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Abstract. This paper studies the effects of spatially varying ground motions on the responses of a
bridge frame located on a canyon site. Compared to the spatial ground motions on a uniform flat site,
which is the usual assumptions in the analysis of spatial ground motion variation effects on structures, the
spatial ground motions at different locations on surface of a canyon site have different intensities owing to
local site amplifications, besides the loss of coherency and phase difference. In the proposed approach, the
spatial ground motions are modelled in two steps. Firstly, the base rock motions are assumed to have the
same intensity and are modelled with a filtered Tajimi-Kanai power spectral density function and an
empirical spatial ground motion coherency loss function. Then, power spectral density function of ground
motion on surface of the canyon site is derived by considering the site amplification effect based on the
one dimensional seismic wave propagation theory. Dynamic, quasi-static and total responses of the model
structure to various cases of spatially varying ground motions are estimated. For comparison, responses to
uniform ground motion, to spatial ground motions without considering local site effects, to spatial ground
motions without considering coherency loss or phase shift are also calculated. Discussions on the ground
motion spatial variation and local soil site amplification effects on structural responses are made. In
particular, the effects of neglecting the site amplifications in the analysis as adopted in most studies of
spatial ground motion effect on structural responses are highlighted. 

Keywords: site amplification effect; ground motion spatial variation; dynamic responses; quasi-static
responses; total responses.

1. Introduction

Earthquake ground motions at multiple supports of large dimensional structures inevitably vary

owing to seismic wave propagation effects. Many researchers have investigated seismic ground

motion spatial variations. Most of these studies are based on processing the recorded ground

motions at dense seismographic arrays, such as the SMART-1 array. Many empirical spatial ground

motion coherency loss functions have been derived (Bolt et al. 1982, Harichandran and Vanmarck

1986, Loh and Yeah 1988, Hao et al. 1989, Abrahamson et al. 1991). In all those studies the site
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under consideration is assumed to be uniform and homogeneous. Therefore the ground motion

power spectral densities at various locations of the site under consideration are assumed to be the

same. In other words, the only variations in spatial ground motions are loss of coherency and a

phase shift owing to seismic wave propagation. However, this assumption will lead to inaccurate

ground motion representation when a site has varying conditions such as a canyon site as shown in

Fig. 1. At a canyon site, the spatial ground motions at base rock can still be assumed to have the

same power spectral density, but on ground surface at points A and B the ground motion power

spectral densities will be very different owing to seismic wave propagation through different wave

paths that cause different site amplifications. Uniform ground motion power spectral density

assumption in such a situation may lead to erroneous estimation of structural responses. 

Some researchers have tried to model the effect of local site conditions on earthquake ground

motion spatial variations. Der Kiureghian et al. (1996) proposed a transfer function that implicitly

modelled the site effect on seismic wave propagation. In the model, the ground motion power

spectral density function was represented by a site-dependent transfer function and a white noise

spectrum. Typical site-dependent parameters, i.e., the central frequency and damping ratio for three

generic site conditions, namely, firm, medium and soft site were proposed. The advantage of the

model is that it is straightforward to use. The drawback is it can only approximately represent the

local site effects on ground motions. For example, it is well known that seismic wave will be

amplified and filtered when propagating through a layered soil site. The amplifications occur at

various vibration modes of the site. Therefore, the energy of surface motions will concentrate at a

few frequencies. The power spectral density function of the surface motion then may have multiple

peaks. This phenomenon, however, cannot be considered in Der Kiureghian’s model since only one

peak corresponding to the fundamental vibration mode of the site can be involved. In a recent study

(Hao and Chouw 2006), derivations of earthquake ground motion spatial variation on a site with

uneven surface and different geological properties were presented. In the latter study, spatial base

rock motion was modelled by a Tajimi-Kanai power spectral density function (Tajimi 1960) together

with an empirical coherency loss function (Hao et al. 1989). Power spectral density functions of the

surface motions were derived based on the one dimensional seismic wave propagation theory.

 Fig. 1 Schematic view of a bridge frame crossing a canyon site
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Compared to the model by Der Kiureghian et al. (1996), the latter study by Hao and Chouw (2006)

modelled the base rock motion by the Tajimi-Kanai power spectral density function instead of a

white noise, and the seismic wave propagation and specific site amplification effects were explicitly

represented in terms of the site conditions such as the soil depth and properties. The multiple

vibration modes of local site can be easily considered. Therefore the latter model gives more

realistic prediction of local site effects on seismic ground motions besides explicitly relating the site

conditions to ground motion model.

Previous studies of ground motion spatial variation effects on structural responses include

stochastic response analysis of a simply supported beam (Harichandran and Wang 1988), continuous

beams (Harichandran and Wang 1990, Zerva 1990), an arch with multiple horizontal input (Hao

1993), an arch with multiple simultaneous horizontal and vertical excitations (Hao 1994), a

symmetric building structure (Hao and Duan 1996), an asymmetric building structure (Hao and

Duan 1995), and a cable-stayed bridge (Dumanoglu and Soyluk 2002). Most of these studies

assumed linear elastic responses. Many researchers have also performed time history analysis of

structural responses to spatially varying ground motions. In these studies, both linear elastic,

nonlinear inelastic responses, pounding responses, soil-structure interaction effects were considered.

The spatial ground motion time histories were obtained either by considering the wave passage

effect only (Jankowski et al. 2000), or stochastically simulated to be compatible to a selected

empirical coherency loss function (Hao 1989, Monti et al. 1996, Sextos et al. 2003a, b, Chouw and

Hao 2005). In most of these studies, the site was assumed to be homogeneous and flat, local site

effect was not considered. 

Using the model developed by Der Kiureghian et al. (1996), Zembaty and Rutenburg (2002)

derived the displacement and shear force response spectra with consideration of ground motion

spatial variation and site effects. They concluded that site effects modified the overall behaviour of

the multi-supported structure significantly. Dumanogluid and Soyluk (2003) also used this model

and analysed responses of a long span structure to spatially varying ground motions with site effect.

It was concluded that although it was difficult to draw general conclusions because of the limited

analyses performed, it was clear that ground motion spatial variation and site effects significantly

affect the structural responses; considering different site effects at multiple supports generated larger

structural responses; the more significant was the difference between the site conditions at the

multiple supports, the larger was the structural responses. Another study that used this model to

consider the site effects and ground motion spatial variation was reported by Ates et al. (2005).

Similar conclusions were drawn, i.e., site effects significantly affect structural responses. Sextos et

al. (2003a, b) discussed the importance of considering ground motion spatial variations, site effect,

soil-structure interaction and nonlinear inelastic responses in bridge response analysis and design.

They also outlined the possible numerical approaches for bridge response analysis. 

In the present study, the spatial ground motion model with site effect derived by Hao and Chouw

(2006) is used to analyse the responses of a bridge frame on a canyon site. Stochastic method is

used to perform parametric analysis in this study. Dynamic, quasi-static and total structural

responses are calculated. The influences of site conditions and ground motion spatial variations on

structural responses are highlighted. Structural responses to uniform ground motion, to spatial

ground motion without considering coherency loss or phase shift and to spatial ground motion

without considering the site effect are calculated and compared. Discussions on the ground motion

spatial variation and site effect in terms of the site properties on structural responses are made.



114 Kaiming Bi, Hong Hao and Weixin Ren

2. Bridge and spatial ground motion model 

2.1 Bridge model

Fig. 1 illustrates the schematic view of a model bridge frame on a canyon site, in which A and B

are the two supports on ground surface, the corresponding points at base rock are A' and B'.

 and hj are the density, shear wave velocity, damping ratio and depth of the soil under

support j, respectively, where j represents A or B. The corresponding parameters on the base rock

are ρR, vR and ξR. The deck of the bridge frame is idealized as a rigid beam supported by two piers.

It should be noted that only one bridge frame is modelled in the present study, the adjacent bridge

structures are neglected. This simplification implies no pounding between adjacent bridge structures

is considered. This is a rational assumption since with the new development of modular expansion

joint (MEJ), which allows a large joint movement and at the same time without impending the

smoothness of traffic flow, completely precluding seismic pounding between adjacent bridge

structures is possible (Chouw and Hao 2008). This means that each bridge frame can vibrate

independently during an earthquake without pounding between adjacent structures. In the numerical

analysis, without losing generality, the viscous damping ratio of the structure is assumed to be 5%

in the present study.

2.2 Base rock motion

Assume the amplitudes of the power spectral densities at different locations on the base rock are

the same and in the form of the filtered Tajimi-Kanai power spectral density function 

(1)

in which  is a high pass filter (Ruiz and Penzien 1969),  is the Tajimi-Kanai power

spectral density function (Tajimi 1960),  and  are the central frequency and damping ratio of

the Tajimi-Kanai power spectral density function, Γ is a scaling factor depending on the ground

motion intensity, and ωf and ξf are the central frequency and damping ratio of the high pass filter. In

this study, it is assumed that , , ,  and

. These values correspond to a peak ground acceleration (PGA) 0.5g (Hao 1998)

with duration . Fig. 2 shows the power spectral density of the base rock motion.

Ground motion spatial variation at the base rock is modelled with a coherency loss function (Hao

et al. 1989)

(2)

in which

(3)
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(4)

It should be noted that the above coherency function was obtained by processing recorded spatial

ground motions on ground surface. Here it is used to model spatial variations of ground motion at

base rock. This is because no information about ground motion spatial variations at the base rock is

available. It is believed that seismic wave propagation through a heterogeneous soil site will change

ground motion spatial variations. The present assumption may lead to some inaccurate estimation of

coherency loss between spatial base rock motions. Further research into the influence of local site

conditions on spatial ground motion coherency loss is deemed necessary. 

2.3 Site amplification

Using seismic wave propagation theory presented by Aki (1980), Safak (1995) derived the

transfer function for shear wave propagation in a horizontal layer as

(5)

where  and  is the Fourier transform of the motion  and  on the ground

surface and at the base rock, respectively.  is the damping ratio accounting for energy

dissipation owing to seismic wave propagation, and Q is the quality factor;  is the wave

propagation time from point j' to j, and rj is the reflection coefficient for up-going waves

(6)

In engineering application, usually the outcrop motion on the rock surface is available, instead of

the base rock motion. The parameters defined above corresponding to the Tajimi-Kanai power

spectral density function in Eq. (1) also correspond to the outcrop motion on hard rock. Therefore,

the constant 2 in Eq. (5), which is a measure of free surface reflection, in the transfer function is
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Fig. 2 Filtered ground motion power spectral density function on the base rock
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dropped. Then it has

(7)

The auto and cross power spectral density function at point j and between points A and B are 

(8)

in which the superscript ‘*’ represents complex conjugate.

The coherency loss between ground motions at points A and B is 

(9)

where  is the phase difference of motions at points A and B

owing to wave propagation at the site. This derivation indicates that the wave propagation through a

homogeneous site has no effect on coherency loss , but it changes the phase delay

between the spatial ground motion at base rock and on ground surface, and changes the ground

motion intensity. It should be noted that this derivation is based on assumption that site condition is

homogeneous, and ground motion is stationary. In real case, a soil site will not be homogeneous.

The soil properties may vary randomly in space. Moreover, ground motion is not stationary. All

these will cause coherency loss in spatial ground motions. However, study of the influence of local

site conditions on spatial ground motion coherency loss is beyond the scope of the present paper. It

should also be noted that the transfer function expressed in Eq. (7) is derived for the case with only

one soil layer. If multiple soil layers are under consideration, it can be straightforwardly extended

based on the seismic wave propagation theory as discussed by Wolf (1985).

3. Structural response equation formulation

The purpose of this paper is to investigate the ground motion spatial variation and site effect on

responses of multi-supported structures, the soil-structure interaction effect is thus ignored. Without

losing generality, a 3-DOF mathematical model, with one for the bridge deck and two for the support

movements, is used in the present study. Effectively such structural model represents only a single

dynamic mode of vibration with two additional kinematic degrees of freedom representing the spatial

excitations in the longitudinal direction. The dynamic equilibrium equation can be written as
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where m is the lumped mass of the bridge deck, vt is the total displacement response, and uA and uB
are the ground displacement at support A and B respectively, kA and kB are the stiffness of the two

columns. The total response consists of dynamic response and quasi-static response

(11)

The quasi-static response can be derived as

(12)

in which  and . The dynamic response can be obtained by

solving the dynamic equilibrium equation

(13)

Transfer Eq. (13) into frequency domain, the dynamic response can be obtained by 

 

(14)

in which  is the circular natural vibration frequency of the structure, ξ0 is the

damping ratio, and  is the transfer function of the structure.

The power spectral density function of dynamic, quasi-static and total response can then be

derived as 

(15)

in which ‘Re’ denotes the real part of a complex number. In this study, the uniform ground motion

is assumed to be the same as uA. Under uniform ground motion excitation, Eq. (15) reduces to

(16)

4. Maximum response calculation

Standard random vibration method (Der Kiureghian 1980) is used to calculate the mean peak

displacement, it is briefly described in the following. 
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order spectral moment is defined as

(17)

where ωc is a high cut-off frequency.

The zero mean cross rate v and shape factor of the power spectral density function δ, can be

obtained by

(18)

(19)

the mean peak response can then be calculated by

(20)

where T is the duration of the stationary process,  is the standard deviation of the process,

and 

(21)

In the present study, the high cut-off frequency is taken as 25Hz since it covers the predominant

vibration modes of most engineering structures and the dominant earthquake ground motion

frequencies.

5. Numerical results and discussions

The effects of ground motion spatial variations and site conditions on structural responses are

investigated in detail in the present study. Dynamic, quasi-static and total responses of the structure

in Fig. 1 under different ground motions and site conditions are calculated. The phase shift effect of

spatial ground motion owing to seismic wave propagation depends on a dimensionless parameter

f0td (Bolt et al. 1982, Harichandran and Wang 1988, Zerva 1990, Hao 1993), in which f0 is the

structural vibration frequency, and td is the time lag between ground motions at two points separated

by d. In the previous studies without considering the site effect and with a flat ground surface

assumption, td= d/vapp, in which vapp is the apparent wave propagation velocity corresponding to the

spatial motions at the site. In this study, as discussed above, vertical wave propagation is assumed in

the local site, then the time lag between motions at points A and B on ground surface can be

estimated as td= d/vapp+ τB− τA, in which τB and τA, as defined above, are time required for wave to

propagate from B' to B and A' to A, respectively. The spatial ground motion phase shift effect is

investigated by varying the vibration frequency f0 of the structure.
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The constants of coherency loss function in Eq. (2) are obtained by processing recorded motions

during Event 45 at the SMART-1 array (Hao 1989). It should be noted that this coherency loss

function represents highly correlated ground motions. For comparison, two modified coherency loss

functions are also used in the study, which represent intermediately and weakly correlated ground

motions, respectively. Fig. 3 shows different coherency loss functions corresponding to parameters

given in Table 1. For spatial ground motion without coherency loss,  in Eq. (2).

The main parameters for base rock and soil conditions can be combined together to form a single

coefficient defined as rock/soil impedance ratio (Rosset 1977)

(22)

This impedance coefficient reflects the differences between base rock and soil conditions. Without

losing generality, three types of soils are studied in the paper. The corresponding parameters for the

soil layer and the base rock are given in Table 2. 

γA′B′ iω( ) 1=

IR/S
ρRvR

ρSvS
-----------=

Fig. 3 Different coherency loss functions

Table 1 Parameters for coherency loss functions

Coherency loss β a b c

Highly(event 45) 1.109×10−4 3.583×10−3 −1.811×10−5 1.177×10−4

Intermediately 3.697×10−4 1.194×10−2 −1.811×10−5 1.177×10−4

Weakly 1.109×10−3 3.583×10−2 −1.811×10−5 1.177×10−4

Table 2 Parameters of base rock and different types of soil 

Type ρ (kg/m3) v (m/s) ξ IR/S

Base rock 3000 1500 0.05 /

Firm soil 2000 450 0.05 5

Medium soil 1500 300 0.05 10

Soft soil 1500 100 0.05 30
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5.1 Effect of soil depth

The effects of soil depth on structural responses are investigated first. Six different soil depths are

discussed, i.e., the bridge frame locates on a flat site with hA = hB = 0 m, hA = hB = 30 m,

hA = hB = 50 m or locates on a canyon site with hA = 0 m, hB = 30 m, hA = 0 m, hB = 50 m and

hA = 30 m, hB = 50 m. To preclude the influence of other parameters, the soil under both site A and

B are assumed to be firm soil with IR/S = 5, and the ground motions are assumed to be

intermediately correlated.

As shown in Fig. 4, different soil depths lead to different transfer functions. The peaks occur at

the corresponding vibration modes of the sites. Take h = 50 m as a example, the resonant

frequencies of the soil layer are , , where vs and h is the shear wave

velocity and depth of the soil layer respectively, obvious peaks can be obtained at f = 2.25, 6.75 and

11.25 Hz with vs = 450 m/s and h = 50 m. The deeper is the soil, the more flexible is the site, and

the lower is the fundamental vibration frequency. The transfer function directly alters the ground

motion power spectral density function on ground surface as compared to that at the base rock, as

shown in Fig. 5. Motions on ground surface have a narrower band, but higher peak, as compared to

that at the base rock, indicating the effect of site filtering and amplification on base rock motion. If

the ground surface is flat, the time lag between motions at A and B are the same as those at the

base rock (τB− τA= 0) because soil properties are assumed to be the same at the two wave paths. In

this case, wave propagation through the site will not cause further phase difference. However, if a

canyon site is assumed, the time for wave propagating from base rock to ground surface is different

(τB− τA≠ 0), which results in an additional phase difference between motions at A and B, as

compared to those at the base rock, as shown in Fig. 6.

Dynamic, quasi-static and total responses with varying structural vibration frequencies are

calculated, and normalized by the corresponding responses to uniform excitation, which is defined

as the motion at Point A, as discussed above. Figs. 7 and 8 show the normalized dynamic responses

and total responses with respect to the dimensionless parameter, f0td, respectively. This parameter

measures the relation between phase shift or time lag of spatial ground motions at points A and B

fk vsk/4h= k 1 3 5 …, , ,=

Fig. 4 Site transfer functions for different soil depths Fig. 5 Power spectral densities of ground motions on
site of different depths
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and the fundamental vibration mode with frequency f0. When a flat site is considered, f0td= f0d/vapp,

and the multiple ground excitations and the structural vibration mode are in-phase if

f0td = , whereas they are out-of-phase if f0td =  for the special case (Hao 1998,

Hao and Zhang 1999).

As shown in Fig. 7, if the site is flat, non-uniform ground motion always reduces the dynamic

responses as compared to the uniform ground motion. The normalized dynamic responses reach

their minimum value at f0td = 0.5, 1.5 and maximum value at f0td = 1.0, 2.0 because of the out-of-

phase and in-phase ground motion inputs. This observation is the same as those reported in many

previous studies (Hao 1998, Hao and Zhang 1999). If a canyon site is assumed with Point A on

base rock and Point B on soil surface, the maximum responses, however, do not occur at f0td = 1.0.

This is because of the dominance of site amplification effect on ground motions and resonant

1.0 2.0 …, , 0.5 1.5 …, ,

Fig. 6 Phase difference caused by seismic wave
propagation through sites of different depths

Fig. 7 Normalized dynamic responses for different
soil depths

Fig. 8 Normalized total responses for different soil
depths

Fig. 9 Dynamic, quasi-static and total responses with
hA = 0 m and hB = 30 m
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responses. The maximum response occurs when the structure is resonant with the soil site. For

example, when hA = 0 m and hB = 30 m, the first peak occurs at f0td= 0.625, or f0= 3.75 Hz because

td= d/vapp+ τB= d/vapp+ hB/vB= 0.16667 sec. The second peak can be observed when f0= 11.25 Hz.

As shown in Figs. 4 and 5, the resonant frequencies of the site with soil depth 30 m are

, . If hA = 0 m and hB = 50 m, the first peak

occurs at f0td= 0.475, or f0= 2.25 Hz because td= 0.2111 sec. Again as shown in Figs. 4 and 5, 2.25

Hz is the fundamental vibration frequency of the soil site with depth 50 m. The following peaks can

also be observed when resonance occurs. If both point A and B locate on soil surface with

hA = 30 m and hB = 50 m, the spatial ground motion wave passage effect dominates the site effect on

dynamic structural responses, i.e., the minimum values occur around f0td = , and the

maximum values around f0td = . This is because, although site A and B have different

fundamental vibration modes and different peak values in their respective power spectral density

function as shown in Fig. 5, the mean peak responses to ground motion at site A and B are similar

to each other because they depend on the spectral moments as defined above. Therefore,

normalization removes the site amplification effects, which leaves the wave passage effects to

govern the normalized dynamic response in this case. It can also be noted that the normalized

dynamic responses are always smaller than 1.0 when wave passage effect dominates, indicating the

spatial ground motion phase shift always results in a reduction in dynamic structural responses.

Similar observation has also been obtained in previous studies (Hao 1998, Hao and Zhang 1999).

When the vibration frequency of the structure coincides with the fundamental frequency of the soil

layer, however, the normalized peak dynamic responses can be larger than 1.0, indicating the

significance of site amplifications on ground motions and hence on structural responses. These

observations indicate the importance of considering both the site and the ground motion spatial

variation effects in structural response analysis. 

Quasi-static responses are independent of the fundamental vibration frequency of the structure

(Eqs. (15), (16)). The normalized quasi-static responses are therefore constant for each case with

respect to f0td. The normalized total responses are given in Fig. 8. As shown, when the

dimensionless parameter f0td is less than 1.5, the normalized total responses are similar to the

normalized dynamic responses, indicating dynamic response dominates the total response. When f0td
increases, however, the normalized responses approach to a constant, equal to the quasi-static

response. Neither spatial ground motion wave passage effect, nor the site amplification effect is

prominent. This is because increasing f0td implies the structure becomes stiffer, as f0 is increased in

this study. The dynamic response is smaller when structure is stiffer. At large f0td, quasi-static

response dominates the total response, as shown in Fig. 9. This observation indicates the importance

of quasi-static responses for stiff structures. 

5.2 Effect of soil properties

To study the effect of soil properties on ground motion spatial variation and hence on structural

responses, different soil types shown in Table 2 are considered. The soil under point A is assumed

to be firm soil (IR/S = 5) and unchanged in all the cases, while soil under support B varies from firm

soil (IR/S = 5) to soft soil (IR/S = 30). The soil depths are assumed to be hA = 30 m and hB = 50 m, and

the ground motions are intermediately correlated. Fig. 10 shows the transfer function at support B

for different cases. Fig. 11 shows the corresponding power spectral density function of motion on

ground surface at Point B. For comparison purpose, the power spectral density function of motion at

fk vsk/4h 450k/ 4 30×( ) 3.75 k= = = k 1 3 5 …, , ,=

0.5 1.5,
1.0 2.0,
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Point A is also shown in these two figures. Fig. 12 shows the phase differences between motions at

Point A and B. The normalized dynamic responses and total responses are shown in Figs. 13 and

14, respectively. 

Fig. 10 clearly shows again the site effects. As shown, peak value of the transfer function

increases, while the frequency band becomes narrower with the decrease of the site stiffness. This

directly affects the ground motions on ground surface, resulting in substantial spatial variations

between ground motions at Points A and B. Soft soil (IR/S = 30) and medium soil (IR/S = 10)

significantly amplifies the ground motions at its resonant frequencies, firm soil (IR/S = 5) also

amplifies ground motions, but at higher frequencies and with a less extent. As a result, the ground

Fig. 10 Soil site transfer function for different soil
properties

Fig. 11 Power spectral densities of ground motions
at sites with different soil properties

Fig. 12 Phase difference owing to seismic wave
propagation through sites with different soil
properties

Fig. 13 Normalized dynamic responses for different
soil properties



124 Kaiming Bi, Hong Hao and Weixin Ren

motion power spectral densities at ground surface are very different as shown in Fig. 11. Soil

properties also affect the seismic wave propagation velocity and hence the phase difference between

motions at Point A and B. Fig. 12 shows the phase differences between motions at A and B owing

to wave propagation from base rock to ground surface. It shows that the phase differences vary

rapidly with respect to frequency. The softer is the soil, the more drastic variation is the phase

difference because the wave velocity is slower. 

Again, as shown in Fig. 13, when the vibration frequency of the structure is low, site effect

dominates the dynamic responses. When the soil properties of site A and B are different from each

other significantly, i.e., the maximum responses occur when the structure resonates with the soil

site. For example, when site B is the medium soil, the first peak occurs at f0td= 0.3, or f0= 1.5 Hz

because td= 0.2 sec. As shown in Figs. 10 and 11, the fundamental vibration frequency for the

medium site is 1.5 Hz. When site B is a soft soil site, the first peak occurs at f0td= 0.267, or

f0= 0.5 Hz because td= 0.5333 sec, and the second peak at f0td= 0.8, corresponding to the second

mode of the site B. Subsequent peaks of these two cases are associated with the in-phase excitations

and the minimum values are associated with the out-of-phase effect. This is because when the

structure becomes stiffer, the dynamic response and hence the site resonance effect becomes less

significant as compared with the ground motion spatial variation effect. As also can be seen in

Fig. 13, soft soil amplification effect results in larger dynamic responses, normalized dynamic

responses are usually larger than 1.0 when the responses are dominated by the site effect, and the

results are always less than 1.0 when spatial ground motion phase shift effect governs the dynamic

responses.

Total responses shown in Fig. 14 follow the similar pattern as that discussed above, i.e., the

normalized total responses are similar to the normalized dynamic responses when f0td is less than

1.5. However, if the structure is stiff, the dynamic responses are small and the total responses are

dominated by the quasi-static responses, as shown in Fig. 15 (medium soil at support B). 

Fig. 14 Normalized total responses for different soil
properties

Fig. 15 Dynamic, quasi-static and total responses
(medium soil at support B)
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5.3 Effect of coherency loss

To investigate the influence of ground motion spatial variation, different coherency losses are

considered in the paper as shown in Fig. 3, i.e., highly, intermediately and weakly correlated

coherency loss functions. Moreover, two special cases, i.e., intermediate coherency loss without

considering phase shift ( ), and no coherency loss ( ), are also

considered. All the results are normalized by the corresponding uniform excitation. For these cases,

the canyon site with hA = 30 m and hB = 50 m is considered, and medium soil ( ) are

assumed at both sites A and B. Fig. 16 shows the normalized dynamic responses and Fig. 17 shows

the normalized total responses. 

As shown in Fig. 16, site effect governs the dynamic responses when f0td< 0.5, i.e., peak response

occurs at the resonant frequency with f0= 0.2 Hz and f0td= 0.3. However, if f0td> 0.5, spatial ground

motion wave passage effect dominates the dynamic responses, i.e. the normalized dynamic

responses reach their minimum value at f0td= 0.5, 1.5 and their maximum value at f0td= 1.0, 2.0

because of the out-of-phase and in-phase ground motion excitations. The more correlated are the

ground motions, the more pronounced are the in-phase and out-of-phase effects. This means that the

influence of site effect is more significant when the structure is relatively flexible, while spatial

ground motion wave passage effect dominates the dynamic responses when the structure is stiff. If

multiple ground motion phase shift is not considered, normalized peak response occurs at vibration

modes of the soil site, no in-phase or out-of-phase effects are present. For total responses as shown

in Fig. 17, similar observations can be drawn, i.e., dynamic response dominates total response when

f0td< 1.0, and quasi-static response is more significant when the structure is stiff.

6. Conclusions

This paper studies the combined effects of ground motion spatial variation and local site

conditions on the responses of a bridge frame located on a canyon site. Dynamic, quasi-static and

cos ωtd( ) 1.0= γA′B′ iω( ) 1=

IR/S 10=

Fig. 16 Normalized dynamic responses for different
coherency losses

Fig. 17 Normalized total responses for different
coherency losses
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total responses of the model structure to various cases of spatially varying ground motions are

investigated. Following conclusions can be drawn:

1. Wave propagation through multiple sites with different site conditions causes further variations

of spatial ground motions. Depending on the soil conditions along each wave path, spatial ground

motions at different locations on surface of a canyon site have different power spectral densities and

more pronounced phase shift as compared to those on the base rock.

2. Local site conditions significantly affect spatial surface ground motions, and hence the

structural responses. The dynamic peak responses occur when the structure resonates with the site,

and when the spatial ground motion and structural vibration mode are in-phase. The minimum

dynamic responses occur when the spatial ground motion and structural vibration mode is out-of-

phase. 

3. Dynamic response governs the total response when the structure is flexible, while quasi-static

response dominates it when the structure is stiff. 

4. Different site conditions at two structural supports causes more significant spatial variations of

ground motions, and hence larger structural responses. 

5. Spatial ground motion coherency loss has a relatively less significant effect on structural

responses when the structure is flexible and the total response is governed by the dynamic response.

However, coherency loss effect is prominent, especially when the structure is stiff.

6. Uniform site assumption leads to underestimation of spatial variations of ground motions on a

canyon site, and therefore underestimation of structural responses.
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