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Abstract. Two-dimensional elastic contact problems, including normal, tangential, and rolling contacts,
are treated with the finite element method in this study. Stress boundary conditions and kinematic
conditions are transformed into multiple point constraints for nodal displacements in the finite element
method. Upon imposing these constraints into the finite element system equations, the calculated nodal
stresses and nodal displacements satisfy stress and displacement contact conditions exactly. Frictional and
frictionless contacts between elastically identical as well as elastically dissimilar materials are treated in
this study. The contact lengths, sizes of slip and stick regions, the normal and the shear stresses can be
found.
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1. Introduction

Contact stress analysis plays an important role in designing mechanical components such as

bearings, gears and pinions, cams and followers, and wheel and rail. A contact problem can be

characterized as static (or quasi-static) if accelerations are negligible; otherwise it is dynamic. A

static contact problem may be further characterized as a case of normal contact when tangential

resultant force is absent, or as a case of tangential contact when tangential forces exist. Likewise,

when two or more bodies are in rolling contact, the motion is called steady rolling when material

particles “flow through” the contact region with a steady-state motion. If tangential tractions are

transmitted in the contact region, the phenomenon is called tractive rolling. A normal contact

problem determines the size of the contact region and the normal pressure in the region. In both

tangential and rolling contact problems, the unknowns are the normal pressure, the size of the

contact zone, and the tangential tractions in the contact zone, hence the normal contact can be

considered as a part of the tangential and the rolling contact problems. Also, in a case of tractive
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rolling, local sliding, also called slipping, always occurs; hence a method that solves rolling contact

problems can also deal with normal and tangential contacts. In this study the normal contact, the

tangential contact, and the rolling contact problems are treated, but the emphasis is placed on steady

rolling between two elastic bodies.

Contact problems may be formulated by the following two methods: nonlinear variational

principles, and integral equations (Knothe et al. 2001). Nonlinear variational formulation of normal

contact problems generally involves variational inequalities (Duvaut and Lions 1976, Wriggers

2006, Kikuchi and Oden 1988, Eterovic and Bathe 1991, Buscaglia et al. 2001, Hassani et al. 2003,

Solberg and Papadopoulos 2005, Mohamed et al. 2006, Solberg et al. 2007, Ferronato 2008), and

these inequality constraints may be imposed upon the finite element procedure by various methods

(Wriggers 2006). The most complete variational formulation for rolling contact, within the domain

of linear elasticity, is due to Kalker (1990); his formulation is based on complementary energy

principles. Formulations for visco-elastic rolling solids have also been derived (Duvaut and Lions

1976, Padovan and Paramadilok 1984, Tallec and Rahier 1994). These rolling contact formulations

may be conveniently expressed in the arbitrary Lagrange Eulerian (ALE) description (Wriggers

2006, Nackenhorst 2004).

Integral equation formulation of rolling contact problems may date from 1926 when Carter (1926)

obtained an analytical solution for the tangential stress of two rolling cylinders. Up to now

numerical solutions still check against his results. Johnson (1958a) obtained kinematic relations

during rolling contact [Eq. (9) below, see also Kalker 1967)]. Johnson (1958b) also obtained

approximate solutions for a sphere rolling on a plane. Liu and Paul (1989) utilized fundamental

solutions obtained by Cerruti (1882) to turn the kinematic equations obtained by Johnson (1958a)

into integral equations for tangential stresses, and they obtained numerical solutions for cases with

small spins. By simplifying the rail by a series of springs, Kalker (1973, 1991) was able to obtain

approximate solutions for wheel-rail rolling contact. Gonzalez and Abascal (1998) developed a

boundary element method for rolling contact between dissimilar materials. Kakoi and Obara (1993)

developed a special boundary element technique to deal with rolling contacts of counterformal

bodies. Pauk and Zastrau (2003) analyzed two-dimensional rolling contact problems with a

boundary element technique; surface roughness was taken into consideration during their analysis.

Semi-analytical solutions of integral equations were obtained for various types of contacts, for

example, Ozsahin (2007) obtained solutions for frictionless contact of a layer on an elastic half

plane, Nowell et al. (1988b) obtained solutions for two-dimensional normal and tangential contacts

(see also Hills et al. 1993), Nowell and Hills (1988a) obtained solutions for rolling contact.

Between the above-mentioned two major formulations for rolling contact problems, the integral

equations formulation is mathematically straightforward. Both stresses and displacements may be

used as principal unknowns and hence both stress and displacement boundary conditions can be

satisfied exactly at each node. But this formulation utilizes fundamental solutions, which are still

unknown for many nonlinear material responses. Even for problems with linear elastic materials,

fundamental solutions for a finite domain with a concave boundary are not generally available (Paul

and Hashemi 1981). In contrast to the integral equation formulation, formulations based upon

nonlinear variational principles can deal with bodies with various shapes and have various kinds of

nonlinear responses. Special contact elements based on the nonlinear variational principles have

been developed and incorporated into commercial finite element software. But in the assumed-

displacement finite element formulation the variables are nodal displacements and nodal forces,

stress boundary conditions can not be directly imposed. Also, nonlinear variational principles
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involves sophisticated mathematics, hence are understood only by experts. To many practicing

engineers contact elements based on nonlinear variational principles are used without the

understanding of its theory.

There are a few attempts to combine the two above-mentioned formulations. Wang et al. (2005)

proposed a direct constraint hybrid Trefftz finite element method for frictionless normal contact

problems. Interfacial force equilibrium is ensured by the constraint conditions. González et al.

(2008) showed that a finite element mesh may be in contact with a boundary element mesh, by

inserting a contact frame between them. They utilized variational formulation in the analysis. Earlier

Liu and Hsu (2000) proposed the idea to transform stress boundary conditions into multiple

constraints for nodal displacements. They only considered normal contact problems and treated two

cases with elastically identical materials. Their constraint equations had obvious errors that caused

inaccurate results in the case of frictional contact. The method to use extrapolated stresses through

multiple point constraints was not pursued further; until now in the present study we show that,

with the correct constraint equations, the method can be used to solve normal, rolling, and

tangential contacts with or without friction and between similar or dissimilar materials. In this study

both stress boundary conditions and kinematic conditions are transformed into multiple point

constraints for nodal displacements, and upon incorporating these linear constraints into the finite

element system equations, the nodal displacements and nodal stresses satisfy the kinematic

conditions and stress boundary conditions exactly. Compared to the two major formulations

mentioned above, this method is a finite element technique, but without using nonlinear variational

principles, also without using any special contact element. The method also resembles the integral

equation formulation since stress boundary conditions are satisfied exactly by the extrapolated nodal

stresses; but no fundamental solutions are required.

2. Contact boundary conditions

Fig. 1 shows an illustrative mesh of two bodies before contact. If nodes j and k will be in contact,

then their displacements v in the y direction satisfy the relation

(1)

where h(x) is the gap distance before contact. The two nodes have the same normal and shear

stresses, i.e.

 (2)

(3)

The above three conditions are satisfied by every pair of nodes in the contact zone. If the two

nodes are in the slip region, meaning that relative slip occurs at these nodes, then according to

Coulomb’s law of friction

(4)

where µ is the coefficient of friction. If this pair of nodes is in the stick region, then kinematic

conditions must be used, as discussed below.

Assuming two equal and opposite tangential forces Q are applied to two elastic bodies already in

vj vk– h x( )=

σyy( )j σyy( )k=

τxy( )j τxy( )k=

τxy( )j µ σyy( )j=
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contact, then the tangential displacement of node j relative to node k, denoted by Sx, is given by

(Johnson 1985, p.210-212)

 (5)

where uj and uk are nodal displacements in the x (i.e., tangential) direction, δx is the tangential

displacement of a point on body 2, which is far away from the contact region, relative to a point on

body 1, which is also far away from the contact region. The displacement δx may be called rigid

displacement, since it is the relative displacement for every remote pair of points on the two bodies.

Note that δx is positive when body 2 is moving towards the right with respect to body 1. If nodes j

and k are in the stick region, then Sx = 0 and the kinematic equation takes the form

(6)

The previous equation holds for a pair of nodes in the stick region during tangential contact. In

the special case of normal contact, the rigid displacement δx is zero, Eq. (5) becomes

 (7)

which reduces to the form

 (8)

when the two nodes are in the stick region. The kinematic equation for rolling contact is described

below.

Fig. 2 shows the upper body (body 1) rolls over the lower body (body 2) with a counterclockwise

instantaneous angular velocity. At the instant body 1 is subjected to a counterclockwise couple,

traction (τxy)1 on body 1 develops in the contact region to balance this couple, and (τxy)2 is its equal

but opposite counterpart on body 2. In a rolling contact problem relative motion is expressed by

relative velocity, without the possibility of confusion, let the notation Sx also denote the relative

tangential velocity of two originally coinciding nodes j and k in rolling contact, then this relative

speed is given by Johnson (1958a, see also Johnson 1985, pp. 242-245) as follows

(9)

where ξx is called creep ratio; the meaning of this parameter can be illustrated by considering

Sx δx uj uk–( )+=

δx uj uk–( )+ 0=

Sx uj uk–=

uj uk– 0=

Sx ξx ∂u/∂x( )j ∂u/∂x( )k–+=

Fig. 1 An illustrative mesh of two bodies before contact
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bodies 1 and 2 as two rolling cylinders of radii r1 and r2 respectively, and these two cylinders

originally have the same average circumferential speed V, namely V = r1ω1 = r2ω2, before tractions

(τxy)1 and (τxy)2 occur in the contact region. But as tangential tractions develop, elastic deformation

due to these tractions changes the circumferences of two cylinders, making average circumferential

speed of these two cylinders differ, and ξx is a parameter to represent this difference. It is the speed

increment of body 1 subtracts from the speed increment of body 2, and then dividing this difference

by the original speed V to make it dimensionless.

If both nodes j and k are in the stick region, which is generally located at the leading edge when

contact is between two identical materials as Fig. 2 shows, then there is no relative speed between

these two nodes, i.e., Sx = 0 and Eq. (9) becomes

(10)

In this study all forces are assumed to be monotonically increasing and stresses are assumed to be

increased in proportional, so that stresses do not depend on loading history.

3. Multiple point constraints

Eqs. (1), (6), and (8) are called multiple point constraints for nodal displacements, since each of

them involves displacements at more than one node. Other equations, namely Eqs. (2), (3), (4), and

(10), are now to be transformed into multiple point constraints for nodal displacements.

In the finite element method nodal stresses may be accurately calculated by extrapolating stresses

at Gaussian points, and these Gaussian stresses are given by

(11)

where  are coordinates of the i’th Gaussian integration point in the isoparametric ξ-η plane,

 is the stress vector at the i’th Gaussian integration point, B is the strain matrix,

and d is the element nodal displacement vector. In this study all analyses are performed with eight-

node quadratic isoparametric elements using 3 × 3 Gaussian integration. To extrapolate Gaussian

stresses to a node, say node j, one may establish another isoparametric coordinate system s-t such

ξx ∂u/∂x( )j ∂u/∂x( )k–+ 0=

σi B ξi ηi,( )d=

ξi ηi,( )

σi σxx σyy τxy[ ]
T

=

Fig. 2 Two bodies in rolling contact
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that  (see Cook et al. 2001, p.231-232, for this extrapolation). Then the stress

vector at the j’th node may be expressed as

 (12)

where Ni are shape functions for nine-node quadratic isoparametric elements, and  denotes

coordinates of the j’th node in the s-t coordinate system. Substituting Eq. (12) into Eq. (11), also

making use of stress-strain relations, one may obtain the nodal stress vector at the j’th node in

element n, as follows

 (13)

where subscript/superscript n denotes that the variable is defined for element n, E
n is material

constant matrix for element n. The condition that the j’th node of element n and the k’th node of

element m have the same stress σyy [i.e., Eq. (2)] may be expressed in the form

 (14)

where  and  are row vectors that contain only the second rows of the material constant

matrices En and Em, respectively. Only the second rows are needed since σyy appears in the second

row of the stress vector. The extrapolated nodal stresses are discontinuous across the element

boundary, hence generally the equal stress condition [i.e., Eq. (2)] is written twice for a boundary

node. For example, if the j’th node of element n is a boundary node and is also a node of element

n + 1, and the k’th node of element m is also a node of element k + 1, then, in addition to equation

(14), the equal stress condition should be written again for elements n + 1 and k + 1 as well.

Another situation is the j’th node of element n is a boundary node but the k’th node of element m is

not, then the average stress of the former node equals to the stress of the latter node.

If the shear stresses at nodes j and k are equal [i.e., Eq. (3)], then the corresponding multiple point

constraint is

 (15)

Eq. (4) can be treated in a similar way, giving rise to the following result

 (16)

and finally, Eq. (9) relates two normal strains εxx at nodes j and k; it can be transformed into the

following form

 (17)

where B1 is the row vector which contains only the first row of the strain matrix B. 

Eq. (16) couple the 16 nodal displacements in the vector dn, and Eqs. (14), (15), and (17) couple

the 32 displacements in vectors dn, and dm. Whenever node j and node k are in contact, Eqs. (1),

(14), and (15) are always valid at this pair of nodes. If nodes j and k are in the slip region, then

s t,( ) ξ η,( )/ 0.6=

σj Ni sj tj,( )σi

i 1=

9

∑=

sj tj,( )

σj( )n E
n

Ni sj tj,( )B ξi ηi,( )dn

i 1=

9

∑=

E2

n
Ni sj tj,( )B ξi ηi,( )dn

i 1=

9

∑ E2

m
Ni sk tk,( )B ξi ηi,( )dm

i 1=

9

∑=

E2

n
E2

m

E3

n
Ni sj tj,( )B ξi ηi,( )dn

i 1=

9

∑ E3

m
Ni sk tk,( )B ξi ηi,( )dm

i 1=

9

∑=

E3

n
Ni sj tj,( )B ξi ηi,( )dn

i 1=

9

∑ µE2

n
Ni sj tj,( )B ξi ηi,( )dn

i 1=

9

∑=

ξx Ni sj tj,( )B1 ξi ηi,( )dn

i 1=

9

∑ Ni sk tk,( )B1 ξi ηi,( )dm

i 1=

9

∑–+ 0=
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equation (16) is also imposed, but if these two nodes are in the stick region, then, depending on the

nature of the problem (i.e., normal, tangential, or rolling contact), one of the three Eqs. (6), (8), or

(17) is imposed as well. The 3 × 3 Gaussian integration rule should be used in the finite element

procedure, as Eqs. (14)-(17) shows, since the 2 × 2 integration rule does not gives rise to correct

results, i.e., when the 2 × 2 integration rule is used in Eqs. (14)-(17), and also in the finite element

procedure to calculate stiffness matrices and to perform stress extrapolation, then the nodal stresses

so obtained do not satisfy Eqs. (2)-(4) (Hsu 1998); this phenomenon requires further studies.

As a check of solutions, the tangential traction in the stick region should be less than its limiting

value, namely

(18)

Furthermore, when solutions are obtained, relative slip Sx can be found from Eq. (5), Eq. (7), or

Eq. (9), depending on the nature of the problem. Since the tangential stress τxy always opposes the

relative slip Sx, the calculated Sx and τxy should satisfy the following relation at any node in the slip

region,

(19)

Eqs. (18) and (19) are used to check solutions.

4. Analysis procedure

Contact stress analysis can be classified into the forward analysis and the inverse analysis. In the

forward analysis the applied forces are given, the contact length and the normal as well as

tangential contact stresses in the contact region are to be determined. In the inverse analysis the

rigid displacements, the creep ratio, and sometimes even the contact length are assumed before the

analysis. Contact stresses are determined in the analysis and the corresponding applied forces are

obtained by integrating the stresses over the contact region. The forward analysis generally involves

iterations on the size of the contact region and also adjustments of mesh sizes. The inverse analysis

generally is simpler for one execution, but to obtain contact stresses caused a given force, a

complete force-displacement curve should be generated by a series of executions. Then the rigid

displacement corresponding to this force is obtained from the force-displacement curve, and is used

as the input to another analysis to obtain contact stresses. Hence in an inverse analysis many

executions are needed for one specified force. Both the forward and the inverse analyses can be

carried out by the finite element method, but the integral equation formulation can only be

implemented with the inverse analysis. The purpose of this article is to present the idea of using

multiple point constraints. The inverse analysis is adopted in this study to avoid tedious iterations

on the contact length and mesh adjustments. The number of elements in contact is assumed a priori,

and the rigid displacement δx in a case of tangential contact, or the creep ratio ξx in a case of rolling

contact, is the input parameter. The numerical procedure solves for the corresponding normal force

P, the tangential force Q, and the normal/tangential stress distribution in the contact region. Two-

dimensional contacts between two cylinders, as shown in Fig. 3, are treated, and procedures for

normal contact problems are discussed first.

τxy j µ σyy j<

τxy/ τxy Sx/ Sx–=
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4.1 Procedures for normal contact analysis

The purpose for a normal contact analysis is to determine the prescribed displacement ∆y see

Fig. 3 that produces a specified contact length 2a, as well as the normal stress in the contact region.

When the contact is with friction, the tangential stress and sizes of both the stick and the slip

regions are also to be found. The prescribed displacement ∆y eliminates the upper cylinder’s

remaining rigid body motion that was not suppressed by supports. Procedures for a frictional normal

contact analysis are given below.

1. Assume at the outset that the stick region extends to the whole contact zone, thus multiple point

constraints (1), (8), (14), and (15) are imposed on every node pair.

2. Adjust the prescribed displacement ∆y, until the following two conditions are satisfied:

   i) Nodal stress σyy is compressive at every node inside the contact region.

   ii) σyy ≈ 0 at the outermost node on either side of the contact region.

3. Check if tangential stress τxy exceeds its limiting value µσyy at every node pair in the stick

region. If condition (18) is violated at a particular node pair, then in the next analysis, slip is

assumed to occur at this node pair, on which multiple point constraints (1), (14), (15), and (16)

are imposed. Note that condition (16) should be applied to both nodes.

4. The previous step (step 3) alters the stresses in the slip region, which is generally located next

to the contact boundary. Hence the stress σyy at the outermost boundary may be affected by step

3, and one should repeat step 2.

5. Repeat step 3, and then go back to step 2 again. Until all conditions specified in steps 2 and 3

are satisfied.

6. The normal force P required to produce the specified contact region is the reaction force at the

Fig. 3 Two cylinders in contact 
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node of prescribed displacement ∆y.

4.2 Procedures for rolling contact analysis

The normal contact analysis should always be performed prior to a rolling contact analysis to

obtain the prescribed displacement ∆y corresponding to a specified contact length 2a. In a case of

rolling contact between two cylinders made of different materials, an accelerating moment given to

the upper cylinder (body 1) causes tangential stress to develop in the contact region, and if the

upper cylinder is softer than the lower, this accelerating moment also produces an apparent increase

in the magnitude of the compressive stress σyy at the trailing edge (Hills et al. 1993, Nowell and

Hills 1988a); implying that the contact length extends to the right. In this study we specify the

increment in the number of contact elements at the trailing edge prior to the analysis, and determine

the corresponding tangential force and creep ratio to produce such an increase of contact length; the

normal and tangential stresses, as well as sizes of the stick and the slip regions, are also determined.

Numerical procedures given below are for the situation that an accelerating moment is given to the

upper cylinder, which is softer than the other.

1. Assume that initially the whole contact region is stick, and multiple point constraints (1), (14),

(15), and (17) are imposed for every node pair in the contact region.

2. Determine the tangential force Q, and the corresponding creep ratio ξx. This step is an iterative

procedure in itself, explained as follows:

i) Perform the finite element analysis with an arbitrarily assumed creep ratio ξx, and an

arbitrarily assumed value of the tangential force Q.

The tangential force Q may be distributed evenly to each node on the upper body in the

contact region, and the equal but opposite force −Q is also distributed evenly to the

counterpart nodes on the lower body. For the case with an accelerating moment given to the

upper cylinder which is also the softer one, ξx < 0, and the direction of the force pair ±Q is

the same as shown in Fig. 3.

ii) Adjust values of ξx and Q so that σyy ≈ 0 at both the leading and the trailing edges. The

following tendencies can be observed while adjusting these values.

An increase of the force Q causes the contact region to shift to the right, in other words, at

the leading it causes a decrease in the magnitude of the compressive stress σyy , and at the

trailing edge an increase. Also, an increase in  (ξx<0) causes an increase in contact length

at both ends; i.e., it increases the magnitudes of compressive stress σyy at both edges.

Therefore, if σyy is negative (positive) at both ends, then one should decrease (increase) the

value of  in the next iteration, and if σyy is negative (positive) at the left end and is

positive (negative) at the right end, then one should increase (decrease) the value of Q in the

next iteration. The changes in ξx or Q decrease rapidly, until they are negligible.

3. If tangential stress τxy exceeds its limiting value µσyy at a particular node pair, then in the next

analysis this pair is considered to be in the slip region upon which multiple point constraints

(1), (14), (15), and (16) are imposed.

4. Repeat step 2; only minor adjustments of ξx and Q are needed.

5. Repeat step 3, and then repeat step 2 again, until all conditions of steps 2 and 3 are satisfied.

The relative slip Sx can be calculated from Eq. (9) and one should check if Eq. (19) is valid at

every node in the slip region. The direction of friction should be reversed wherever Eq. (19) is not

valid, and this can be done by reversing the sign of coefficient of friction in Eq. (16).

ξx

ξx
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4.3 Procedures for tangential contact analysis

The procedures for tangential contact analysis of two cylinders of dissimilar materials are

essentially the same as the previous steps for rolling contact, except that the creep ratio is replaced

by the rigid displacement δx, and that Eq. (6) instead of Eq. (17) is used in the stick region. The two

tendencies mentioned in step 2 are still valid, if the creep ratio is replaced by the displacement δx.

4.4 Cylinders of identical materials

Analysis becomes much simpler in a case of rolling contact between two cylinders with elastically

identical materials, since in this case both the contact pressure and the contact length obtained by

the normal contact analysis are unaffected by the presence of tangential stress (Johnson 1985, pp.

202-204). The purpose of a rolling contact analysis is to determine the tangential force Q

corresponds to a given creep ratio ξx, when the contact region and contact pressure are already

obtained from a normal contact analysis. While all other steps remain the same, the second step of

the rolling contact procedure in section 4.2 can be greatly simplified, and is modified as follows.

Step 2. For a given creep ratio ξx, determine the tangential force Q such that τxy ≈ 0 at the leading

edge. As in the case of dissimilar materials, a value of the tangential force Q can be arbitrarily

assumed, and both Q and −Q are distributed evenly to contacting nodes on the upper and the lower

bodies, respectively. Adjust the value of Q, until τxy ≈ 0.

5. Results and discussions

To carry out the above-mentioned numerical technique, the finite element program has to be able

to treat multiple constraints with 32 nodal displacements, and to have eight-node quadratic

isoparametric elements using the 3 × 3 Gaussian integration in the linear elastic analysis. There may

be commercial programs capable of performing the above-mentioned procedures; nevertheless the

authors developed a program written in MATLAB to perform finite element calculations. Finite

element mesh is generated with ANSYS. Multiple point constraints are treated by the technique of

Lagrange multipliers (see for example Hedayatr et al. 2007), which generally gives accurate results

at the cost of an increase in system bandwidth. Both cylinders shown in Fig. 3 are stable, thus the

original stiffness matrix is positive definite; meaning that a Gaussian elimination process can solve

the system equations (Cook et al. 2001, p.492). The technique of Lagrange multipliers increases

number of equations, but the authors solve the system equations with the built-in function of

MATLAB that deals with sparse matrices.

Contact meshes shown in Fig. 4 and in Fig. 5 are for cases with identical and with dissimilar

materials, respectively. In a case with dissimilar materials, the contact length is affected by the

magnitude of the tangential force; thus for the convenience of adjusting contact length, the layout

shown in Fig. 5 has finer meshes at the both ends. In cases of identical materials, the complete

mesh contains 384 elements and 1258 nodes, and in cases of dissimilar materials, there are 436

elements and 1418 nodes.

In all examples that follow, the two cylinders have the same radius of 100 mm. Materials are steel

and aluminum whose moduli of elasticity E = 210 Gpa and 70 Gpa, and Poisson’s ratios υ = 0.28

and 0.33 respectively. The coefficients of friction are µ = 0.22 and µ = 0.13514 for cases with
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identical and with dissimilar materials, respectively. The iterative procedures suggested above are

empirical; the authors are unable to prove the convergence. However, in this study all iterative

procedures converged. For normal contact analysis, convergence is achieved within 8 adjustments of

∆y if tolerance for σyy at the boundary is 0.01% of the peak pressure. For rolling or tangential

contacts of dissimilar materials, the procedure for adjusting ξx (or δx) may converge in 5 iterations

but we used a larger tolerance for σyy, that is, 0.1% of the peak pressure.

Fig. 6 shows results for a frictionless normal contact between elastic identical materials, and they

are compared with the Hertzian contact pressure. As the contact half-width a = 0.17815 mm, the

calculated normal force P is 29.24 N, which is close to the Hertzian value P = 28.39 N.

Figs. 7 and 8 show normal and shear stresses for two elastic identical materials under rolling

contact, compared to Hertz’s and to Carter’s (1926) results, respectively. Carter’s result for shear

stress is given by

(20)

where a is the contact half-length, c is half-length of the stick region, d = a − c, and p0 is the peak

pressure at the center x = 0. Results shown in Figs. 7 and 8 reveal that normal stresses are

accurately calculated and the tangential stress in the stick region is slightly higher. In Fig. 9 the

relation between the creep ratio ξx and the tangential force Q is compared to the following

analytical solution (Johnson 1985, p.253)

(21)

where R is one half of the radius of the two cylinders. Fig. 9 shows the present solutions agree well

with the last equation. More results for elastically identical materials can be found in Tsai (2004).

The following are cases of dissimilar cylinders in frictional contact. Body 1 and body 2 are made

τxy µp0 1 x/a( )– c/a( ) 1 x d+( )
2
/c

2
––[ ]=

ξn µa 1 1 Q/µP––( )/R–=

Fig. 4 Elements in the contact region for elastically
identical materials

Fig. 5 Element in the contact region; dissimilar
materials
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Fig. 6 Normal stress during frictionless contact
between two elastically identical cylinders

Fig. 7 Normal and shear stresses during rolling
contact between two elastically identical
cylinders; ξ

x 
= −0.00029, Q/µP = 0.1875 

Fig. 8 Normal and shear stresses during rolling
contact between two elastically identical
cylinders; ξ

x = −0.0007, Q/µP = 0.52 

Fig. 9 The relation between force Q and longitudinal
creep ratio ξ

x
; R is half the radius of the two

cylinders, solid ling is Carter’s result
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of aluminum and steel, respectively. Fig. 10 shows the present solutions to normal contacts,

compared to analytical results obtained by Nowell et al. (1988b). Note that in cases with elastic

identical materials, the present solutions in shear stresses are somewhat higher than the analytic

solutions, as Figs. 7 and 8 show. But in Fig. 10 the shear stresses are lower than corresponding

analytical results. Perhaps the differences appear in Fig. 10 are due to the fact that the analytical

solutions were obtained by neglecting the influence of tangential stress on the normal problem,

while in the present solution this influence was not neglected. 

Rolling contacts of dissimilar materials are discussed next. Although Eq. (21) is only valid for

elastically identical materials, it is used, however, to estimate the critical value of creep ratio. In a

state of gross sliding, (Q/µP) = 1, then Eq. (21) gives the corresponding creep ratio ξx = −µa/R. In

the following analysis the initial contact size a = 4.717 mm. Hence the critical creep ratio to cause

gross sliding is estimated to be −0.00637. Fig. 11 shows rolling contact results with the creep ratio

ξx = −0.0158, about 2.5 times larger than the estimated critical value. Due to material dissimilarity,

the two bodies still adheres to each other in more than half the contact region, as Fig. 11 shows. It

can be seen that there exists two slip regions at the leading and the trailing edges. The same

prescribed displacement ∆y to obtain normal contact solutions is used in the rolling contact analysis,

but an increase of the contact length from the normal contact solution can be observed. The results

shown in Fig. 11 were obtained by specifying an increase in contact length to the right by one

element at the outset of the analysis; it increases from the value a = 4.717 mm to the value

a = 4.974 mm. Nowell and Hills (1988a) obtained semi-analytical solutions for rolling contact

between dissimilar materials, and presented results for particular values of tangential forces. In the

present analysis the value of the tangential force Q cannot be specified a priori; Q is the force that

Fig. 10 Stresses in frictional normal contacts; results
obtained by Nowell et al. (1988b) are denoted
by various lines 

Fig. 11 Normal and shear stresses for rolling contact
between two dissimilar materials; ξ

x
= −0.0158,

Q/µP = 0.737, τmax = 421.6 MPa 



108 C. H. Liu, I Cheng, An-Chi Tsai, Lo-Jung Wang and J.Y. Hsu

produces the prescribed change in the contact length, and the amount of this change in contact

length can only be a multiple of an element length. Hence we are unable to compare the two

solutions under the same situation, as we did in Fig. 10 for normal contact. However, we may

observe that Nowell and Hills’s results (1988a, Fig. 4(b)) also have two slip regions, they also

appear at the leading and the trailing edges, and stress in the slip as well as in the stick regions have

the same shapes as those shown in Fig. 11.

Fig. 12 shows tangential and normal stresses during a tangential contact with the rigid

displacement δx = −0.0032 mm. Tangential stress changes sign in a region of the stick zone, and this

also appears in the solution obtained by Nowell et al. (1988b, Fig. 9(a)). As in the previous case,

only solutions for particular values of δx and Q can be presented in this study; and these values are

not the same as the values presented in Nowell et al. (1988b). Although a comparison in numerical

values of the two solutions are unavailable at this stage, but the two solutions show the same

distribution of the stick and the slip regions; and tangential stress curves in the two solutions have

the same shape.

6. Conclusions

In this study a numerical technique is developed to deal with two dimensional normal, tangential,

and rolling contact problems with or without friction and between identical or dissimilar materials.

The idea is to express extrapolated stresses and strains in terms of nodal displacements, so that

stress boundary conditions and kinematic conditions may be transformed into multiple constraints

for nodal displacements. When these constraint equations are solved together with the finite element

system equations, the nodal stresses and displacements satisfy all contact boundary conditions.

Fig. 12 Normal and shear stresses for tangential contact between two dissimilar materials, δ
x 

= −0.0032 mm,
Q/µP = 0.514, τmax = 409.7 MPa
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Solutions include the normal and the tangential stresses, and sizes of the stick and the slip regions.

This method does not make use of nonlinear variational principles, nor does it require any special

contact element.
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