd 8

P II2|: xax yay Xy ay Ox Qy y ay Qx X Ox :| xay ( )

The vectors {M} and {k} for a discrete plate bending element can be expressed in matrix
notations in terms of assumed stress-resultants and displacement fields respectively as

{M} = [VI{F.} ©
{k} = Dyl ]{a) = [Dypl[#H{X.} (10)

where
[w] = matrix of polynomial terms for stress-resultant fields
{F,} = vector of force components of the discrete element
[#1] = matrix of polynomial terms for displacement fields
[ = [#1A]"
[4A] = matrix formed by substituting the coordinates of the element nodes into the polynomial of
displacement fields
{a} = coefficients of the displacement field polynomial
{X.} = vector of displacements of the discrete element

o 2 o
ox
0o 0o 2
y
[D,,] = differential operator matrix = | ( 9 9
oy Ox
9 0 1
oy
_9 1 0
- ax -

Substituting Egs. (9) and (10) into the Eq. (8), the strain energy for the discrete element can be
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expressed as

U, = 310 BE (1)

where [B,] represents the element equilibrium matrix and is given by

= [[ig] wldxdy (12)

The complementary strain energy for the elastic plate in bending and shear is expressed as

U = j [MZ+M ~2 VMM, +2(1+ VM ta(lJrV)Jert(lJrV)}dxdy
Using the Eq. (7), the complementary strain energy for the discrete element is written as
1
U, = 3P} IGI{F.} (13)
where [G,] represents the element flexibility matrix and is given by
[G.] = [[1w1 TH yldixdy (14)
The Egs. (12) and (14) are used to obtain element equilibrium matrix [B,] and element flexibility
matrix [G,] respectively. These element matrices [B.] and [G.] of all elements are assembled to
obtain the global equilibrium matrix [B] and global flexibility matrix [G] of the structure and they
are used to setup the [FM governing equation to analyze the plate problems by IFM.

Displacement and stress resultant fields for MQP12

The typical 12-node quadrilateral plate bending element is shown in the Fig. 1. Three degrees of
freedom namely a transverse displacement w and two rotations &, &, are considered at each node of
this element.

The assumed polynomials for displacement fields in Integrated Force Method should satisfy the

10

11

_—’X

Fig. 1 A typical 12-node quadrilateral plate bending element
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convergence requirements. Assumed displacement fields for w, 6. and 6, in terms of generalized
displacement parameters «; @, ... a3 are given in the Eq. (15) for this proposed 12-node
quadrilateral element.

2 2 3 2 2 3 3 3
W=t Xt oyt o) T asxy T gy T ogX T OogX YT AoXy T gy T o X Yt appxy
2 2 3 2 2 3 3 3
0, = a3t aux+ ogsy+ X+ apxyt gy apeX F ogx vt g Xy + o)+ oy x Tyt apxy
_ 2 2 3 2 2 3 3 3
gy = s T eX T QY T QogX + QXY+ 30y + 031X + 03X Y+ a33XY + a3y + 35Xy + QXY
(15)

Shape functions (#;) in terms of natural coordinate system (£ and 7) for 12 node element using
displacement fields as given in the Eq. (15) can be written as:
For the corner nodes (i =1, 2, 3, 4) : N; = 1/32 (1+ £ &)1 + n n)[9(E + 17) — 10]
where &=-1,1,1,-1fori=1,2,3,4
n=-1,-1,1,1fori=1,2,3,4
For the nodes i =7, 8, 11, 12 : N;=9/32 (1 + £ &)1 + 1 i) (1 = 1), with & = £1, 7, = £1/3
For the nodes /=5,6,9,10 : N;=9/32 (1 + 1) (1 + £ &) (1 = £?), with i, = =1, & =+1/3

In the Integrated Force Method, the assumed stress-resultant fields must satisfy the equilibrium
equations. Eq. (16) shows the assumed stress-resultant fields for this proposed 12-node quadrilateral
plate bending element. in terms of polynomials with independent generalized force parameters
F, F, ... Fy;. The stress-resultant fields for the shear forces O, and O, are obtained by
considering plate equilibrium equations of the element.

M, = F +Fyx+Fy+Fx +Fxy+Fy +Fx + Fex y+ Foxy” + F gy + Fy Xy + F,x)°
My = F i3+ F X+ Fy+F X + Flxy+ Fiy” + FioX) + FoX y+ Fy xy" + Fppy’ + FosxX y + Fouxy’
2 2 2 2 3 2.2
M., = Fos+ FoX + Fygy + Fogx™ + FogXxy + F0y” + Fy Xy + Fypxy™ + Fay” + Fyx'y
2 2
Qy = (Fis+Fag) T (F17 T 2F0)x + (2F g+ Fog)y + FooX™ +2(Fy + F3)xy + (3F 5 + Fy)y
+ Fopx’ + (3F 5+ 2F33)xy”
2 2
O, = (Fyt o) T (2F 4+ Fao)x + (Fs+2F50)y + (3F; + F3)x™ + 2(Fg + Fyy)xy + Foy
FBFL+2F )y +Fy’ (16)

The equilibrium and flexibility matrices of the element MQP12 are obtained by substituting
Egs. (15) and (16) into the Egs. (12) and (14).

3. Numerical results and discussions

A square plate with simply supported/clamped boundary conditions, cantilever strip plate
subjected to a point load/uniform load over the entire plate, the Morley’s plate problem and the
Razzaque’s plate problem are considered. These problems are analyzed for deflections and moments
considering various meshes using the proposed 12-node quadrileral plate bending element MQP12
via [FM. The performance of the proposed element MQP12 is examined with respect to accuracy
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and convergence comparing results with the exact solutions (Timoshenko1959, Liu et al. 2000). The
results of MQP12 are also compared with those of a few existing 12-node displacement-based
quadrilateral plate bending elements available in the reference (Spilker 1980) and in the commercial
software (NISA, Version 9.3). The details of the example problems considered are given below.

1. A square thin plate (#Z = 0.01) with simply supported/clamped boundary conditions subjected
to uniform load/central point load. The parameters of the problem are : size of the plate = 10 x
10, 1=0.1, E=10", v=10.3, ¢ = 10 and P = 100 (Spilker 1980)

2. A square moderately thick plate (#L = 0.1) with simply supported boundary conditions
subjected to uniform load. The parameters of the problem are : size of the plate = 10 x 10,
t=1,E=10", v=0.3 and ¢ = 10 (Spilker 1980)

3. A long cantilever beam (strip plate Fig. 2) subjected to point load at the tip or uniform load
over the entire plate. The parameters of the problem are: L = 1000, B =30, t =5, E = 2 x 10°,
v=10.0, P =25 and g = 0.01. Here the Poisson’s ratio is considered as zero to compare the
results with the beam solution.

4. The Morley’s plate problem (Fig. 3). Parameters of the problems are: L = 100, B = 100, t = 1,
E =1092000.0, v= 0.3 and ¢ = 1, inclination of the plate & = 30°, w = 0 on all boundaries
(Morley 1963)

5. The Razzaque’s plate problem (Fig. 4). Parameters of the problems are: L =100, B=100, r = 1,
E =1092000.0, v= 0.3 and ¢ = 1, inclination of the plate = 60° (Razzaque 1973)

+
30?\
%

Fig. 2 Cantilever plate (strip plate): L = 1000, B=30,¢=5, E =2 x 10°, v=10.0, P =25, q=0.01

e e — —
— L —

Fig. 3 Morley’s plate: L = 100, B = 100, t = 1, E = 1092000.0, v= 0.3 and g = 1, inclination of the plate &=
30°% w = 0 on all sides of the plate
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Fig. 4 Razzaque’s plate: L = 100, B = 100, £ = 1, £ = 1092000.0, v= 0.3 and g = 1, inclination of the plate
0= 60° (Two opposite edges simply supported while other two free)

b. A typical (2%2) mesh in one quadrant of the plate

Fig. 5 A typical (2x2) mesh in one one quadrant of the plate

Due to symmetry of the plate, loading and boundary conditions in the example problems 1 and 2,
one quadrant of the plate is analyzed for central deflections and moments. The typical mesh (2x2)
in one quadrant of the plate is as shown in the Fig. 5.

Displacements and moments are computed using the proposed element MQP12 via IFM for the
above example problems. Computed results are compared with those obtained by displacement-
based 12-node quadrilateral plate bending elements CH1 and CSDR available in the reference
(Spilker 1980) for the example problems 1 and 2. For example problems 3, the computed results
using MQP12 are compared with the results obtained from 12-node quadrilateral plate bending
element available in the commercial software (NISA, version 9.3).

Exact displacements and moments for the plates with various boundary conditions and loadings
are obtained from the reference (Timoshenko 1959) for the example problems 1. The formulae
given in the reference (Liu ef al. 2000) are used to obtain exact displacements and moments for the



634 H.R. Dhananjaya, J. Nagabhushanam, P.C. Pandey and Mohd. Zamin Jumaat

example problems 2. The beam solution is used to obtain exact displacements and moments for
example problems 3. Central displacements and moments obtained for example problems 1 and 2
are normalized respectively with respect to exact solutions of thin and moderately thick plate
bending theories.

The normalized central deflections and moments for various mesh sizes of simply supported
square thin plate (#/L = 0.01) with uniform load are summarized in Tables 1 and 2 respectively and
corresponding convergence trends are shown in Figs. 6 and 7 respectively. Table 1 shows that the
central deflections estimated by the proposed element MQP12 is extremely close to the exact
solution (percentage of error = 0.09) for the grid size (3x3). It also shows that the central deflections
of MQP12 and CHI1 are almost close to each other and are superior to the element CSDR. Table 2

Table 1 Normalized central deflection for a simply supported square thin plate with uniform load

W.(#/L = 0.01, Example Problem 1)

Elements CH1 CSDR MQP12
1x1 0.935 0.750 0.935
2x2 0.997 0.975 0.997
3%3 0.999 0.985 0.999

Table 2 Normalized central moment for a simply supported square thin plate with uniform load

M, (L = 0.01, Example Problem 1)

Elements CHI1 CSDR MQP12

1x1 0.580 1.620 0.740

2x2 0.985 1.025 0.990

3x3 0.999 1.010 0.999

1.05 1.8 :
—A— CHI
= Wrere
1.6 —©— Exact [}

c
c

=4

©

a
IS

.

)

—A— CHI
—*— CSDR
—&- MRP12
—©— Exact

( Example Problem 1, /L = 0.01)

Normalized central deflection W
b4 o
& ©

Normalized central moment M

o
©

08f (Example Problem 1, tL = 0.01)

=4
0

0.75

. . . . . . .

. . L L . L L .
2 3 4 5 6 7 8 9 4 2 3 4 5 6 7 8 9
No. of elements [N] No. of elements [N]

Fig. 6 Normalized central deflection for a simply  Fig. 7 Normalized central moment for a simply
supported square thin plate with uniform load supported square thin plate with uniform load
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shows that central moments estimated by MQP12 along with those obtained with elements CH1 and
CSDR. The results of MQP12 and CH1 are almost same each other for the grid size (3x3) and are
superior to those of element CSDR. The percentage of error of the element MQP12 for the grid size
(3x3) is 0.1 with respect to the exact solution. Central deflections for the case of clamped thin plate
(#ZL = 0.01) with uniform load are shown in the Table 3. Fig. 8 shows the corresponding converging
trends. It is observed that estimations of central deflections by the element MQP12 are better than
those with elements CH1 and CSDR. The MQP12 has estimated the central deflection equal to the
exact value for the grid size (3x3).

Table 4 presents central deflections for simply supported square thin plate (#Z = 0.01) subjected
to the central point load and the corresponding converging trends are shown in the Fig. 9. It shows
that elements MQP12 and CH1 have estimated almost identical deflections for all grid sizes and

Table 3 Normalized central deflection for a clamped square thin plate with uniform load

W.(L = 0.01, Example Problem 1)

Elements CH1 CSDR MQP12
1x1 0.960 0.300 0.975
2%2 0.970 0.650 0.980
3x3 0.980 0.920 1.000

09

c

08

071

06

051

Normalized central deflection W

041

( Example Problem 1, /L = 0.01)

0.3

0.2

. . . . . . .
1 2 3 4 5 6 7 8 9
No. of elements NI

Fig. 8 Normalized central deflection for a clamped square thin plate with uniform load

Table 4 Normalized central deflection for a simply supported square thin plate with point load

W.(t/L = 0.01, Example Problem 1)

Elements CH1 CSDR MQP12
1x1 0.925 0.820 0.925
2x2 0.990 0.940 0.990

3x3 0.996 0.982 0.996
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these deflections are superior to those of the element CSDR. The percentage of deflection error of
the element MQP12 for the grid size (3x3) is 0.0047 with respect to the exact solution.

Normalized central deflections of the clamped square thin plate (#L=0.01) subjected to the
central point load are summarized in the Table 5. Fig. 10 presents the corresponding converging

c

0.951

0.9

—A— CHI
—%— CSDR
—&- MRP12
—©— Exact

0.851

Normalized central deflection W

( Example Problem 1, t/L = 0.01)

08 . . \ , . \ ,
1 2 3 4 5 6 7 8 9
No. of elements N1

Fig. 9 Normalized central deflection for a simply supported square thin plate with point load

Table 5 Normalized central deflection for a clamped square thin plate with central point load

W.(L = 0.01, Example Problem 1)

Elements CH1 CSDR MQP12
1x1 0.960 0.200 0.970
2x2 0.970 0.670 0.980
3x3 0.990 0.920 0.999

091

c

0.8

0.7

06

Normalized central deflection W

—A— CHI
—— CSDR
—8- MRP12
051 —o— Exact
0.4
03[ ( Example Problem 1, t/L = 0.01)
0. . . . L L . .
2 3 4 5 6 7 8 9

No. of elements [N]

Fig. 10 Normalized central deflection for a clamped square thin plate with central point load
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trends. It shows that the predicted central deflection by the element MQP12 are superior to those
obtained by elements CH1 and CSDR. The percentage of deflection error of the MQP12 for the
grid size (3x3) is 0.0023 with respect to the exact solution.

Concerning the studies on moderately thick plates, Figs. 11 and 12 present the converging trends
of central deflections and moments respectively for a simply supported square moderately thick
plate (#ZL =0.1) with uniform load and their numeric values are summarized in Tables 6 and 7.
Central deflections estimated by the elements MQP12 and CHI1 are almost identical and are
superior to those of the element CSDR. The central deflection estimated by MQP12 for the grid size
(3%3) is reached to the exact solution. The predicted normalized central moments of the element

1.02

c

4

©

*
T

4

©

>
T

—A— CHI
—*— CSDR
—8- MRP12
—©— Exact

o
©
5

Normalized central deflection W

4

Q

N
T

( Example Problem 1, /L = 0.1)

No. of elements N1
Fig. 11 Normalized central deflection for a simply
supported moderately thick square thin plate
with uniform load

T
—A— CHI

—%— CSDR
—&- MRP12
—6— Exact [

1.05—\—\

0.85 /

0.8

c

o
©
a

Normalized central moment M

( Example Problem 1, YL =0.1)

0_751 1 L 1 L 1 1 1
1 2 3 4 5 6 7 8 9
No. of elements [N]

Fig. 12 Normalized central moment for a simply
supported moderately thick square plate with
uniform load

Table 6 Normalized central deflection for a simply supported moderately thick square thin plate with uniform

load
W.(L = 0.1, Example Problem 2)
Elements CH1 CSDR MQP12
1x1 0.940 0.900 0.940
2x2 0.999 0.999 0.999
3x3 1.000 1.000 1.000

Table 7 Normalized central moment for a simply supported moderately thick square plate with uniform load

W. (#L = 0.1, Example Problem 2)

Elements CHI1 CSDR MQP12
1x1 0.760 1.090 0.840
2x2 0.985 1.010 0.994
3%3 0.990 1.001 0.999
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MQP12 are better than those of elements CH1 and CSDR for all grid sizes. The percentage error in
estimated central moment of the proposed element MQP12 for the grid size (3x3) is 0.104.

The variations of the moments along the central line of the simply supported thin (#/L = 0.01) and
moderately thick (#/L =0.1) plates with uniform load (the example problems 1 and 2) are estimated
by the proposed element MQP12 for the mesh size (3%3). These values are summarized in the Table 8
along with exact values. It can be seen in the Table 8 that the estimated values are much closer to
the exact values at all the points. These moment values of both thin (#Z =0.01) and moderately
thick (#/L = 0.1) plates are plotted in the Fig. 13.

The cantilever beam (strip plate, example problem 3) subjected point load at tip/uniform load over
the entire plate is analyzed for moments and deflections considering various mesh sizes (1x1, 2x1,

Table 8 Variation of moment M, along central line of the simply supported square thin/thick plate with
uniform load for grid size (3x3)

M (/L = 0.01, 0.1 Example Problem 1 and 2)

Length of the plate Moment in thick plate Moment in thin plate Exact Values
0.0(L=0) 0.142 0.148 0.0
0.5556 12.75 12.75 12.69
1.1111 22.72 22.72 22.73
1.6667 30.63 30.63 30.55
2.2222 36.45 36.45 36.51
2.7778 40.96 40.97 40.95
3.3333 44.07 44.07 44.14
3.8889 46.48 46.28 46.27
4.4444 4751 47.51 47.49
5.0(L/2) 47.79 47.78 47.89
50
-3
451 -
Q  s0p
£
‘E 35
[0}
E 30
o
[
Ex 2or —A— Thick plate
e —»— Thin plate
© 151 —©— Exact
5
= 10t
(¥L=0.01(thin plate), tL=0.1(thick plate))
5 o5 7 iR s as 2 a4 a5 s

Half length of the plate (0 - L/2))

Fig. 13 Variation of moment M, along central line of the simply supported square thin/moderately thick plate
with uniform load for grid size (3x3)
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4x1, 8x1, 16x1 and 32x1) using the proposed element MQP12 via Integrated Force Method. To
compare results with the beam solution, the Poisson's ratio is considered as zero in this example
problem. Deflections at the free edge and moments at the clamped edge are estimated by the
proposed element MQP12. These values of deflections and moments are compared with those
computed using 12-node quadrilateral plate bending element (NISA12) available in the commercial
software NISA (displacement-based FEM package). It is interesting to note that both the elements
MQP12 and NISA12 have produced identical results in all the cases and for all grid sizes, and they
are equal to the exact beam solutions. For tip load exact values of tip deflection and moment at the
clamped edge are 133.33 and 833.33 respectively. Similarly for uniform load over the entire plate,
exact values of tip deflection and moment at the clamped edge are 600.00 and 5000.00 respectively.

The Morley’s plate (Example problem 4) and the Razzaque’s plate (Example problem 5) are
analyzed for central deflections considering various mesh sizes using the proposed element MQP12
via the Integrated Force Method. Central deflections of the Morley’s plate and the Razzaque’s plate
are plotted in the Figs. 14 and 15 respectively along with the exact values. These Figs show that the
estimated central deflections using the proposed element MQP12 are fast converging to the exact
solutions.

The simply supported square plate with various thickness-span ratio (very thin: #L = 0.00001,
0.0001, thin #L =0.001, 0.01 and moderately thick #/Z =0.1) subjected to uniform load is analyzed
using the proposed element MQP12 for the grid size 3%3 in one quadrant of the plate to estimate
the central deflections and moments. The parameters of the problem considered are: L = 50, B = 50,
t=15, 0.5, 0.05, 0.005, 0.0005, £=200000, v=0.3, g=1. The exact central displacements and
moments are calculated from the Kirchhoff theory (Timoshenko and Krieger 1959) and Mindlin
theory (Liu et al. 2000) solutions for thin and moderately thick plate bending problems respectively.
The results are shown in the Figs. 16 and 17. These Figures indicate that the proposed element
MQP12 performs quite well for both thin and moderately thick plate bending problems.

In all the above example problems, the proposed new quadrilateral plate bending element MOP12
has consistently, in general, produced excellent results for both thin and moderately thick plate
bending problems.
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Fig. 14 Central deflection for Morley’s plate with  Fig. 15 Central deflection for Razzaque’s plate with
uniform load (Example problem 4) uniform load (Example Problem 5)
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Fig. 16 Normalized central deflections for various  Fig. 17 Normalized central moments for various
thickness-span ratios (#/L = 0.00001, 0.0001, thickness-span ratios (#L) (L = 0.00001,
0.001, 0.01 and 0.1) 0.0001, 0.001, 0.01 and 0.1)

4. Conclusions

New 12-node serendipity quadrilateral plate bending element (MQP12) based on the Mindlin-
Reissner theory is presented for the analysis of thin and moderately thick plate bending problems
using Integrated Force Method. Three degrees of freedom namely a transverse displacement w and
two rotations €, 6, are considered at each node of element. The proposed element MQP12 is free
from zero/spurious energy modes. Further the proposed element MQP12 is free from shear locking.
The studies in all the example problems considered here, show that the proposed element MQP12
performs equally well for both thin and moderately thick plate bending situations and produced
excellent results. Therefore the proposed lement MQP12 can be used to anaylze both thin and
moderately thick plate bending problems. Also this proposed new quadrilateral plate bending
element (MQP12) becomes an alternative element to analyze thin and thick plate bending problems
compare to displacement based 12-node plate bending elements available in the literature.
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