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Abstract. Nonlinear equations of structures are generally solved numerically by the iterative solution of
linear equations. However, this iterative procedure diverges when the tangent stiffness is ill-conditioned
which occurs near limit points. In other words, a major challenge with simple iterative methods is failure
caused by a singular or near singular Jacobian matrix. In this paper, using the Newton-Raphson algorithm
based on Davidenko’s equations, the iterations can traverse the limit point without difficulty. It is argued
that the propose algorithm may be both more computationally efficient and more robust compared to the
other algorithm when tracing path through severe nonlinearities such as those associated with structural
collapse. Two frames are analyzed using the proposed algorithm and the results are compared with the
previous methods. The ability of the proposed method, particularly for tracing the limit points, is
demonstrated by those numerical examples. 
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1. Introduction

Nonlinear analysis is characterized by the non-proportional nature of load-deformation behaviour.

It means the structural response against an incremental loading is affected by the instantaneous

loading level and the deformed geometry of the structure. In fact, the stiffness matrix of the

structure is a function of element force as well as the deflection of the structure and, therefore, for

medium to huge size problems, the instantaneous stiffness equation can only be solved numerically

by an incremental and iterative procedure allowing for the geometrical change of the structure.

Based on the Newton-Raphson scheme, the applied load is first divided into many small increments,

and the displacement increment within each increment is computed, using the tangent stiffness

matrix. The numerical problem that may be encountered when tracing the nonlinear load-

displacement curve is the ill-conditioning of the tangent stiffness matrix near the critical point. The

critical points in nonlinear analysis may be classified into limit points with snap-through and limit

points with snap-back (Ramm 1981, Pecknold et al. 1985). For limit points, the path-tracing scheme

to successively compute the regular equilibrium points on the equilibrium path and the pinpointing
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scheme to precisely locate the singular equilibrium points are sufficient for the computational

stability analysis. For bifurcation points, however, a specific procedure for path-switching is also

necessary to detect the branching paths to be traced in the post-buckling region. Fujii and Ramm

have described these fundamental strategies as path-tracing, pin-pointing and path-switching in

computational bifurcation theory (Fujii and Ramm 1997). There are analytical solutions for simple

geometrical nonlinear trusses (Jagannathan et al. 1975). The researchers have considered a total

Lagrangian formulation with elastic material properties on the geometric nonlinear analysis of space

truss using Green-Lagrange representation of the axial strain (Kassimali 1983). The static analysis

of elastic-plastic frames including inelastic material and large deformation geometric nonlinearities

has been considered by the references (Kassimali and Abbassnia 1991, Levy and Spillers 2003). But

in the structures with many degrees of freedom, generally there is no explicit solution for the

nonlinear system of equations. Therefore, several numerical solutions have been presented for such

equations by the researchers (Toklu 2004). The nonlinear analysis problem, formulated as an

application of minimum potential energy principle, is obviously an optimization problem. For

optimization of the total potential, there are various techniques that have been used such as

simulated annealing algorithm (Baltoz and Dhatt 1979). 

Some methods are weak for tracing through these points and are not able to present the real

behavior of the structure. Among the methods for solving the nonlinear system of equations, the

incremental iterative can be chosen, but it is time consuming and expensive in the case of nonlinear

analysis of huge structures, and it diverges during tracing the limit points (Wempner 1971). These

disadvantages exist because in the structures with complex behavior the load-displacement curve is

a combination of softening and hardening states with limit points. Therefore, the analysis of such

structures is not possible by simple incremental iterative methods. The simple incremental iterative

methods are conducted in the form of load increments or displacements increments. As the load

level is constant in the method of load increments, tracing the limit points is not possible. Also, if

there are serious changes in the load-displacement path, the number of iterations for convergence

will be increased and make this method time consuming and expensive. Similarly, in the method of

incremental displacement tracing the limit points is difficult. For resolving such disadvantages,

advanced analysis methods have been developed. In these methods, an auxiliary equation is needed

for solving the equilibrium equation. There are several methods for setting up such auxiliary

equation like methods by the references (Wempner 1971, Riks 1979, Mallardo and Alessandri 2004,

Al-Rasby 1991, Crisfield 1981, 1983). 

The advanced incremental iterative methods have been developed based upon the arc-length

approach. In this approach, proportional to the load factor obtained in any iteration, the load level

will converge to the equilibrium path. This process will be continued until the convergence is

achieved with acceptable accuracy. In these methods, contrary to the simple incremental iterative

methods, it is possible to pass the limit points. The impossibility of tracing the limit points in the

case of highly nonlinear behavior state is one of the disadvantages of the advanced incremental

iterative methods (Bashir-Ahmad and Xiao-zu 2004). 

In this paper, for tracing the equilibrium path of the two-dimensional frames, the Newton-Raphson

iterative algorithm is used along the normal path to the Davidenko’s flows with modified

convergence rate. A major challenge with Newton’s iterative methods is failure caused by a singular

or near singular tangent stiffness matrix. To circumvent this problem, in this algorithm, the Newton-

Raphson iterative along the normal path to the Davidenko’s flows is proposed for the solution of the

structural nonlinear problems. Contrary to the previous methods, this algorithm uses the Homotopy
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approach which is based upon the new mathematical concepts, and has great ability for developing

complex load-displacement paths of the structures with multiple degrees of freedom (Allgower and

Georg 1980). The equations of presented algorithm are coded in library finite element software.

Finally, the ability of the proposed method, particularly for tracing the limit points, is demonstrated

by two numerical test cases.

2. Solving nonlinear problem using the Davidenko’s equations

In general, the , nonlinear problem of a system can be written as follows

(1)

which can be summarized as

 (2)

where 

(3)

If  are expanded in Taylor series in n dimensions (with respect to the iteration counter k)

(4)

The equations are expressed according to the Newton’s corrections  with truncation to

the first order derivative terms. Since the right-hand side of Eq. (4) are zero, gives 

(5)

n n×
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f1 f2 … fn, , ,

 

x1

k∆ … xn
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Eq. (5) can be generalized to the  case by writing it in matrix form 

(6)

where  is called the Jacobian matrix. Eq. (6) is Newton's method for a  system. The

Jacobian matrix is not constant and therefore must be updated as the iterations proceed; updating at

every iteration, may not be required since all that is required is convergence of the iterations. A

major difficulty with Newton’s method, Eq. (6) is failure caused by a singular or near singular

Jacobian matrix, . To overcome this drawback, in this paper, the Davidenko’s equations are used

based on a vector homotopy functions. Consider again the  systems of Eq. (1). Then a vector

of homotopy functions can be expressed as follows

(7a)

(7b)

where t is an embedded homotopy continuation parameter. If t is varying over the interval ,

while always correspond to the zero homotopy functions. Therefore, the differentials of the

homotopy functions can be written

(8a)

(8b)

These differentials are zero, since , . Using Eqs. (7) and (8), it can

be rewritten as 

(9a)

(9b)

or

(10a)

(10b)

Differential Eq. (10) are usually called the Davidenko’s equations, which can be written in matrix

form for the n × n problem as

(11)
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where again [J] and {F} are the Jacobian matrix and function vector of the nonlinear system,

respectively, and dx/dt is the derivative of the solution vector with respect to the continuation

parameter, t, which is appeared in Eq. (7). From the mathematical point of view, each Davidenko’s

flow are defined by a perturbation parameter, t, in the nonlinear system of equations governing the

problem. The Newton-Raphson iterates, ∆X, of the normal flow algorithm is the unique minimum

norm solution of the Davidenko’s Eq. (11). This solution may be obtained as (Watson et al. 1981)

(12)

where V is a particular solution can be found by selecting an auxiliary equation and U is any vector

in the kernel [J]. 

3. Large deformation equations for 2D beam-column element

Fig. 1 indicates a beam-column element having cross-sectional area equal to A and modulus of

elasticity equal to E. The vectors {F} and {δ} show the components of the end forces and end

displacements in global coordinates, respectively (Kassimali 1983). Eulerian local coordinate system

is used as global coordinate system (Fig. 1a). So, the relationship between the end forces of the

member in global and local coordinates is obtained as follows

(13)

in which {S} and {F} are the internal force vector of the beam-column element in the local and

global coordinates systems, respectively, and {B} is the transformation matrix that indicates the

relationship between the nodal forces of the member in local and global coordinates systems in the

following form

X∆ V
V

T
U

U
T
U

-----------U–=

B[ ] S{ } F{ }=

Fig. 1 The internal forces and deformations in the global and local coordinate systems
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(14)

where  and  are the cosine directors of the deformed member which, for an

arbitrary large nodal displacement. Note that, Lo is the length of the member before deformation,

and L is the length of the member after deformation which is obtained by the following

relationship 

(15)

The relative member deformations in local coordinates system can be expressed directly in terms

of global displacements by noting that 

(16)

(17)

(18)

(19)

(20)

in these equations  refers to the orientation of the chord in the undeformed configuration as

shown in Fig. 1; and ρ = angle of rotation of the chord. 

The relationship between relative member deformations, θ1, θ2 and u and associated member end

forces,  and Q can be based on the beam-column theory for elastic members thus, (see

Fig. 1) 

(21)

(22)
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(23)

In which A = area of cross section; E = Modulus of elasticity; I = moment of inertia; C1, C2 =

elastic stability functions; and

(24)

is the length correction factor due to bowing action (24), with b1, b2 = bowing functions.

3.1 The equilibrium equations

Applying external nodal loads, , on the structure causes nodal displacements, , stresses

and the resultant of the nodal internal loads, , so, the system of the equilibrium equations of the

structure can be stated as follows 

(25)

in which λ is the load factor, N is the number of degrees of freedom of the structure and  is

the vector of the residual forces.

It must be noted that the components of the internal forces of the members are nonlinear functions

of the nodal displacements, so the equilibrium Eq. (25) are nonlinear and cannot be solved

explicitly. Therefore, in the nonlinear analysis of the structures, the system of the equations is

changed into incremental form first, and then is solved through several iterative steps. The

incremental form of the system of equations is as follows

Q EA
µ

Lo

----- Cb–⎝ ⎠
⎛ ⎞=

Cb b1 θ1 θ2+( )2 b2 θ1 θ2–( )2+=

Fext{ } δi{ }
f{ }

F λ δ,( ) Fext f δ1 δ2 … δN, , ,( ) 0=–= i 1 2 … N, , ,=

F λ δ,( )

Fig. 2 The iterations along the normal path to the Davidenko’s flow 
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(26)

where  and  are the internal forces increment and the displacement increment in the

local coordinates system, respectively, and  is known as tangential stiffness matrix. 

3.2 The tangential stiffness matrix of the member

Using the abovementioned subjects and the tangential stiffness matrix concept, the incremental

load-displacement relationship in global coordinate system is in the following form

(27)

where  is the tangential stiffness matrix of the two-dimensional frame in global coordinate

system which can be determined as follows

(28)

where [g] is the geometric matrix which can be found in appendix A and S1 = M1; S2 = M2, S3 = Q

(see Fig. 1). It is noted that, from the mathematical point of view, differential Eq. (11) is defined by

the nonlinear system of equations governing the problem such as Eq. (27). So, the Newton-Raphson

iterates, , of the normal flow algorithm is the unique minimum norm solution of the Davidenko’s

Eq. (27).

3.3 The iteration process in the first step of proposed algorithm

Every step of proposed algorithm consists of two phases; anticipation and modifying iterations. If

i is the number of the step and j is the number of the modifying iteration, the vector of external

load applying on the nodes,  , will be stated as follows

 (29)

in which,  is the factor of total external load and  is the reference external load vector.

If the point A in Fig. 2 is concerning the converged point in the step  of the load-

displacement path, then the following relationship will exist for the step i.

(30)

where  is the factor of the total external load at the end of the previous step in which the

solution has been converged,  is the assumed load increment at the beginning of the calculations

and  is the increment of the load level calculated in each iteration. In anticipation phase,

calculating the tangential stiffness matrix  at point A, the tangential displacement  is

determined first through the following relationship

(31)
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Then in the first iteration , the displacement increment  is found using the

following relationship 

(32)

Thus, the total displacement or, the approximate response of the equilibrium path at point B is

updated as follows

(33)

In the next stage, computing the Newton-Raphson step in each iteration j, the solution is obtained

and is modified along the real equilibrium path, (see Fig. 2). In proposed algorithm, the Newton-

Raphson step size is the minimum solution of the system of Eq. (27). This solution can be found

through two steps: 

Step 1: Select an auxiliary equation in the following form and solve it together with Eq. (25), the

particular solution V will be obtained

(34)

(35)

where  is the vector of the residual of internal forces (in other words, unbalanced forces)

and  is the vector of unbalanced displacement such that

(36)

in which  is the vector of resultant internal forces at the nodes. The vector of unbalanced

displacement  is computed by the following system of equations

 (37)

It is noted that in this study, the auxiliary equation presented in the method of minimum

unbalanced displacement has been used (Saffari et al. 2008).

Step 2: Using the following equation, the minimum solution of the norm is calculated

(38)

in which  is the vector of tangential displacement in the converged point in  step.

As mentioned before, this solution is equal to the step size of the Newton-Raphson iterations, .

Since in this paper the method of controlling the displacement has been used, the solution is equal

to the vector of displacement increment. The vector  is the same as the tangential

displacement vector which is converged in step .
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3.4 The iterations process for achieving the equilibrium path 

After calculating the vector of increment displacement, , the vector of total displacement is

updated in jth iteration as follows

(39)

On the other hand, in any iteration the load level changes by the amount of  which is obtained

from the auxiliary Eq. (35) and is updated by (30). The process is continued until the solution at

point C is converged to the equilibrium path of the structure with acceptable accuracy.

3.5 Selecting the amount of load increment for steps i > 1

For steps i > 1, after obtaining the converged point at the first step i = 1, the load level must be

modified selecting suitable load increment and the process is repeated similar to the first step. In

this work the direct method of updating has been used. In direct method of updating, the load

increment is related to the number of iterations and the sign of the determinant of the tangential

stiffness matrix of the previous step and can be computed through the following relationship.

, (40)

where JD is the assumed number of iterations at the beginning of the calculations and JM is the

number of iterations in the previous step and,  will be negative if the determinant of the

stiffness matrix of the previous step is negative. Therefore, in the presented algorithm, if the

structure has linear behavior, the number of iterations of the previous step is low and so, the load

increment will be increased based upon (40) which affect the speed of the problem solution

significantly. On the other hand, if the determinant of the tangential stiffness matrix is negative or

equal to zero, it implies tracing the limit point. Also, the negative sign indicates the negative slope

of the equilibrium path of the structure. Sticking to this process, the presented algorithm affords the

possibility of tracing the complex equilibrium paths such as shown in Fig. 3.
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±λi

j JD

JM

------⎝ ⎠
⎛ ⎞

γ

= γ 0.5=

λi 1+

j

Fig. 3 The normal path to the Davidenko’s flow algorithm (Saffari et al. 2008) 
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4. Numerical studies

In this section two test cases concern geometrical nonlinear problems is examined using proposed

algorithm.

4.1 Test case 1: The Lee frame

Fig. 4 shows the Lee frame under external concentrated loading. This structure has large

displacement and instabilities. This structure has been the subject of previous investigations (Levy

and Spillers 2003). The equilibrium path of such structures involved with snap-back response. It

must be noted that the load increment iterative of the Newton-Raphson method are weak in tracing

this limit point (Sheng and Khaliq 2002). The characteristics of this frame are: the cross-sectional

area of the members A = 6 cm2, the moment of inertia I = 2 cm4 and the modulus of elasticity

E = 720 kN/cm2, Also, the following parameters are assumed: JD = 5, Jmax = 15 and tolerance for

convergence norm εc = 10−5. The load parameters are: an initial load F of 0.1 kN, a final load F of

2.0 kN, a minimum step of 0.01 and a maximum step of 10. 

This structure has been analyzed using the method proposed in this paper and the equilibrium path

has been drawn as shown in Fig. 5. Also, the result obtained using the advanced iterative methods

of Crisfield and Chan are indicated in Fig. 5 (Crisfield 1983, Chan 1988).

Furthermore, the total number of increments, the cumulative sum of total iterations and the CPU

time used by each method is shown in Table 1. As it can be seen, in advanced iterative methods

which use the arc-length factor, the number of loads steps and consequently the number of iterations

is more than the number of iterations of the method of this paper. Therefore, it can be concluded

that in the case of uniform slope and for hardening branch with high slope, the normal path to the

Davidenko’s flows algorithm can analyze the system more quickly in addition to having the ability

of tracing the equilibrium path of the structure.

Fig. 4 The Lee frame (Test Case 1) 
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4.2 Test case 2: The William’s Toggle frame

The William’s toggle frame indicated in Fig. 6 is another test case that has been considered in the

previous studies (Papadrakakis 1981). The characteristics of this structure are: the cross-sectional

area of the members A = 1.18 cm2, the moment of inertia I = 0.037 cm4, the modulus of elasticity

E = 7200 kN/cm2, L = 33 cm and H = 0.8 cm. Also, the following parameters are assumed for this

Fig. 5 The equilibrium path of the Lee frame (Test Case 1)

Table 1 Performance and iteration for test case 1

Method Number of increments Total iterations Time (sec)

Newton-Raphson failed failed -

Crisfield (1983) 512 2590 20.58

Chan (1988) 506 2530 20.05

Present study 498 2489 18.72

Fig. 6 The William’s Toggle frame (Test Case 2)  
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structure:  and .

The load-displacement path for this structure is shown in Fig. 7 and the results are compared to

the results of the methods of Crisfield and Chan (Crisfield 1983, Chan 1988). Note that, as in

previous study, the iterative methods with load increment factor are weak in tracing the limit point

(the snap-through) branch. As can be seen, the method of the present paper has passed the

equilibrium path having returning load and returning displacement branches. 

Table 2 summarizes the number of increments, total iterations and the CPU time. In all the

advanced iterative methods with arc-length factor, the number of iterations is almost the same, but

in this study, the normal path to the Davidenko’s flows algorithm has the minimum number of

iterations.

5. Conclusions

In structural mechanism, the nonlinear equations are often solved using the incremental Newton-

P 0.09 kN, λ1

1∆ 0.003, λmax 3, JD 2, Jmax 15= = = = = εc 10
4–

=

Fig. 7 The equilibrium path of the William’s Toggle frame (Test Case 2) 

Table 2 Performance and iteration for test case 2

Method Number of increments Total iterations Time (sec)

Newton-Raphson failed failed -

Crisfield 1983 82 304 12.74

Chan 1988 62 220 12.15

Present study 58 203 10.84
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Raphson method. The frame structures have highly nonlinear behavior regarding the geometry and

the level of load applied. It is seen that the simple iterative and incremental Newton-Raphson

method are failed to trace the limit points of snap-through or snap-back of the equilibrium path. On

the other hand, in all the advanced iterative methods with arc-length factor, the number of iterations

is high and almost the same. In the proposed algorithm, based upon the Homotopy functions

concepts, the auxiliary equation is transmitted to the normal path to the Davidenko’s flows first, and

then by incremental iterative method, the equilibrium path of the structure is traced in fewer steps.

It has been shown by the numerical studies that the method developed in this paper which uses the

normal path to the Davidenko’s flows algorithm reduces the time and the cost for nonlinear analysis

of high degree of freedom frames in addition to having the capability of tracing the complex

equilibrium paths.
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