
Structural Engineering and Mechanics, Vol. 36, No. 4 (2010) 463-479 463

Dynamic reliability of structures: the example of 
multi-grid composite walls

Pei Liu* and Qian-Feng Yaoa

School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China

(Received March 1, 2010, Accepted July 13, 2010)

Abstract. Based on damage accumulation of multi-grid composite walls, a method of dynamic
reliability estimations is proposed. The multi-grid composite wall is composed of edge frame beam, edge
frame columns, grid beams, grid columns and filling blocks. The equations including stiffness, shear
forces at filling blocks cracking and multi-grid composite walls yielding, ultimate displacement, and
damage index are obtained through tests of 13 multi-grid composite wall specimens. Employing these
equations in reliability calculations, procedures of dynamic reliability estimations based on damage
accumulation of multi-grid composite walls subjected to random earthquake excitations are proposed.
Finally the proposed method is applied to the typical composite wall specimen subjected to random
earthquake excitations which can be specified by a finite number of input random variables. The dynamic
reliability estimates, when filling blocks crack under earthquakes corresponding to 63% exceedance in 50
years and when the composite wall reach limit state under earthquakes corresponding to 2-3% exceedance
in 50 years, are obtained using the proposed method by taking damage indexes as thresholds. The results
from the proposed method which show good agreement with those from Monte-Carlo simulations
demonstrate the proposed method is effective.

Keywords: dynamic reliability; damage accumulation; multi-grid composite walls; damage index;
random earthquake excitation.

1. Introduction

Multi-grid composite wall structure created by the second author plotted in Fig. 1 is a new

structural system, in which multi-grid composite walls are the primary lateral force-resisting

components. The multi-grid composite wall is composed of autoclaved aerated concrete filling

blocks, RC edge frame beam, edge frame columns (or connection column), grid beams, and grid

columns. There are three stages for multi-grid composite walls of shear failure mode to dissipate

earthquake energy. At the first stage, attributed to the restriction of RC edge frame and grids, there

are no or very few cracks in the filling blocks. The mechanical behavior of the multi-grid composite

wall is similar to that of an elastic panel. At the second stage, attributed to the low strength of

filling blocks, there are a lot of cracks in them. RC grids and cracked filling blocks form the main

member to resist earthquakes. At the third stage, the composite wall deteriorates into a frame made
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up of edge frame beam, edge frame columns and grid columns, and some plastic hinges appear on

grid beams. At the end of the third stage, the composite wall reaches the limit state. And the multi-

grid composite wall as the main force-resisting component of the structure fails, but it can bear all

of the vertical loads and possess good capacity to resist collapse.

The current trend toward performance-based design requires the development of methodologies

for accessing whether a given design satisfied engineering objectives (Chau and Albermani 2003,

Xue and Chen 2003, Zhang and Foschi 2004, Chau 2007, Cheng et al. 2007, Augusti and Ciampoli

2008, McMillan and Brasington 2008). Several procedures for the structural reliability evaluation

have been proposed (Dymiotis et al. 1999, 2001, Takada and Yamaguchi 2002, Chaudhuri and

Chakraborty 2003, Moller et al. 2009) and there are several simulation methods that offer numerical

solution of first-excursion problems with larger state-space dimensions (Au and Beck 2001a, b,

Katafygiotis and Cheung 2006, Katafygiotis et al. 2007, Jensen and Valdebenito 2007).

There are usually two criteria for reliability evaluations of structures subjected to random

earthquakes. One is the first excursion law and the other is the damage accumulation law. A method

for dynamic reliability estimation based on damage accumulation of multi-grid composite walls is

proposed in this paper. In order to research on the seismic performance of multi-grid composite wall

structures, 13 multi-grid composite walls were tested. The equations including stiffness, shear forces

when the filling blocks crack and when multi-grid composite walls yield, ultimate displacement, and

damage index are obtained through the test results. Employing these equations in reliability

estimations, procedures of dynamic reliability calculations of multi-grid composite walls subjected

to random earthquake excitations are proposed. Random earthquake process samples are generated

firstly, and then parameters of power spectral density function are determined in accordance with

Chinese code for seismic design of buildings. The equivalent linearization equation of the system is

presented as a state equation and then solved by the direct integration method, combined with

Simpson numerical integration method and precise time-integration method. Finally, dynamic

reliability estimation is presented based on damage accumulation. Define small earthquakes as

earthquakes with 63% exceedence probability in a period of 50 years, and large earthquakes as

earthquakes with 2-3% exceedence probability in a period of 50 years. The dynamic reliability

Fig. 1 Multi-grid composite wall structure
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estimates, when the filling blocks crack under small earthquakes and when composite walls reach

limit state under large earthquakes, are obtained using the proposed method by taking damage

indexes as thresholds. The results from the proposed method which show good agreement with

those from Monte-Carlo simulations demonstrate the proposed method is effective.

2. Tests of Multi-grid composite walls

13 multi-grid composite wall specimens that consist of one full scale specimen SW1 and twelve

1:2 scale specimens from SW3 to SW14 shown in Table 1 were tested (Jia et al. 2005). Horizontal

loads acting on SW8, SW11 and SW14 were monotonic, on SW1, SW3, SW4, SW5, SW6, SW7,

SW10, SW12 and SW13 were low-cycled. And load acting on SW9 was only vertical and

monotonic. Fig. 2 illustrates the test set-up along with the mechanical model of specimen SW6, and

Fig. 3 illustrates the diagrammatic sketch of specimen SW6. The vertical loads acting on the

specimens were all 110 kN except SW7 with 65 kN and SW1 with 440 kN. Except that SW5

consisted of 3 grid columns, SW12 consisted of 5 grid columns and there was a window opening in

SW11, the other tested walls all consisted of 4 grid columns and 4 grid beams. The diameter of

longitudinal steel bars in grid columns of SW13 was different from that of other composite walls.

For all the specimens the composite panel which was made up of filling blocks and RC grids

connected with the bottom anchoring beam through mortar, and for SW14 the longitudinal steel bars

of grid columns were fixed in the bottom anchoring beam additionally.

Tests on sample multi-grid composite walls have led to evaluate the following values:

(a) The elastic stiffness of multi-grid composite walls employing equivalent elastic plate model of

composite material can be expressed as (Yu and Yao 2008)

Table 1 Tested multi-grid composite walls

Dimension (m)
(width×height×thickness)

Dimension of rectangular cross section (mm) (height×width) 
and longitudinal plain steel bars

Edge beam Edge column Grid beam Grid column

SW1 2.8×2.75×0.2 100×200 4Φ10 200×200 4Φ12 80×200 4Φ6 200×100 4Φ6

SW3 2.7×1.375×0.1 50×100 4Φ6 100×100 4Φ6 40×100 4Φ4 100×50 4Φ4

SW4 2.7×1.375×0.1 50×100 4Φ6 100×100 4Φ6 40×100 4Φ4 100×50 4Φ4

SW5 1.4×1.375×0.1 50×100 4Φ6 100×100 4Φ6 40×100 4Φ4 100×67 4Φ6

SW6 1.4×1.375×0.1 50×100 4Φ6 100×100 4Φ6 40×100 4Φ4 100×50 4Φ4

SW7 1.4×1.375×0.1 50×100 4Φ6 100×100 4Φ6 40×100 4Φ4 100×50 4Φ4

SW8 1.4×1.375×0.1 50×100 4Φ6 100×100 4Φ6 40×100 4Φ4 100×50 4Φ4

SW9 1.4×1.375×0.1 50×100 4Φ6 100×100 4Φ6 40×100 4Φ4 100×50 4Φ4

SW10 1.4×1.375×0.1 50×100 4Φ6 100×100 4Φ6 40×100 4Φ4 100×50 4Φ4

SW11 1.4×1.375×0.1 50×100 4Φ6 100×100 4Φ6 40×100 4Φ4 100×50 4Φ4

SW12 1.4×1.375×0.1 50×100 4Φ6 100×100 4Φ6 40×100 4Φ4 100×40 4Φ4

SW13 1.4×1.375×0.1 50×100 4Φ6 100×100 4Φ6 40×100 4Φ4 100×50 4Φ6

SW14 1.4×1.375×0.1 50×100 4Φ6 100×100 4Φ6 40×100 4Φ4 100×50 4Φ4
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(1)

in which ; 

; h is the height of the composite wall; b is the width of the composite wall; th is the

thickness of the composite wall; Ec, Eq, Vc, and Vq denote the elastic moduli of concrete and filling

blocks, the volume fractions of concrete components and filling blocks in the composite wall

respectively; Gc and Gq denote the shear moduli of concrete and filling blocks respectively; ζ is the

modification factor of concrete and ζ = 07; γ is the non-uniform factor of shear stress and γ = 1.2

when the section is rectangular; ηa is the axial load ratio which has influence on the appearance and

propagation of tiny and thin cracks influencing the elastic stiffness of composite walls and

0.3 ≤ ηa ≤ 0.6; N, fc and Ac denote the axial load acting on the composite wall, the compressive

strength of concrete, and the concrete section area of grid columns and edge columns respectively;

ηc is the constraint factor due to the influence of grid columns and grid beams on filling blocks; nb

is the number of grid beams and nc is the number of grid columns; α1 is the influence factor related

to the connection form of the composite wall bottom: α1 = 1 when the connection is through mortar

and α1 = 0.9 when the connection is reinforced.
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Fig. 2 Test set-up along with the mechanical model of specimen SW6

Fig. 3 Diagrammatic sketch of specimen SW6
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The elastic stiffness ks of Eq. (1), the pre-cracking stiffness K1, the pre-yield stiffness K2 and the

post-yield stiffness K3 from the test results (Yu and Yao 2008) are shown in Table 2, and then

equations of stiffness for multi-grid composite walls are obtained.

The pre-cracking stiffness of composite walls is

 K1 = ks (2)

The pre-yield stiffness of composite walls is

 K2 = 0.22K1  (3)

The post-yield stiffness of composite walls is

K3 = 0.05K1 (4)

(b) The shear force when the filling blocks crack can be written as (Yao et al. 2008)

(5)

where ; ftq and σq denote the tensile strength and the vertical compressive stress 

of filling blocks respectively; bc denotes the section width of edge frame columns and grid columns;

bq denotes the section width of filling blocks.

The shear force when the multi-grid composite walls yield can be written as (Yao et al. 2008)

(6)

Fk
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------------ftq 1
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Table 2 Stiffness of multi-grid composite walls

ks (kN/mm) K1 (kN/mm) K2 (kN/mm) K3 (kN/mm) K2/K1 (kN/mm) K3/K1 (kN/mm)

SW1 103.8 107.5 15.8 2.3 0.146 0.021

SW3 146.7 148.4 40.6 7.8 0.273 0.052

SW4 - 128 49.1 14.0 0.383 0.109

SW5 58.1   62.5 21.1 2.9 0.337 0.046

SW6 60.4   66 13.8 3.3 0.3 0.071

SW7 39.1   45 11.9 4.1 0.264 0.091

SW8 60.4   56.8 12.3 2.0 0.216 0.035

SW9 60.4   66.8 21.6 1.6 0.323 0.024

SW10 60.4   67.7 11.5 5.5 0.169 0.081

SW11 -    9.3 2.7 0.9 0.290 0.096

SW12 -   38 8.5 3.4 0.223 0.089

SW13 -   47.2 12.7 4.1 0.269 0.086

SW14 -   27.2 10.6 2.0 0.389 0.073
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where ft is the tensile strength of concrete; Aq is the section area of filling blocks; Ash is the

reinforcement area of one grid beam; Asv is the reinforcement area of one grid column; fyh is the

design yield strength of reinforcement in grid beams; and fyv is the design yield strength of

reinforcement in grid columns (fyh and fyv are both smaller than or equal to 300 N/mm2); λ is the

height-width ratio of the composite wall and ; for .

The shear forces when the multi-grid composite walls yield calculated according to Eq. (6) by

assuming the yield strengths of reinforcement equal to the design values show good agreement with

the test results in Table 3. The yielding deformation was determined by the intersection of the

horizontal line at maximum force with the straight line passing through the origin and the 75%

maximum force point Fmax on the envelope curve for the test results.

(c) The ultimate displacement of composite walls can be expressed as

 (7)

where µ denotes the ductility factor for composite walls; Xy denotes the yield displacement of

composite walls and 

 (8)

1.0 λ 2.0≤ ≤ N 0.2fcAc> N, 0.2fcAc=

Xu µXy=

Xy

Fk

K1

------
Fy Fk–

0.22K1

----------------+=

Table 3 Yield shear forces of some multi-grid composite walls

Test results (kN) Calculated results (kN)

SW1 260 254

SW5 81 83

SW6 90 92

SW7 84 88

SW8 98.6 92

SW10 100 92

SW13 94 99

SW14 90 77

Table 4 Ductility factors of some multi-grid composite walls

Ultimate displacement xu 

(mm)
Yield displacement xy 

(mm)
Ductility factor µ

SW1 64.4 9.5 6.8

SW3 23.0 3.8 6.1

SW5 32.1 5.4 6.0

SW6 31.3 5.8 5.4

SW7 5.6 33.1 5.9

SW11 5.0 32.4 6.4

SW13 5.7 32.0 5.6

SW14 6.0 30.3 5.1
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The ductility factors of some multi-grid composite walls are shown in Table 4 according to the

test results (Yuan et al. 2006), from which assume µ = 5.0 for composite walls of shear failure. The

displacement ductility factor of a specimen can be calculated as the ratio of tested ultimate

displacement to yield displacement. The tested ultimate displacement is the lateral displacement

when the lateral load fell to 85% of the maximum lateral load. Fig. 4 illustrates the definition of

yield and ultimate displacement for the test results. The uncertainty of µ is neglected in the

reliability calculations. The failure mode of SW6 is typical shear failure and the observed hysteresis

loops diagram of SW6 is shown in Fig. 5.

(d) The damage calibration factors of some multi-grid composite walls are shown in Table 5

(Yuan et al. 2006). By employing the mean of the damage calibration factors in Table 5, the

damage calibration factor of multi-grid composite walls adopts β = 0.25. The uncertainty of β is

neglected in the reliability calculations.

The damage index D (Park and Ang 1985) of multi-grid composite walls is expressed as (Yuan et

al. 2006)

Fig. 4 Definition of yield and ultimate displacement

Fig. 5 Observed hysteresis loops diagram of specimen SW6

Table 5 Damage calibration factors of some multi-grid composite walls

SW1 SW3 SW4 SW5 SW6 SW7 SW10 SW12 SW13

β 0.26332 0.27870 0.34015 0.24646 0.15393 0.20518 0.25458 0.33688 0.13254
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(9)

where Xm, Xu, Fy and  denote the maximum displacement under earthquake excitation, the

ultimate displacement under monotonic loading, the calculated yield shear force and the

accumulative hysteretic energy under earthquake excitation in the time interval [0, T] of the

composite wall respectively.

The damage index values of multi-grid composite walls when the filling blocks crack are shown

in Table 6, and they are shown in Table 7 when the composite walls reach limit state.

D 1 β–( )
Xm

Xu

------ β
Eh T( )
FyXu

-------------+=

Eh T( )

Table 6 Damage indexes of multi-grid composite walls at filling blocks cracking

xu (mm) Fy (kN) Xm (mm) β
Eh(T)

(kN·mm)
Fyxu

(kN·mm)
Damage 

index

SW1 90 265 2 0.25 0 23850 0.0166667

SW3 34.2 220 1.2 0.25 0 7524 0.0263158

SW4 34.2 173 1.2 0.25 0 5916.6 0.0263158

SW5 44 77 0.8 0.25 0 3388 0.0136364

SW6 44 86 1.08 0.25 0 5784 0.0184091

SW7 44 80.5 0.89 0.25 0 3942 0.0151705

SW8 44 86 0.63 0.25 0 3784 0.0107386

SW9 44 110 0.61 0.25 0 4840 0.0103977

SW10 44 81 0.6 0.25 0 3564 0.0102273

SW11 44 33.5 3.7 0.25 0 1474 0.0630682

SW12 44 78 1.2 0.25 0 5432 0.0204545

SW13 44 94 0.8 0.25 0 6136 0.0136364

SW14 44 82 0.9 0.25 0 3608 0.0153409

Table 7 Damage indexes of multi-grid composite walls at composite walls reaching limit state

xu (mm) Fy (kN) Xm (mm) β
Eh(T)

(kN·mm)
Fyxu

(kN·mm)
Damage 

index

SW1 90 265 47.5 0.25 55358.35 23850 0.9761095

SW3 34.2 220 15 0.25 18456.28 7524 0.9421943

SW4 34.2 173 16.4 0.25 11890.3 5916.6 0.8620618

SW5 44 77 11 0.25 11157.2 3388 1.0107881

SW6 44 86 14.2 0.25 17870.63 5784 1.014462

SW7 44 80.5 17.9 0.25 11681.2 3942 1.0459305

SW8 44 86 42 0.25  4377.59 3784 1.0051262

SW9 44 110 42 0.25  7093.85 4840 1.082327

SW10 44 81 22 0.25  8781.85 3564 0.9910108

SW11 44 33.5 34 0.25  1650.53 1474 0.8594861

SW12 44 78 23 0.25 12656.22 5432 0.9745298

SW13 44 94 26 0.25 15209.76 6136 1.0628754

SW14 44 82 42 0.25  2776.01 3608 0.9082601
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3. Dynamic reliability estimations of multi-grid composite walls

3.1 Simulation of the random earthquake process

Generate a discrete white noise signal ,  with the help of

independent standard normal variables θj, where S0 is the power spectral density, and T is the

duration and .

Pass the signal through two discrete filters having the following continuous representation

(Clough and Penzien 1993)

(10)

(11)

The initial conditions for each of the above two equations are assumed to be zero.  is the

simulated stationary earthquake ground acceleration.

3.2 Power spectral density function of the random earthquake process

The power spectral density function of the process  is introduced as (Clough and Penzien

1993)

 (12)

where  and  denote damping ratio of soil and characteristic frequency of soil respectively; 

and  are parameters for a high-pass filter to attenuate low frequency components, generally

 and . Research on the above parameters was made according to Chinese code

for seismic design of buildings (Xue et al. 2003).

Table 8 shows parameter values for different soil types and seismic design groups. The earthquake

duration T, defined as the time when the amplitude of earthquake exceeds 50% of maximum

amplitude, is shown in Table 9 for different soil types.
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Table 8 Parameter values for different soil types and seismic design groups

Soil type I II III IV

ωg

(rad/s)

The first group 25.13 17.95 13.96 9.67

The second group 20.94 15.71 11.42 8.38

The third group 17.95 13.96 9.67 6.98

ζg 0.64 0.72 0.80 0.90

Table 9 Earthquake duration for different soil types

Soil type I II III IV

Duration(s) 6.69 8.41 10.92 15.49
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The power spectral density corresponding to white noise S0 can be written as

(13)

where M, L and f for different soil types and seismic design groups are shown in Table 10 and a set

of  (the mean of peak ground accelerations) for different seismic intensities are shown in Table 11.

3.3 Equivalent linearization of the hysteretic system

The equation of motion for the system can be written in the form

 (14)

where m is the mass, and  is a sample of random earthquake processes from Eq. (11).

Engineering structures often exhibit hysteretic behavior under severe cyclic load associated with

earthquakes. The Bouc-Wen model (Wen 1980) is a smooth endochronic model that is often used to

describe hysteretic phenomena. The model has been successfully employed in reinforced concrete and

steel structures. The smooth hysteretic model has been well received in nonlinear stochastic dynamics

not only because of its versatility through appropriate choices of parameters in the model but also for

the possibility of calculating the linearization matrices in explicit form (Hurtado and Barbat 2000).

In terms of Bouc-Wen model 

(15)

where c is the damping of the system, the hysteretic part Z depends on nonhysteretic part X and 

by means of an incremental relation. A smooth, hysteretic dependence is provided by the relation

(16)
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Table 10 M, L and f for different soil types and design seismic groups

Soil type I II III IV

M 0.8847 0.8798 0.8694 0.8498

L (s-1)

The first group 122.72 94.59 76.12 56.31

The second group 110.40 84.71 64.22 49.73

The third group 97.03 76.61 55.53 42.29

f

The first group 3.122 3.160 3.224 3.301

The second group 3.092 3.140 3.195 3.281

The third group 3.066 3.122 3.170 3.255

Table 11  (cm/s2) for different seismic intensities

Seismic 
intensity 6

Seismic 
intensity 7

Seismic 
intensity 8

Seismic 
intensity 9

Under small earthquakes 18 35 70 140

Under large earthquakes - 220 400 620

a m
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where , and  for reinforced concrete structures, and

here assume they are applicable to multi-grid composite walls; α is the ratio of post-yield to pre-

yield stiffness which can be determined by Eq. (3) and Eq. (4); k is the pre-yield stiffness which can

be determined by Eq. (3); Fy is the shear force of yield which can be determined by Eq. (6).

Eq. (16) can be replaced by the linearized form

(17)

(18)

(19)

in which .

By introducing the state vector , the equation of motion can be written as 

(20)

where .

3.4 Solution of the state equation

The exact solution of Eq. (20) using direct integration method (Zhang and Cao 2000) can be

expressed as

 

(21)

Evaluating  at discrete values of tj, then

(22)

Assuming  and employing Simpson numerical integration method, the

integration of the second term of Eq. (22) can be expressed as
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Then Eq. (22) can be written as

(24)

The solution of exponential matrix is accurate enough, so the error in Eq. (24) which comes from

the error of Simpson integration is small and can be generally expressed as . 

[Te] and [T1] in Eq. (24) can be solved by precise time-integration method (Zhang and Zhong

2000) and the detail procedures are as follows: the additive rule of exponential matrix is

(25)

where , generally for J = 20, and n = 1048576.

For a time interval  which is much smaller than  

(26)

where [I] is a unit matrix that is of the same order as [A], and . 

 rather than  is used to avoid the round off error and truncation error dominating

the calculations because  is relatively small, and Eq. (25) is rewritten as

 (27)

Instead of operating unit matrix [I] in the addition and multiplication, calculate Eq. (28) for J

times

(28)

in which  on the right hand side adopts the value calculated in the previous cycle. Then the

final result .

3.5 The mean and the variance of damage index

According to the expression of damage index of multi-grid composite walls, by assuming that Xm

and Eh(T) are correlated fully the mean and the variance of damage index can be written as

(29)

(30)

Fy and Xu can be determined by Eqs. (6) and (7), and β = 0.25.

For the stationary Gaussian process X(t), the mean and the variance of maximum displacement

and accumulative hysteretic energy can be written as
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(31)

(32)

(33)

(34)

where ; , in which  and  are the standard deviations

of X(t) and  respectively;  (Song and Grigoriu 1993); 

.

Eq. (31) to Eq. (34) can be derived from sections 3.3 and 3.4.

3.6 Dynamic reliability estimation based on damage accumulation 

The probability density function of random accumulative damage index D that follows logarithmic

normal distribution is

 

(35)

where ; ; .

Then dynamic reliability estimate  based on damage accumulation is

(36)

where D0 denotes the threshold of damage index.

4. Example

Consider that the multi-grid composite wall specimen SW6 shown in Fig. 6 is subjected to

random earthquake excitations, and the vertical load acted on SW6 is 110 kN. The concrete class is

C25, the grade of longitudinal steel bars is HPB235, the tensile strength of the filling blocks is

0.3 MPa, and the elastic modulus of the filling blocks is 2 × 103 MPa for SW6. The proposed

method in this paper is used to calculate dynamic reliability estimates of SW6. By assuming seismic

intensity is 8, the design seismic group is the first group, and the soil type is III according to

Chinese code for seismic design of buildings, and then T = 10.92s, ∆t = 0.01 s, for small earthquakes

S0 = 7.1234 × 10−4 m2/s3 and for large earthquakes S0=232.6010 × 10−4 m2/s3. The random variables

describing random earthquake excitations are the standard normal random variables in Eq. (10). A

sample of stationary random process under small earthquakes is shown in Fig. 7 and a sample under
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large earthquakes is shown in Fig. 8.

According to the results obtained from the tests in Table 6 and Table 7, assume that the damage

index threshold is D0 = 0.02 when filling blocks crack under small earthquakes and D0 = 0.95 when

the composite wall reaches limit state under large earthquakes. The uncertainty of the damage index

thresholds is neglected in the reliability calculations.

The numerical simulation procedures of dynamic reliability estimations are as follows:

(a) Generate random earthquake process samples.

(b) Assume initial equivalent damping coefficient and equivalent stiffness coefficient for iteration.

Solve structural responses and their statistical values using the equivalent linearized state equation;

through direct integration method combined with Simpson integration method and precise time-

integration method the state equation can be solved; according to the response statistical values

update the equivalent damping coefficient and equivalent stiffness coefficient. The iteration needs to

be repeated until the equivalent damping coefficient and equivalent stiffness coefficient in two

Fig. 6 Multi-grid composite wall specimen SW6

Fig. 7 A sample of stationary random process under
small earthquakes

Fig. 8 A sample of stationary random process under
large earthquakes
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consecutive iterations is sufficiently close.

(c) Using the response statistical values in the final iteration, the dynamic reliability estimates are

obtained when the filling blocks crack under small earthquakes and when the composite wall

reaches limit state under large earthquakes.

The key parameter describing the computational effort is the number of sample random processes

generated. The reliability estimates  for sample size Np ranging from 5 to 50, when the filling

blocks crack under small earthquakes with damage index threshold 0.02 and when the composite

wall reaches limit state under large earthquakes with damage index threshold 0.95, are shown in

Fig. 9. For each sample size, the statistical variability of the reliability estimate is assessed using 50

simulation runs, and the reliability estimate of each sample size in Fig. 7 adopts the mean of results

of 50 simulation runs.

Monte-Carlo method is a general method for dynamic reliability estimations and can be used for

the accuracy checking of the proposed method. The coefficient of variation (COV) of failure

probability pf obtained by Monte-Carlo method is given by , where Ns is the

number of simulation random process samples of Monte-Carlo method. The ratio of total number of

failures Nf to the number of simulated samples Ns is used as an estimate of failure probability pf,

and , and then the probability of reliability ps = 1 − pf for Monte-Carlo method.

The results of dynamic reliability obtained by the proposed method using 20 samples and by

Monte-Carlo method are shown in Table 12.

In Table 12, the reliability estimate obtained from the proposed method when the filling blocks

crack under small earthquakes with D0 = 0.02 shows good agreement with result obtained from

Monte-Carlo method, and it is the same when the composite wall reaches limit state under large

earthquakes with D0 = 0.95. The reliability when D0 = 0.95 decreases compared with that when

D0 = 0.02. And when D0 = 0.95 the sample size needed for Monte-Carlo method to reach the same

accuracy level (or COV) also decease compared with that when D0 = 0.02. Only with a small

number of samples, the COV obtained by the proposed method is already within high level of

accuracy and smaller than that of Monte-Carlo method. The number of samples required by the

proposed method is significantly smaller than that of Monte-Carlo method. In addition for example,

the reliability estimate 0.9881 obtained from the proposed method under small earthquakes means

that there is a 0.0119 failure probability of the damage index exceeding the threshold 0.02.

p̂s

COV 1/ pf Ns( )≈

pf p̂s≈ Nf /Ns=

Fig. 9 Reliability estimates of SW6 for different threshold levels and number of samples



478 Pei Liu and Qian-Feng Yao

5. Conclusions

In this study, a method for dynamic reliability calculations based on damage accumulation of

multi-grid composite walls is proposed. Through calculations of the multi-grid composite wall

specimen SW6 subjected to random earthquake excitations, the dynamic reliability estimates when

the filling blocks crack under small earthquakes and when the composite wall reaches limit state

under large earthquakes are obtained using the proposed method. Comparison with Monte-Carlo

simulations indicates that results of the proposed method are in good agreement with them. The

small number of simulation samples needed and the small COV indicate the proposed method is

efficient. The use of equations determined through the tests shows an effective way to estimate

dynamic reliabilities. The method proposed for dynamic reliability calculations of multi-grid

composite walls, is also applicable to other structures with appropriate modifications.
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