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Abstract. An energy-based fatigue life prediction framework was previously developed by the authors
for prediction of axial and bending fatigue life at various stress ratios. The framework for the prediction
of fatigue life via energy analysis was based on a new constitutive law, which states the following: the
amount of energy required to fracture a material is constant. In this study, the energy expressions that
construct the new constitutive law are integrated into minimum potential energy formulation to develop
new finite elements for uniaxial and bending fatigue life prediction. The comparison of finite element
method (FEM) results to existing experimental fatigue data, verifies the new finite elements for fatigue
life prediction. The final output of this finite element analysis is in the form of number of cycles to
failure for each element in ascending or descending order. Therefore, the new finite element framework
can provide the number of cycles to failure for each element in structural components. The performance
of the fatigue finite elements is demonstrated by the fatigue life predictions from Al6061-T6 aluminum
and Ti-6Al-4V. Results are compared with experimental results and analytical predictions.
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1. Introduction

The modern structural components, like gas turbine engine blades, are designed to be failure free

and last their life; however, failure does occur and is commonly linked to fatigue. High cycle

fatigue (HCF) is the main cause of failure in gas turbine engines (Nicholas 1999). Different design

tools have been developed to analyze this issue. The most commonly used such tool is a stress

versus cycles plot, or S-N curve. These curves provide fatigue strength with respect to time to

failure. Other common tools for predicting fatigue properties are the Goodman diagram and the

advanced Goodman diagrams (Goodman 1899), which are the popular choices for a failure-free

aircraft engine design criterion. In order for designers to make an accurate assessment, the

equivalent stress is calculated according to the cyclic loading conditions and compare to S-N curve

or Goodman diagram to obtain the number of cycles to failure. This has led to search for a more

realistic method for design comparison than the existing uniaxial design tools, which begins by

observing the association between material failure/fracture and the energy dissipated during the

process.
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Scientists and engineers have tried since 1940s to relate energy conversion to fatigue life

prediction of the material. These attempts initially resulted in minimal success (Feltner and Morrow

1960). The hypothesis used in this type of research implies: under cyclic loading, there exists a

critical energy value for which failure occurs (Enomoto 1955). The continued research in this area

later justified this hypothesis by displaying agreement between the theoretical and the experimental

results on S-N curve. Further investigation of the assumption made in (Enomoto 1955) led to the

introduction of a more sufficient correlation between the fatigue life of a material and the strain

energy dissipation during the process (Feltner and Morrow 1960, Stowell 1966). It is now

understood that the strain energy required to fracture a material, monotonically, is the same as the

strain energy during a cyclic fatigue procedure, thus indicating that the critical energy value for each

material is the monotonic strain energy. Based on this constitutive law, an improved energy-based

frame-work has been developed by the researchers to allow one to systematically determine fatigue

life based on the amount of energy loss per fatigue cycle (Scott-Emuakpor et al. 2007, Scott-

Emuakpor 2007). The new constitutive law is based on the monotonic and cyclic stress-strain

representation expressed by the following equations 

 (1)

  (2) 

Where the parameters displayed are defined as follows: σ is the value for stress at the surface of

the specimen (in the bending case, max stress), ε is the strain corresponding to the stress σ, σpp is

the peak to peak stress (2σ when stress ratio is −1.0), E is the modulus of elasticity, and the

variables σc, σo, εo, and C are curve fit parameters. The details about this constitutive law, the curve

fit parameters, material constants and the experimental procedure adopted for acquiring these

constants are explained in (Scott-Emuakpor et al. 2007, George et al. 2004, George et al. 2005,

George et al. 2006). These equations are used to obtain the total fracture energy and the energy

dissipated per cycle. Therefore, the equations can be applied to the constitutive law to obtain the

number of cycles to failure.

As stated earlier, the conventional approach to fatigue life prediction is based on S-N curve data,

Goodman diagram or modified Goodman diagram. For example, a traditional HCF turbine blading

system design procedure is shown schematically in Fig. 1. This design process usually consists of a

structural dynamics analysis to determine natural frequencies and mode shapes at certain operating

speed ranges and a stress analysis using a finite element based tool such as MSC/NASTRAN and

ANSYS (Mackaldener and Olsson 2001, Sumi et al. 2005, Salvini et al. 1997, Fermér and Svensson

2001) to calculate the dynamic stress distribution for identifying the maximum vibratory stress

location or area under a series of given excitations. Once the maximum stresses for each vibration

mode are determined, high cycle fatigue assessment can be achieved by measuring the margin

between the maximum vibratory stress and the material fatigue capability which is a straight line

drawn between the mean ultimate strength at zero vibratory stress and mean fatigue strength at 107

cycles (or infinite life). A typical Goodman diagram for the titanium alloy Ti-6Al-4V is shown in

Fig. 2 (Nicholas and Maxwell 2003), usually constructed using uniaxial fatigue data.

The new constitutive law based on fatigue energy dissipation mechanism, developed by the

authors (Scott-Emuakpor et al. 2007, Scott-Emuakpor 2007), provides an opportunity to develop
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new finite elements for fatigue life analysis without accomplishing fatigue strength/life assessment

through comparison with Goodman diagram or inbuilt S-N data. This research uses the new

constitutive law to derive new finite elements for fatigue life prediction for uniaxial and bending

loads. 

Though the conventional finite element fatigue analysis and design tools for fatigue life prediction

make the process easier for designer, however, the process does not incorporate fatigue mechanism

(Papanikos et al. 2003) and can not characterize the fatigue strength without using Goodman design

diagram (LMS Engineering Innovations: http://www.lmsintl.com, Desktop Engineering (DE): http://

Fig. 1 Conventional finite element analysis approach to fatigue life prediction 

Fig. 2 Typical Goodman (or Haigh) diagram for Ti-6Al-4V for 107 cycles (Nicholas and Maxwell 2003)
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www.deskeng.com, MSC Software: http://www.mscsoftware.com). The new finite elements

developed in this research are based on a fatigue constitutive law; therefore, the analysis with these

elements directly incorporates the fatiguing process in fatigue life prediction. This very fact

establishes a difference of these new finite element developments from the existing finite element

fatigue analysis techniques. Due to the discrete nature of finite element method, the finite element

analysis can provide the number of cycles for each element at different location in the structure

experiencing different loads. Furthermore, the most research in the area of fatigue using finite

element analysis, involves fatigue crack growth and propagation (Lee and Song 2005, Park et al.

1997, Papanikos and Meguid 1994, Ritchie et al. 1987, Beretta and Sala 2005, Shang and Barkey

2006), whereas this new finite element predicts the fatigue crack initiation. 

In order to derive new finite elements, the constitutive law for fatigue (Scott-Emuakpor et al. 2007,

Scott-Emuakpor 2007) is integrated into minimum potential energy formulation and new stiffness

matrices (K-matrices) for uniaxial and bending fatigue are developed. Due to non-linear nature of the

constitutive law, the resulting K-matrices require a non-linear finite element analysis approach.

Newton-Raphson iteration method is used for numerical computation to handle the non-linearity. The

new K-matrices are capable of simulating the fatigue analysis based on constitutive law and Eqs. (1)

and (2). For validation of the finite elements, a monotonic loading analysis on a 1-D rod is

performed. The comparison of resulting displacements for monotonic loading is made with the

analytical solution (Eq. (1)) as well as experimental results to validate the new K-matrix. Once the

K-matrix is validated, the same displacement computation procedure is applied to the cyclic loading

case. Furthermore, strain energy is acquired by evaluating the behavior of the respective load-

displacement relation of the monotonic and cyclic loading processes. The same procedure is applied

to the bending fatigue life prediction using the new bending fatigue finite element (New K-Matrix). 

The new finite elements can be applied to a structure made of any material as long as the

parameters for the material being used are available. The FEM fatigue prediction procedures

developed in this research are performed for Al6061-T6 (both uniaxial and bending) and Ti6Al-4V

(uniaxial load only) and the comparison is made with the experimental data and analytical solution

from reference (Scott-Emuakpor et al. 2007). These results and procedures will be discussed at

length in the following sections of the manuscript. Analysis is also performed for a loading

condition with mean stress effect. The results from this analysis are also compared to the

experimental data and analytical solution. 

2. Brief review of previously acquired experimental results

Experimental fatigue results have been acquired for both Al6061-T6 and Ti6Al-4V (Scott-

Emuakpor et al. 2007). Axial results were acquired from a conventional MTS servo-hydraulic

machine. The machine was operated at a frequency of 40 Hz, thus requiring 7 hours to accumulate

106 cycles. The axially loaded fatigue results from this machine range approximately from 104 to

106 for both materials. 

The bending data is acquired using vibration based methodology (George et al. 2004). The

thought behind the vibration-based methodology is supplying a dynamic base excitation to a

specimen at a specified high resonant frequency, between 1200-1600 Hz, showing bending behavior.

This testing method provides a significantly faster means for acquiring 106 cycles (between 10 and

14 minutes), therefore making it a more efficient means for acquiring HCF.
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Experimental fatigue results for Al6061-T6 and Ti6Al-4V are shown in Figs. 3 and 4 respectively

(Scott-Emuakpor et al. 2007). These results display an acceptable scatter for failure ranging from

104 to roughly over 106 cycles. Therefore, the behavior of fatigue as applied load increases or

decreases can easily be characterized visually. 

 

3. Finite element procedures

The respective expression of Eqs. (1) and (2) consists of two parts, the linear elastic and the non-

linear plastic. The main challenge in this research is to handle the both parts correctly and develop a

procedure which provides a best match with analytical and experimental results. The elastic and

plastic parts of Eqs. (1) and (2) are written separately in Eqs. (3) to (6) respectively: where the

subscripts em and pm designate the elastic and plastic cases for monotonic loading, and the

subscripts ec and pc designate the elastic and plastic cases for cyclic loading. 

(3)

(4)

(5)

 (6)

Eqs. (7) to (10) give the corresponding stress equations to these provided strain expressions;

where σec and σpc are the corresponding peak-to-peak stresses for cyclic loading case. These

equations are integrated into minimum potential energy formulation to develop new K-matrices.
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Fig. 3 S-N Data – Al6061-T6 (Scott-Emuakpor et al.
2007) 

Fig. 4 S-N Data – Ti6Al-4V axial data (Scott-
Emuakpor et al. 2007) 
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 (7)

 (8)

 (9)

 (10)

The procedure for integration of constitutive law into minimum potential energy formulation is

included in the following two sections for uniaxial and bending loads respectively.

3.1 Finite element procedures for uniaxial load (rod element)

Integration of elastic case into potential energy formulation is a classical finite element problem

and is already available in literature (Reddy 1984). Integration of Eqs. (8) and (10) into Eq. (11)

provides new K-matrix for the plastic part of the constitutive law (Eqs. (1) and (2)) for uniaxial

fatigue.

  (11)

Where Π is the minimum potential energy, σ is the stress tensor, ε is the strain vector, u is the

displacement, f is the body force, T is the traction force, Pi is the point load. V is the volume and x

denotes the length of the element.

The resulting K-matrices for monotonic case with axial loading based on Eq. (1) are shown

below.

 (12)

(13)

A is the area, L is the length of the element and d is the nodal displacement. The similar types of

matrices are developed for cyclic load according to Eq. (2). The parameters σo changes to σc, εo

changes to C and the applied stress σ changes to peak to peak stress σPP. The resulting K-matrices

are shown in Eqs. (14) and (15). 
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(15)

As is evident from Eqs. (13) and (15), a non-linearity appears in the expression. This non-linearity

is due to an existing displacement parameter in the resulting K-matrices. To account for the non-

linear behavior, the Newton-Raphson iteration method is applied to the analysis (Reddy 2004,

Masud and Khurram 2004, Khurram and Masud 2006). 

Application of energy balance leads to the classical representation of load, F, versus displacement,

d, shown by Eq. (16). Therefore, based on a known applied load, the K-matrices can be used in

Eq. (16) to determine the nodal displacements. Results from the nodal displacements and

corresponding loads are used to obtain a cyclic and monotonic stress-strain relation. Therefore, the

capability exists to apply the stress-strain results to the constitutive law and the number of cycles to

failure can be calculated. 

 (16)

3.2 Finite element procedures for bending load (beam element)

The finite element (new K-Matrix) for bending fatigue is developed by integration of new

constitutive law into bending energy formulation. Bending stress is given by the Eq. (17).

(17)

Where M is the bending moment, y is the distance from the neutral axis and I is the moment of

inertia. The development of K-matrix for elastic bending is a classical finite element problem and is

available in the literature (Reddy 1984). The equation for plastic bending derived from Eq. (10) is

given by the following expression.

 

(18)

The potential energy of the beam is given by

(19)

Where p is the distributed load per unit length, Pm is the point load at point m, Mk is the moment

of the couple applied at point k, vm is the deflection at point m and vk'  is the slope at point k.

Integration of Eqs. (4) and (18) into Eq. (19) provides the K-matrix for non-linear part of the

constitutive law for bending loads. 

Using the potential energy formulation, the resulting K-matrices for bending loading are shown

below in Eqs. (20) and (21). Kem-B and Kpm-B are the linear elastic and non-linear plastic K-matrices

for bending load respectively. le represents the length of the beam element.
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(20)

(21)

The elements of Kpm-B are given in Eqs. (22) and (23)

for (22)

for (23)

Ai, Bi, Cj and Dj are given in Table 1.

The similar equations are developed for cyclic bending load according to Eq. (2). The resulting K-

matrices are shown in Eqs. (24) and (25).

(24)
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Table 1 Constants for Eqs. (22) and (23) 
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(25)

The elements of Kpc-B are the same as given in Eqs. (22) and (23) except that the parameters σo

changes to σc, εo changes to 1/C and the applied stress σ changes to peak to peak stress σPP. 

The matrices in Eqs. (21) and (25) are non-linear due to presence of “ds” in the resulting K-

matrices. To account for the non-linear behavior, the Newton-Raphson iteration method is applied to

the analysis (Reddy 2004, Masud and Khurram 2004, Khurram and Masud 2006). 

These K-matrices are used in Eq. (16) to determine the unknown degrees of freedom. The load is

applied from 0 to peak to peak. The results are post-processed using classical FEA techniques. The

nodal displacement and rotation results can be further used to obtain moment for each element in

the structure. This moment is used to calculate the bending energy dissipated per cycle and

ultimately the number of cycles to failure for each element.

4. Pre and post processing of data

The procedures presented in this section are primarily for 1-D loads. However, similar pre and

post-processing procedures are valid for bending loads.

The computational FEM analysis was tailored to correspond to the experimental procedures for

the results in section 2. The related geometric data was acquired from the ASTM standard E466

fatigue dog-bone (coupon) specimen (Scott-Emuakpor et al. 2007). This specimen is loaded in axial

tension for the monotonic case and tension/compression for cyclic. The monotonic loading produces

force vs. displacement data, which is converted to stress-strain relation in the form of Fig. 5. The

fatigue analysis is only performed below the yield point. Therefore, this relation is only analyzed up

to the point of yielding for the validation of K-Matrix. This analysis is performed for Al6061-T6

and Ti6Al-4V material parameters. The resulting solution is compared with the experimental and

analytical results (Eq. (1)). These results are shown in Section 5. 
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Fig. 5 Monotonic stress-strain relation
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The cyclic process is executed by tension/compression loading at a specified level. In other words,

fully-reversed loading ranges from –P to +P, where P is the parameter representing the specified

loading level. This understanding leads to the conclusion that the cyclic stress-strain behavior, which

is acquired from the corresponding load-displacement relation, forms the loop shown on the

generalized axis of Fig. 6. The stress-strain relation of Fig. 6 is known as a hysteresis loop. The

area inside this loop represents the cyclic strain energy density energy for the applied stress level. In

order to calculate the number of cycles to failure, the cyclic strain energy acquired from the

constitutive law is compared to the monotonic failure strain energy (Scott-Emuakpor et al. 2007).

This analysis was conducted with Ti6AL-4V as well as Al6061-T6 material parameters. The results

were compared with experimental data and the analytical solution (Scott-Emuakpor et al. 2007). 

Fig. 7 represents the hystresis loop with the mean stress effect. The figure shows that the

calculation of strain energy density for this case is different from completely reversible loading

analysis. Due to a larger maximum applied load, the effect of mean stress increases the plastic

deformation per cycle for a designated alternating load. Also based on an increase in the minimum

applied load, the stress-strain relation no longer is viewed as a closed loop. Therefore, the un-

shaded area of Fig. 7 represents cyclic strain energy density. This analysis is performed for Al6061-

T6 and the results are compared to experimental data and the analytical solution.

As stated earlier, the procedure presented in this section is for 1-D axial loads but is also valid for

bending loads. The solution of all unknown degrees of freedoms obtained from FEM analysis is

post-processed using the classical FEM techniques (Reddy 1984) to obtain the strain energy

dissipated per cycle and finally the number of cycles to failure. Analysis is performed for Al6061-

T6 both for completely reversible and means stress effects bending loads. The K-matrix for bending

loads is capable of predicting different number of cycles for each element depending upon the

different stress level. The results are compared to the experimental and analytical results (Scott-

Emuakpor et al. 2007).

 

5. Results and discussion

The following sections present the results and comparisons for axial bending loads respectively.

Fig. 6 Hysteresis loop for completely reversible
loading

Fig. 7 Hysteresis loop with mean stress effect 
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5.1 1-D axial load analysis

The finite element analysis results and analytical solution are obtained for a 1-D rod in order to

compare and validate the results. The dimensions of this rod are provided in (Scott-Emuakpor et al.

2007). A set of experimental data from previous research (Scott-Emuakpor et al. 2007) is also

included in the comparison. Fig. 8 shows the Force vs. Displacement curves for Al6061-T6 with

experimental data, analytical solution (Scott-Emuakpor et al.  2007) and FEM prediction plotted for

comparison. These curves are plotted for a monotonically loaded specimen below the yield point.

The FEM prediction compares well with the experimental and analytical results.

Fig. 9 shows the True stress vs. True strain, for FEM prediction and analytical solution (Scott-

Emuakpor et al. 2007) plotted in comparison to experimental data. The specimen is loaded

monotonically below the yield point. 

Figs. 8 and 9 show a very good match of FEM prediction to the experimental data and analytical

solution, thus, validating the newly developed K-matrix and FEM procedure.

The constitutive law in Eqs. (1) and (2) consists of linear and non-linear parts. The plastic part of

Eqs. (1) and (2) induces non-linearity in the results. This non-linearity helps in producing hystresis

loop when dealing with the cyclic loading. As stated earlier, the area enclosed by this hystresis loop

provides the energy loss per cycle.

Though the constitutive law in Eqs. (1) and (2) has the capability to capture the plastic strain but

the contribution of this strain to the total strain is very small. This makes the curves in Figs. 8, 9

and 10 almost look linear. In order to display the non-linearity present in the data, results are

normalized and are shown in Fig. 10.

Eq. (2) parameters and corresponding K-matrix is used to construct the S-N curve for Al6061-T6

and is shown in Fig. 11 on a semi log scale. Experimental data, analytical solution (Scott-Emuakpor

et al. 2007) and FEM prediction are plotted on the same graph for comparison. The FEM curve

shows a good agreement with experimental data and analytical results (Scott-Emuakpor et al. 2007).

Fig. 8 Force vs. displacement for Al6061-T6 under
monotonic tension and compression

Fig. 9 True Stress vs. true strain for Al6061-T6
under monotonic tension and compression
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Table 2 shows a comparison of cyclic energy for analytical results (Scott-Emuakpor et al. 2007)

and FEM prediction. The percent difference between the two results is below 2.2%. This verifies a

good match between results and also validates the new finite element.

Fig. 10 Normalized data plot for Al6061-T6 under
monotonic tension and compression

Fig. 11 Stress vs. no. of cycles for Al6061-T6 for
completely reversible loading case

Table 2 Cyclic energy comparison for analytical solution and FEM prediction

Stress (Ksi)
Cyclic Energy 
(Analytical)

(lb/in)/in3 × 103

Cyclic Energy(FEM)
(lb/in)/in3 × 103 % Difference

35 8.52E+00 8.71E+00 2.2

30 1.99E+00 2.02E+00 1.4

25 4.41E-01 4.44E-01 0.7

20 8.98E-02 9.00E-02 0.1

15 1.57E-02 1.56E-02 0.3

9 1.18E-03 1.20E-03 1.4

Table 3 Number of cycle comparison between analytical solution and FEM prediction

Stress (Ksi)
Cycles

(Analytical)
Cycles
(FEM)

% Difference

35 6.28E+03 6.14E+03 2.2

30 2.69E+04 2.65E+04 1.4

25 1.21E+05 1.20E+05 0.7

20 5.96E+05 5.95E+05 0.1

15 3.42E+06 3.43E+06 0.3

9 4.52E+07 4.45E+07 1.4



Development of new finite elements for fatigue life prediction in structural components 671

Table 3 presents a comparison between number of cycles predicted in previous research (Scott-

Emuakpor et al. 2007) and with new finite element.

Since there is a direct correlation between cyclic energy and cycles to failure, the maximum

percent difference for assorted stress levels is also below 2.2 percent. This provides another

indicator for a good agreement between the two methods.

This research deals with the elastic and plastic parts of Eqs. (1) and (2) separately and ignores any

coupling between elastic and plastic strains. However, in the real world, this may not be the case.

As it transpires, this coupling becomes stronger with the increasing stress in particular above the

yield point. Therefore, a deviation of FEM prediction from the analytical data at higher stress levels

is observed. The fatigue analysis is performed only below the yield point. Therefore, the level of

applied stress remains low enough to cause any significant error due to coupling on the final results

for number of cycles to failure. This is also evident from Figs. 8 and 9 that the difference between

experimental data and FE prediction is very negligible. Therefore, to avoid the complexity of the

computation, the coupling between elastic and plastic parts is ignored.

Ti6Al-4V material is also analyzed using new finite element and results are plotted in Fig. 12.

From the experimental results of Fig. 12, it can be observed that an endurance limit phenomenon is

present. Due to uncertainties in energy behavior near the endurance limit, the analysis is performed

for stress levels above 60 Ksi. Nevertheless, the results show a good match between analytical

solution and FEM prediction. 

The cyclic loading case with mean stress effect is different from the completely reversible loading

(Nicholas and Maxwell 2003). The calculation of cyclic energy in this case involves a different

approach due to presence of mean stress and strain on the scale. When mean stress is included in a

fatigue procedure, it dissipates residual energy and increases the plastic strain per cycle, thus

reducing the amount of cycles required to fatigue a specimen. When evaluating the fully reversed

tension/compression cyclic behavior, two assumptions were set in place. It is considered that a

significant amount of strain damage is caused by plastic deformation, and the tensile cyclic curve

(from zero applied stress to peak-to-peak stress) is a slight modification of the true strain equation,

Fig. 12 Stress vs. no. of cycles for Ti6Al-4V for completely reversible loading case 
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which defines the stress-strain relation of a monotonic procedure (Scott-Emuakpor et al. 2007). In

order to incorporate mean stress effect, both of these assumptions should still be in place. Meaning,

each cycle, regardless of the mean stress value, should be plotted on the same axis and evaluated

with the same cyclic tensile strain equation (Scott-Emuakpor et al. 2007) as the fully reversed cycle.

However, unlike the fully-reversed case, it can not be assumed that the compressive behavior of the

hysteresis loop (stress strain plot for one complete cycle) is identical to the tensile curve. Meaning,

the curve from zero applied stress to peak-to-peak is not the same as the curve from peak-to-peak to

zero. This assertion is proven by the experimental results, where the compressive curve was shown

to be reasonably linear, thus providing a rather fair assumption for analytical characterization. As

stated earlier, and illustrated in Fig. 7, the effect of the mean stress increases the amount of plastic

deformation per cycle. This effect, as well as the residual mean strain energy, will reduce the fatigue

life of materials with stress ratios greater than negative one.

The FE analysis is performed for Al6061-T6 with mean stress effect included. The results are

plotted in Figs. 13 and 14 for 10 Ksi and 20 Ksi mean stress levels respectively. The FEM

prediction curve follows the analytical results and experimental data closely.

5.2 Bending load analysis

Fig. 15 shows results for Al6061-T6 for completely reversible bending load. The FEM analysis is

performed for number of elements ranging from 1 to 5. The results tend to converge to the

analytical solution with increasing number of elements. The FEM results show a good agreement

with analytical and experimental data (Scott-Emuakpor et al. 2007).

Table 4 provides a comparison of FEM prediction and analytical solution for a 5 element analysis.

The results show a reasonable match which provides another indicator for an agreement between

analytical (Scott-Emuakpor et al. 2007) and FEM predictions.

As stated earlier, the new bending element (K-Matrix) has the capability to predict different

number of cycles for different elements in the structure subjected to varying stress. Figs. 16 and 17

Fig. 13 S-N curve with 10 Ksi mean stress effect for
Al6061-T6

Fig. 14 S-N curve with 20 Ksi mean stress effect for
Al6061-T6 
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show 5 element cantilever beam analysis for 10 Ksi and 20 Ksi bending loads. The number of

cycles is plotted using a colored contour plot where each color represents corresponding number of

cycles in the element according to the scale. The scale is plotted from highest number of cycles,

Fig. 15 Stress vs. no. of cycles for Al6061-T6 for completely reversible bending load

Table 4 Number of cycle comparison between analytical solution and FEM prediction 
(5 Elements) under bending loads

Stress (Ksi)
Cycles

(Analytical)
Cycles
(FEM)

% Difference

20 2.42E+06 2.340E+06 3.56

25 7.48E+05 7.220E+05 3.51

30 2.58E+05 2.500E+05 3.10

35 9.52E+04 9.551E+04 0.20

Fig. 16 No. of cycles for Al6061-T6 for completely
reversible bending load (10 Ksi) – 5 element
analysis

Fig. 17 No. of cycles for Al6061-T6 for completely
reversible bending load (20 Ksi) – 5 element
analysis
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represented with blue color, to the lowest numbers represented with red color as shown in the Figs.

Element 1 experiences the maximum stress, therefore, minimum number of cycles are predicted for

this element. On the other hand, element 5 experiences the minimum stress, therefore, it can

withstand maximum number of cycles in the beam. 

Fig. 18 shows a Goodman diagram where applied stress is plotted vs. mean stress. The FEM

analysis is performed with 5 element approximation. The results show a good match between

analytical, experimental (Scott-Emuakpor et al. 2007) and FEM results. 

6. Conclusions 

The new finite elements (rod and beam) developed in this research provide a useful tool for

fatigue life prediction in structural components like gas engine turbine blades. The accurate

prediction of number of cycles with new axial and bending finite elements and a good match of

results to experimental data and analytical results (Scott-Emuakpor et al. 2007) signifies that new

finite elements provide sufficient estimation of number of cycles for axial and bending loads. 

These new axial (rod) and bending (beam) elements are developed from a fatigue based

constitutive law. The fact that these elements incorporate the fatigue mechanism in to analysis

procedure differentiates these new developments from the existing finite element procedure.

Furthermore, the new finite element method is much more useful due to the discrete nature of the

finite element method. The new finite element for bending fatigue life prediction has the capability

to predict varying number of cycles in the structural component experiencing variable stress at

different locations. The colored plots can be obtained where each color signifies respective fatigue

life for each element present at different locations in the structure. 
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