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Abstract. The dynamic stiffness matrix is formulated for an axially loaded slender double-beam
element in which both beams are homogeneous, prismatic and of the same length by directly solving the
governing differential equations of motion of the double-beam element. The Bernoulli-Euler beam theory
is used to define the dynamic behaviors of the beams and the effects of the mass of springs and axial
force are taken into account in the formulation. The dynamic stiffness method is used for calculation of
the exact natural frequencies and mode shapes of the double-beam systems. Numerical results are given
for a particular example of axially loaded double-beam system under a variety of boundary conditions,
and the exact numerical solutions are shown for the natural frequencies and normal mode shapes. The
effects of the axial force and boundary conditions are extensively discussed.

Keywords: double-beam system; Bernoulli-Euler beam; axial force; free vibration; dynamic stiffness
matrix.

1. Introduction

Beams are basic structural elements widely used in the mechanical, aeronautical and civil

engineering. The validity of the Bernoulli-Euler beam theory has been studied, and some

generalizations of that useful theory have also been developed. The free and forced vibrations of the

single Bernoulli-Euler and Timoshenko beams with different boundary conditions have been

investigated extensively by a lot of authors. However, a relatively few works have been done on the

structures built up from beams. A particular case of interest consists of two parallel slender beams

of uniform properties with a set of linear elastic springs in-between. The geometry and material, as

well as the boundary conditions of these two parallel beams of uniform properties, can be all

different for a general case. The vibration problems of the elastically connected double-beam

systems are of particular interest because of their possible use in various areas of technology. The

double-beam system can be regarded as an ideal model of a complex continuous system consisting

of two one-dimensional structures joined by linear elastic layer, or as an approximate model of
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sandwich beams. It is also shown that the elastically connected double-beam system can be used to

study the performance of the beam-type continuous dynamic vibration absorber since a system

consisting of one beam and coupling springs can be used as a dynamic vibration absorber to reduce

the vibration of another beam. Due to the great practical importance of the elastically connected

double-beam systems, the different problems concerning the dynamic characteristics of this

interesting vibratory system have been treated in a few works.

Seelig and Hoppmann (1964) presented the development and solution of the differential equations

of motion of a system of elastically connected parallel beams. Vibration experiments were

performed to ascertain the degree of applicability of the theory. Kessel (1966) investigated the

system consisting of two parallel, simply-supported beams that were elastically connected and

subjected to a moving load that oscillated longitudinally about a fixed point along the length of one

of the beams. It was shown that the resonances of an elastically connected double-beam system

might result when the system was subjected to a cyclic moving load. Rao (1974) derived the

differential equations governing the flexural vibrations of the systems of elastically connected

parallel beams with the effects of shear deformation and rotary inertia considered. For

computational purposes, the simple case of a three-beam system with identical springs and with all

ends hinged was considered. Chonan (1976) investigated the dynamical behaviors of two beams

connected with a set of independent springs subjected to an impulsive load where the effect of the

mass of springs was taken into account. He considered the case of a two-beam system consisting of

two identical beams in the analysis. Hamada et al. (1983) analyzed the free and forced vibrations of

a system of two elastically connected parallel beams having unequal masses and unequal flexural

rigidities by using a generalized method of finite integral transformation and the Laplace

transformation. Aida et al. (1992) presented a beam-type dynamic vibration absorber which was

composed of an absorbing beam under the same boundary conditions as the main beam and a set of

uniformly distributed, connecting springs and dampers between the main and absorbing beams.

Chen and Sheu (1994) presented an analytical theory to study the dynamic interactions between two

parallel beams connected to each other by the vertical springs and dashpots uniformly distributed

along the beam length. Vu et al. (2000) presented an exact method for solving the vibration

problem of a double-beam system subject to a harmonic excitation. The Bernoulli-Euler model was

used for the transverse vibrations of beams. Oniszczuk (2000) presented the free vibration analysis

of two parallel simply-supported beams continuously joined by a Winkler elastic layer. The motion

of the system was described by a homogeneous set of two partial differential equations, which was

solved by using the classical Bernoulli-Fourier method. Oniszczuk (2003) devoted to analyze the

undamped forced transverse vibrations of an elastically connected double-beam system in the case

of simply-supported boundary conditions. Ritdumrongkul et al. (2004) developed a spectral element

method, based on a wave propagation approach, to simulate the bolted joint structures. A spectral

element model of a bolted joint element consisting of three Bernoulli-Euler beams connected by

uniformly distributed springs and dashpots was formulated. De Rosa and Lippiello (2007) applied

the differential quadrature method to find the free vibrations of parallel double-beams having the

translation and rotation elastic constraints at their ends and joined by a Winkler-type homogeneous

elastic foundation. Zhang et al. (2008) investigated the forced transverse vibrations of an elastically

connected simply-supported double-beam system under compressive axial load on the basis of

Bernoulli-Euler beam theory. Gurgoze et al. (2008) derived the characteristic equation of a

combined system consisting of a cantilever Bernoulli-Euler beam with a tip mass and an in-span

visco-elastic helical spring-mass, considering the mass of the helical spring. Balkaya et al. (2010)
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carried out the free vibration analyses of a parallel placed twin pipe system simulated by simply

supported-simply supported and fixed-fixed Euler-Bernoulli beams resting on Winkler elastic soil

using the differential transform method.

Most of the solution methods mentioned in the above references are applicable only to the cases

of the double-beam systems made of two identical parallel beams with the continuous massless

springs uniformly distributed along the beam length and/or to the cases of some particular boundary

conditions. For a general case, the geometric and material properties of the beams are different and

the mass of springs may need to be taken into account. Only a few researchers have studied this

case. Since the effect of an important parameter, namely the axial force, was seldom included in the

relevant literature, this paper sets out to extend the previous development by including this effect.

This paper is a consequence of need to develop a tool to assess the free vibration characteristics of

the general axially loaded double-beam systems. The determination of the natural frequencies and

mode shapes is a significant problem in the dynamic analysis of the double-beam systems, and it is

of importance in the design of the double-beam systems subjected to dynamic loadings. It is

generally considered that the structural responses of the double-beam systems are dependent on both

lower and higher modes. In designing this kind of systems, therefore, it is essential that the natural

frequencies and mode shapes are obtained accurately.

This investigation is partly motivated by the fact that earlier research on the free vibration

characteristics of three-layered sandwich beams (Sisemore and Darvennes 2002) has shown a

continuous trend of compressional vibration in the middle layer over a relatively wide range of

frequencies if the middle layer is relatively soft with respect to the top and bottom layers.

Compressional or extensional deformation results when the top and bottom layers move

perpendicular to each other, acting to compress or stretch the middle layer. Since the middle layer is

relatively soft with respect to the top and bottom layers, its displacement can be assumed to be

completely defined as a linear function of the displacements of the top and bottom layers, i.e.,

simply the average displacement of the top and bottom layers. The potential energy from bending of

the middle layer is neglected due to the softness of the middle layer in comparison with the top and

bottom layers. Also, it is assumed that the middle layer is sufficiently soft that it can be modeled as

a set of continuous linear springs. The classical beams are used to define the dynamic behaviors of

the top and bottom layers. Thus, the idealized structural model of a three-layered sandwich beam is

composed of two parallel beams connected by a set of continuous springs with mass effect,

uniformly distributed along the beam length. The structural model introduced here is a relatively

accurate and simple method for predicting the natural frequencies of compressional vibration in a

three-layered sandwich beam in the design applications.

In the present paper, the dynamic stiffness matrix is established to compute the natural frequencies

and mode shapes of the axially loaded slender double-beam systems with the mass of springs

included. The dynamic stiffness method employs the closed-form exact solutions of the governing

differential equations under harmonic nodal excitations as shape functions to formulate the

frequency-dependent stiffness matrix called the dynamic stiffness matrix. The history of the

dynamic stiffness method and early development and applications can be found in Leung’s

monograph (Leung 1993). A comprehensive literature review on the dynamic stiffness method and

some recent development of the method can be found in the works of Doyle (1997), Lee (2004) and

Gopalakrishnan et al. (2008), Kim and Kim (2005) and the references cited therein in which the

development and applications of the dynamic stiffness method to various kinds of elements and

structures, including conservative and non-conservative problems, uniform and non-uniform
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components, straight and curved members, are presented in detail. The dynamic stiffness method is

based on the closed-form analytical solutions of the governing differential equations of the element.

It eliminates the spatial discretization error and can produce the exact modal solutions in the

vibration analysis of structures. Therefore, the dynamic stiffness method provides the analyst with

better model accuracy when compared to the classical finite element or other approximate methods.

The usefulness of the method becomes apparent particularly when higher frequencies and better

accuracies of results are required. The application of the dynamic stiffness method to the axially

loaded slender double-beam systems with the mass of springs included is demonstrated and

discussed by a typical example, in which the effects of the axial force and boundary conditions on

the natural frequencies and mode shapes are extensively investigated.

2. Mathematical formulation

An elastically connected double-beam system under consideration is depicted in Fig. 1, which

consists of two parallel beams joined by an elastic layer modeled as a set of distributed springs.

Both beams subjected to the constant axial forces are homogeneous, prismatic, slender and of the

same length. Small undamped vibrations of the system are discussed.

The governing equations of the axially loaded double-beam element based on the classical

Bernoulli-Euler beam theory are derived by use of the extended Hamilton’s principle which can be

expressed in the form

 (1)

where  and  are the variations in the kinetic energy, potential energy and work of the

axial forces of the element, respectively.

Since the classical Bernoulli-Euler beam theory is used, the kinetic energy of the axially loaded

double-beam element is given by

(2a)

where  and mi are the transverse deflection and mass per unit length of the upper

beam, lower beam and spring layer, respectively; x and t are the spatial co-ordinate and time,

respectively; L is the length of the beams. Subscript i denotes the quantities concerned with the

upper beam (i = 1), lower beam (i = 2) and spring layer (i = 3). For simplicity of the analysis, the

deflection of the spring layer is simply defined as the average displacement of the upper and lower

beams, i.e., .
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Fig. 1 The geometry model of an axially loaded double-beam element 
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It is assumed that both the shear deformation and rotary inertia of the beams are negligible, so the

potential energy of the axially loaded double-beam element can be written as

(2b)

where Ei is the Young’s modulus of elasticity; Ii is the moment of inertia of the beam cross-section;

k is the spring stiffness per unit beam length.

The work done by the axial forces is given by

 (2c)

where Pi is a constant compressive axial force acting through the centroid of the cross-section of the

beam. Pi can be positive or negative.

Substitution of Eq. (2) into Eq. (1), and performing the variational operations yields the following

governing differential equations of motion of the axially loaded double-beam element

(3a)

 (3b)

where superscripts dot and prime denote the partial derivatives with respective to t and x,

respectively.

The appropriate boundary conditions at the beam ends ( ) of the axially loaded double-

beam element are

 (4a)
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 (4c)

 (4d)

3. Dynamic stiffness matrix

It can be shown that Eq. (3) have solutions that are separable in time and space, and that the time

dependence is harmonic. Letting

 (5a)
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ordinary differential equations

 (6a)

 (6b)

The solutions to Eq. (6) can be expressed as

(7a)

 (7b)

Substitution of Eq. (7) into Eq. (6), the equivalent algebraic eigenvalue equations are obtained and

the equations have nontrivial solutions when the determinant of the coefficient matrix of  and 

vanishes. Setting the determinant equal to zero yields an eighth order polynomial characteristics

equation in κ

 (8)
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The solutions to Eq. (8) can be found in closed-form as follows. First, Eq. (8) can be rewritten as
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Finally, the four roots of Eq. (9) can be written as

 (11)

The general solutions to Eq. (6) are given by

(12a)

(12b)

where  ( ),  and  are two sets of eight constants. In the solution of
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be modified according to the well-known methods for the ordinary differential equations with
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constants is given by
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According to the sign convention shown in Fig. 2, the expressions of shear forces Q1(x), Q2(x),
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Fig. 2 The sign convention for positive shear forces  and bending moments  Q1 x( ) Q2 x( ), M1 x( ) M2 x( ),
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 (13d)

The boundary conditions for the generalized displacements and forces of the axially loaded

double-beam element (referring to Fig. 3) are, respectively

(14a)

(14b)

Substituting Eq. (14a) into Eq. (12), the nodal displacements defined in Fig. 3 can be expressed in

terms of  as

 (15)

where  is the nodal degree-of-freedom vector defined by
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Fig. 3 The boundary conditions for the displacements and forces of the double-beam element 
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 (16)

where {F} is the nodal force vector defined by

in which

Eliminating the coefficients Ai from Eqs. (15) and (16) gives the following relationship between

the nodal forces and nodal displacements

 (17)

where [K] is the exact dynamic stiffness matrix of the axially loaded double-beam element. It

should be mentioned that the explicit analytical expressions for the terms of the dynamic stiffness

matrix could be derived using the symbolic manipulator software such as Maple (1990), although

the expressions are too lengthy to list in the paper. 

4. Automated Muller root search method

If the dynamic stiffness matrix for each element of the double-beam system is known, the global

dynamic stiffness matrix for the whole double-beam system can be assembled in a completely

analogous way to that used by the conventional finite element method. Once the overall dynamic

stiffness matrix is obtained, the appropriate boundary conditions for the particular double-beam

system under consideration are applied to obtain the frequency characteristic determinant, which

equals zero when an eigenfrequency of the double-beam system is found. Obviously the resulting

frequency characteristic equation is a transcendental function of the frequency, which allows an

infinite number of natural frequencies of the double-beam system to be accounted for. Although

more advanced algorithms and more complex procedures may be used to determine the frequency

values of the characteristic equation, a simple automated Muller root search method (Burden and

Faires 1989) is adopted in the present study to determine all the natural frequencies in a given
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frequency band. In order to prevent missing roots, a visual method involving plotting the

characteristic determinant curve for the double-beam system to visually approximate where the

value of the determinant equals zero is also implemented. The mode shapes corresponding to the

natural frequencies can be found in the usual way by making an arbitrary assumption about one

unknown variable of the double-beam system and then calculating the remaining variables in terms

of the arbitrarily chosen one.

Let us denote the frequency characteristic determinant by  and consider the solution of

 by Muller’s method. Muller’s method uses a quadratic approximation to the function f by

interpolating a quadratic polynomial through the last three computed points and then determining

where this curve crosses the ω axis. The following algorithm is an implementation of Muller’s

method. This algorithm terminates when a prescribed error tolerance on  has been achieved

or a maximum number of iterations has been performed.

(1) Pick three distinct values of ω, i.e., . Set  and compute

; ;

;

(2) Compute

;

(3) If  then set ; else set 

(4) Set ; .

where  is the new approximation of the root . The process is continued until a desired

accuracy is obtained. The rate of convergence is very high and may be increased if an estimate of

the eigenvalue is available. Previously roots may be removed from  by dividing it by

, where ωk ( ) are the first p roots. 

5. Numerical results

The free transverse vibration of the axially loaded double-beam system is investigated by using

the dynamic stiffness formulation developed in preceding sections. The natural frequencies and

normal mode shapes of a particular double-beam system subjected to the constant axial forces are

determined numerically.

The following values of the parameters of the double-beam system are used in the numerical

calculations:

b1 = 0.01 m, h1 = 0.005 m, b2 = 0.01 m, h2 = 0.01 m, L = 1 m, E1 = 2.0 × 1011
 N/m2

E2 = 2.0 × 1011 N/m2, ρ1 = 7600 kg/m3, ρ2 = 7600 kg/m3, k = 8.0 × 103 N /m2, m3 = 0.76 kg/m

where bi and hi are the width and height of the beam, respectively. ρi is the mass density per unit

volume of the beam. The mass per unit length of the beam is . The cross-sectional area

of the beam is . The second moment of area of the beam section is . The

other symbols have been defined in the section 2.
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A detailed free vibration analysis of the above double-beam system is now performed for ten

interesting cases of the different boundary conditions. These are

Case I: upper beam clamped-clamped, lower beam clamped-clamped;

Case II: upper beam clamped-simply supported, lower beam clamped-simply supported;

Case III: upper beam clamped-free, lower beam clamped-free beam;

Case IV: upper beam simply supported-simply supported, lower beam simply supported-simply

supported;

Case V: upper beam free-free, lower beam simply supported-simply supported;

Case VI: upper beam free-free, lower beam clamped-simply supported;

Case VII: upper beam free-free, lower beam clamped-clamped;

Case VIII: upper beam simply supported-simply supported, lower beam clamped-free;

Case IX: upper beam simply supported-simply supported, lower beam clamped-simply supported;

Case X: upper beam simply supported-simply supported, lower beam clamped-clamped.

The free vibration behaviors of the above-mentioned individual uniform double-beam system with

any desired boundary conditions can be studied by using the appropriate stiffness terms of the

dynamic stiffness matrix; e.g., by deleting those rows and columns of the matrix corresponding to

zero boundary displacements. It should be noted that for the Case I this double-beam system is

considered as two equal-length double-beam elements and for the other cases this double-beam

system is idealized with one double-beam element.

For above ten cases of the different boundary conditions, the first six natural frequencies of the

double-beam system with and without inclusion of the axial forces are calculated and the numerical

results are shown in Tables 1-5. Both compressive and tensional axial forces are considered. It

should be mentioned that putting  and  in Eq. (17) yields the solutions for the

unloaded double-beam system. It is known that the dynamic characteristics such as the natural

frequencies of the double-beam system are dependent on the beam properties, spring properties,

axial forces and boundary conditions at the beam ends.

When the beam properties, spring properties, axial forces are kept invariant, consider the effect of

the boundary conditions on the natural frequencies of the double-beam system. Tables 1-5 show the

influence of the boundary conditions on the first six natural frequencies of the double-beam system.

Of the ten cases considered, the Case I exhibits the highest natural frequencies. For the first four

boundary conditions, i.e., Cases I to IV, in each case the upper and lower beams have the same

boundary conditions. As expected, the Case I yields the highest natural frequencies followed by

Case II, Case IV and Case III. For the Cases V to VII, in each case the ends of upper beam are free

P1 0= P2 0=

Table 1 Natural frequency (Hz) of the axially loaded double-beam system for Cases I and II

Mode No.

Case I Case II

P1 = 0
P2 = 0

P1 = 700 N
P2 = 1000 N

P1 = −700 N
P2 = −1000 N

P1 = 0
P2 = 0

P1 = 700 N
P2 = 1000 N

P1 = −700 N
P2 = −1000 N

1 26.44 18.72 32.04 20.18 9.84 26.31

2 54.24 48.72 58.03 41.49 35.13 46.24

3 61.32 50.17 71.46 50.65 36.85 61.76

4 116.66 103.12 128.67 100.97 85.83 113.96

5 137.41 131.92 142.74 112.06 105.73 118.18

6 191.47 177.47 204.44 170.97 155.78 184.83
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Table 2 Natural frequency (Hz) of the axially loaded double-beam system for Cases III and IV

Mode No.

Case III Case IV

P1 = 0
P2 = 0

P1 = 120 N
P2 = 200 N

P1 = −120 N
P2 = −200 N

P1 = 0
P2 = 0

P1 = 400 N
P2 = 600 N

P1 = −400 N
P2 = −600 N

1 5.49 2.95 6.98 14.25 8.18 18.39

2 26.15 22.88 28.49 33.45 29.96 36.61

3 28.33 27.75 29.25 41.28 32.28 48.53

4 53.78 51.48 55.55 86.51 77.22 93.81

5 61.34 58.06 64.67 89.57 85.19 94.84

6 116.66 113.46 119.76 151.66 142.44 160.32

Table 3 Natural frequency (Hz) of the axially loaded double-beam system for Cases V and VI

Mode No.

Case V Case VI

P1 = 0
P2 = 0

P1 = 300 N
P2 = 500 N

P1 = −300 N
P2 = −500 N

P1 = 0
P2 = 0

P1 = 300 N
P2 = 500 N

P1 = −300 N
P2 = −500 N

1 13.04 7.79 14.16 16.16 10.26 16.58

2 18.53 13.00 22.19 18.68 13.06 22.29

3 26.75 14.33 31.78 27.63 16.48 35.74

4 34.07 30.78 40.30 41.04 38.32 44.42

5 60.92 48.27 70.81 61.63 48.81 71.92

6 89.97 86.11 93.94 110.76 104.49 114.41

Table 4 Natural frequency (Hz) of the axially loaded double-beam system for Cases VII and VIII

Mode No.

Case VII Case VIII

P1 = 0
P2 = 0

P1 = 300 N
P2 = 500 N

P1 = −300 N
P2 = −500 N

P1 = 0
P2 = 0

P1 = 400 N
P2 = 600 N

P1 = −400 N
P2 = −600 N

1 17.67 10.89 17.77 10.90 5.29 14.06

2 18.75 13.24 22.42 24.50 19.93 28.09

3 27.99 17.74 37.11 42.89 34.31 49.74

4 53.60 48.77 55.74 51.46 45.65 56.95

5 61.72 51.55 72.13 88.36 78.83 96.92

6 117.08 106.17 126.97 132.78 127.46 137.82

Table 5 Natural frequency (Hz) of the axially loaded double-beam system for Cases IX and X

Mode No.

Case IX Case X

P1 = 0
P2 = 0

P1 = 700 N
P2 = 1000 N

P1 = −700 N
P2 = −1000 N

P1 = 0
P2 = 0

P1 = 700 N
P2 = 1000 N

P1 = −700 N
P2 = −1000 N

1 17.80 7.13 24.05 19.48 9.75 25.70

2 39.45 23.30 45.00 42.01 23.65 54.39

3 43.21 35.92 54.51 53.34 49.45 56.95

4 86.55 69.45 100.49 87.23 69.91 101.57

5 111.86 105.47 118.13 135.42 128.85 140.87

6 151.92 135.31 166.79 153.56 138.03 168.32
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and free, and the Case VII shows the higher frequencies followed by Case VI and Case V.

Similarly, for the Cases VIII to X, in each case the ends of upper beam are simply supported and

simply supported, and the Case X has the higher frequencies followed by Case IX and Case VIII.

The lowest fundamental frequency is found for the Case III. It can also be observed from Tables 1-5

Fig. 4 The first six normal mode shapes of the double-beam system for Case V with P1 = 0 and P2 = 0 (a)
mode 1, (b) mode 2, (c) mode 3, (d) mode 4, (e) mode 5, (f) mode 6  
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that for Cases II, VI and IX, in each case the ends of lower beam are clamped and simply

supported, and the Case II produces the higher frequencies followed by Case IX and Case VI.

When the geometric and material properties as well as the boundary conditions of the double-

beam system are kept invariant, the effect of the axial forces P1 and P2 on the natural frequencies of

Fig. 5 The first six normal mode shapes of the double-beam system for Case V with P1 = 300 N and
P2 = 500 N (a) mode 1, (b) mode 2, (c) mode 3, (d) mode 4, (e) mode 5, (f) mode 6  
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the double-beam system can also be studied from Tables 1-5. It is evident that the natural

frequencies of the double-beam system are sensitive to the variations of the axial forces P1 and P2

under consideration. As expected, the compressive axial forces will tend to decrease all the natural

frequencies of the double-beam system, whereas the tensile axial forces will increase them. The

Fig. 6 The first six normal mode shapes of the double-beam system for Case V with P1 = −300 N and P2 =
−500 N (a) mode 1, (b) mode 2, (c) mode 3, (d) mode 4, (e) mode 5, (f) mode 6
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axial force has a much significant effect on the lower natural frequencies of the double-beam

system, but it has no pronounced effect on the higher natural frequencies. From Tables 1-5, it can

be seen that the compressive axial force has a more significant effect on the natural frequencies of

the double-beam system than the equal and opposite tensile force.

The exact mode shapes of the double-beam system for Case V with and without the axial forces

included are calculated and shown in Figs. 4-6. The first six normal mode shapes for the unloaded

double-beam system are shown in Figs. 4(a)-(f). The first six normal mode shapes for the axially

loaded double-beam system with P1 = 300 N and P2 = 500 N are plotted in Figs. 5(a)-(f). The first

six normal mode shapes for the axially loaded double-beam system with P1 = −300 N and P2 =

−500 N are illustrated in Figs. 6(a)-(f). The influence of the axial forces on the normal mode shapes

of the double-beam system can be observed from Figs. 4-6.

It is obvious from Figs. 4-6 that the normal mode shapes of the double-beam system are quite

sensitive to the variations of the axial forces P1 and P2 under consideration.

6. Conclusions

An analytical method for determining the natural frequencies and mode shapes of the axially

loaded slender double-beam system with the mass of springs included is developed. The dynamic

stiffness matrix is formulated for an axially loaded double-beam element by directly solving the

governing differential equations of motion in free vibration. The effects of the axial force and the

mass of springs are included, but the effects of the shear deformation and rotary inertia are

considered to be negligible and not included in the present development. The dynamic stiffness

method is illustrated by a particular axially loaded double-beam system, in which the effects of the

axial force and the boundary condition on the natural frequencies and/or mode shapes are

extensively investigated.

References

Aida, T., Toda, S., Ogawa, N. and Imada, Y.  (1992), “Vibration control of beams by beam-type dynamic
vibration absorbers”, J. Eng. Mech., 118, 248-258.

Balkaya, M., Kaya, M.O. and Saglamer, A. (2010), “Free transverse vibrations of an elastically connected simply
supported twin pipe system”, Struct. Eng. Mech., 34, 549-561.

Burden, R.L. and Faires, J.D. (1989), Numerical Analysis, Pws-Kent Publishing Company, Boston.
Char, B.W., Geddes, K.O., Gonnet, G.H., Monagan, M.B. and Watt, S.M. (1990), Maple Reference Manual,

Department of Computer Science, University of Waterloo, Symbolic Computation Group and Waterloo Maple
Publishing, Canada.

Chen, Y.H. and Sheu, J.T. (1994), “Dynamic characteristics of layered beam with flexible core”, J. Vib. Acoust.,
116, 350-356.

Chonan, S. (1976), “Dynamical behaviours of elastically connected double-beam systems subjected to an
impulsive load”, T. JSME, 19, 595-603.

De Rosa, M.A. and Lippiello, M. (2007), “Non-classical boundary conditions and DQM for double-beams”,
Mech. Res. Commun., 34, 538-544.

Doyle, J.F. (1997), Wave Propagation in Structures, Springer, New York.
Gopalakrishnan, S., Chakraborty, A. and Mahapatra, D.R. (2008), Spectral Finite Element Method, Springer,

London.



Dynamic stiffness matrix of an axially loaded slender double-beam element 733

Gurgoze, M., Zeren, S. and Bicak, M.M.A. (2008), “On the consideration of the masses of helical springs in
damped combined systems consisting of two continua”, Struct. Eng. Mech., 28, 167-188.

Hamada, T.R., Nakayama, H. and Hayashi, K. (1983), “Free and forced vibrations of elastically connected
double-beam systems”, T. JSME, 26, 1936-1942.

Kessel, P.G. (1966), “Resonances excited in an elastically connected double-beam system by a cyclic moving
load”, J. Acoust. Soc. Am., 40, 684-687.

Kim, N.I. and Kim, M.Y. (2005), “Exact dynamic element stiffness matrix of shear deformable non-symmetric
curved beams subjected to initial axial force”, Struct. Eng. Mech., 19, 73-96.

Lee, U. (2004), Spectral Element Method in Structural Dynamics, Inha University Press, Incheon.
Leung, A.Y.T. (1993), Dynamic Stiffness and Substructures, Springer, London.
Oniszczuk, Z. (2000), “Free transverse vibrations of elastically connected simply supported double-beam

complex system”, J. Sound Vib., 232, 387-403.
Oniszczuk, Z. (2003), “Forced transverse vibrations of an elastically connected complex simply supported

double-beam system”, J. Sound Vib., 264, 273-286.
Rao, S.S. (1974), “Natural vibrations of systems of elastically connected Timoshenko beams”, J. Acoust. Soc.

Am., 55, 1232-1237.
Ritdumrongkul, S., Abe, M., Fujino, Y. and Miyashita, T. (2004), “Quantitative health monitoring of bolted joints

using a piezoceramic actuator-sensor”, Smart Mater. Struct., 13, 20-29.
Seelig, J.M. and Hoppmann II, W.H. (1964), “Normal mode vibrations of systems of elastically connected

parallel bars”, J. Acoust. Soc. Am., 36, 93-99.
Sisemore, C.L. and Darvennes, C.M. (2002), “Transverse vibration of elastic-viscoelastic-elastic sandwich

beams: compression-experimental and analytical study”, J. Sound Vib., 252, 155-167.
Vu, H.V., Ordonez, A.M. and Karnopp, B.H. (2000), “Vibration of a double-beam system”, J. Sound Vib., 229,

807-822.
Zhang, Y.Q., Lu, Y. and Ma, G.W. (2008), “Effect of compressive axial load on forced transverse vibrations of a

double-beam system”, Int. J. Mech. Sci., 50, 299-305.




