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Modelling of seismically induced storey-drift in buildings
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Abstract. This paper contains detailed descriptions of a dynamic time-history modal analysis to
calculate deflection, inter-storey drift and storey shear demand in single-storey and multi-storey buildings
using an EXCEL spreadsheet. The developed spreadsheets can be used to obtain estimates of the dynamic
response parameters with minimum input information, and is therefore ideal for supporting the conceptual
design of tall building structures, or any other structures, in the early stages of the design process. No
commercial packages, when customised, could compete with spreadsheets in terms of simplicity,
portability, versatility and transparency. An innovative method for developing the stiffness matrix for the
lateral load resistant elements in medium-rise and high-rise buildings is also introduced. The method
involves minimal use of memory space and computational time, and yet allows for variations in the
sectional properties of the lateral load resisting elements up the height of the building and the coupling of
moment frames with structural walls by diaphragm action. Numerical examples are used throughout the
paper to illustrate the development and use of the spreadsheet programs.
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1. Introduction

The earthquake resistant design of reinforced concrete and structural steel buildings has been well

documented (e.g., Paulay and Priestley 1992, Priestley 1996, Krawinkler 1996). However, emphasis

on cited publications have been on the design and detailing practices and the assessment of the

strength and ductility capacity of the lateral resisting elements of the buildings, namely structural

walls and moment resisting frames. Practical issues associated with the realistic modelling of the

structure for simulating their dynamic response behaviour in an earthquake have only been

addressed in more recent times (e.g., Elghazouli 2003, Kelly 2004, Cotsovos and Pavlovic 2006).

Meanwhile, realistic modelling of the properties of the ground shaking which has incorporated

effects of site amplification is equally critical (e.g., review articles by Lam et al. 2000, Lam et al.

2007, Chandler et al. 2002, Lam et al. 2001).

Different methods have been developed for estimating seismic actions in a building structure,

namely the quasi-static analysis method and the dynamic analysis method which can be sub-divided
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into the response spectrum analysis method and the time-history simulation method. Traditionally,

quasi-static analysis method is favoured by structural engineering designers for reasons of

simplicity. Effects of the higher modes of vibration (which are not automatically accounted for by

the quasi-static model) have been emulated by the application of fictitious forces applied at the

upper level of the building, and/or by artificially increasing response spectral accelerations in the

high period range. 

Whilst a quasi-static model is easy to comprehend and use, the proliferated access to computers

and the advent of commercial packages with dynamic analysis capabilities have increased the use of

dynamic analyses in the design of new building structures and the assessment of existing structures.

Most international seismic codes of practice make dynamic analysis a mandatory requirement for

tall buildings. For example, the Australian Standard for Structural Actions: Seismic Actions

(AS1170.4 2007) requires buildings that are taller than 50 m to be assessed using a dynamic

analysis.

Dynamic analysis of building models comprising beam and column elements or finite elements

can be implemented using well known commercial packages such as ABACUS, ANSYS, Strand and

SPACEGASS. However, analysis of this nature can only be undertaken at the later stage of the

detailed design of the building when details of the configuration of the structural elements and their

dimensions are known. Information on the quantities of longitudinal reinforcement and the axial

load ratio in a reinforced concrete member that is dominated by flexural actions will also be

required for the accurate calculation of the post-cracked stiffnesses. Thus, the effective stiffness of a

reinforced concrete member cannot always be generalised as a fraction of the initial (uncracked)

stiffness. References are made to the work by Priestley et al. (2007), Priestley (1998), Priestley and

Kowalsky (1998), Numayr et al. (2003) and Yun et al. (2004) which cover the behaviour of both

normal strength and high strength concrete. Finite element analyses that have not incorporated such

details will result in significant errors. Clearly, there are difficulties in implementing a finite element

dynamic analysis in the early stages of the design of the building structure. 

A more effective alternative method is to employ simplified models, such as macro models, for

simulating the potential seismic response behaviour of the building structure throughout the design

process. Macro models of reinforced concrete have evolved in different forms. For example, a

macro model of a concrete member can be a finite model which has a relatively smaller number of

elements in order to save memory space and computational time whilst aiming at simulating the

global deflection behaviour of the member (e.g., Kelly 2004, Qian and Chen 2005). Macro models

have also been used for analysing the out-of-plane response behaviour of unreinforced masonry

walls (e.g., Lam et al. 1995, 2004) and the overturning of objects in buildings (e.g., Al Abadi et al.

2004, 2006). Simplified macro model of a building could also be developed from information

inferred from the structural floor plans. Thus, macro modelling can be undertaken as early as the

conceptual design stage. 

Numerous macro models have been developed for obtaining estimates of the inter-storey drift

demand of multi-storey buildings. These macro models are vertical elements to represent

contributions by the moment resisting frames and shear walls to the lateral resistance of the

building. Models developed by Iwan (1997) and Gulkan and Akkar (2002) were of the form of

simple shear beams in which flexural actions of the shear walls have not been included. A more

elaborate model based on the joint contributions of a shear beam element (representing moment

resisting frames) and a vertical cantilever element (representing shear walls) have been developed

by Miranda (1999). The model was further developed by Miranda and Reyes (2002) to incorporate
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allowances for variation in the lateral stiffness of the element up the height of the building.

Importantly, inter-storey drift demands as predicted by these macro models for low and medium rise

buildings (which are dominated by the fundamental mode of vibration) have been demonstrated to

be in good agreement with results from time-history analysis of the finite element model of the

building. However, significant discrepancies have been found with high period (tall) buildings in

certain conditions given that these simplified methods of analysis were typically based on a pre-

determined horizontal load profile which cannot fully represent higher mode actions in the building.

Higher mode effects have been accurately accounted for in a more recently developed calculation

procedure presented by Miranda and Akkar (2006).

The macro model introduced in this paper operates with similar principles but possesses the

unique feature of allowing the variation of mass and stiffness up the height of the building to be

specified arbitrarily (which is in contrasts to the generalization approach adopted by a typical macro

model presented in the literature). This is accomplished by the use of matrix approach in operating

Virtual Work Method for finding deflections conveniently (exploiting the capability of spreadsheets).

This calculation approach is distinct from the classical approach of solving 4th order differential

equations for finding deflections as done in the development of many macro models described

above. A key feature of the presented methodology is the instantaneous calculation and display of

the modal properties and time-histories of selected response quantities (e.g., inter-storey drifts and

base shear). Thus, higher mode effects have also been taken into account systematically. The use of

spreadsheets and macro models for dynamic simulations enables seismic actions in the structure to

be assessed conveniently and with much less time and effort. The low cost feature of the

simulations allows sensitivity studies to be undertaken in order that the potential implications of

different schematic designs can be anticipated and evaluated using preliminary information. It is

acknowledged that such capabilities can be achieved with a commercial package by customising the

input interface of the program, but, no customisation could compete with spreadsheets in terms of

simplicity, portability, versatility and transparency. Transparency is an important attribute of the

proposed calculation approach given that the blackbox syndrome is particularly an issue with

dynamic simulations where engineers often find it difficult to cross-check simulations from simple

hand calculations.

The algorithms presented in this paper are restricted to analyses for linear elastic behaviour. By

the traditional Equal Displacement proposition, the inelastic displacement demand of a single-

degree-of-freedom system may be assumed to be equal to the calculated displacement demand

based on linear elastic behaviour and 5% damping. This simple estimate of the displacement

demand would need to be modified to reconcile with results observed from non-linear time-history

analyses in certain conditions. The modification factor has been found to be dependent on the

natural period of the building, the dominant period of the applied excitations and the displacement

ductility level as revealed by numerous studies including the well known studies undertaken by

Miranda (1991, 1993, 1999). For a building dominated by the fundamental mode of vibration, the

application of the modification in the spreadsheet calculation is straightforward: the elastic spectral

displacement (for 5% damping) is simply amplified by the modification factor (proposed by

publications cited above) and the amplified value is then used to combine with the participation

factor and the mode shape vector for the calculation of the storey drift demands. Conversely, the

strength demand obtained from a linear elastic analysis could be scaled down by the strength

reduction factor (which is also known as the structural response modification factor or behaviour

factor) to allow for the beneficial effects of the ductile response behaviour of the structure. Readers
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may refer to Miranda and Ruiz-Garcia (2002) in which a range of proposed reduction factor models

have been reviewed. For buildings in which higher mode effects are significant, only the strength

demand associated with the fundamental mode of vibration is scaled down whilst contributions by

the higher modes should be taken as the original value as obtained from linear elastic analysis

which is contrary to most contemporary code provisions (Priestley et al. 2007).

In view of the well established guidelines that have been provided by the literature on the use of

modification factors to allow for inelastic behaviour, the rest of the paper put the focus on dynamic

response calculations based on linearly elastic behaviour and the techniques of automating those

calculations on spreadsheets. 

The remainder of the paper is divided into Sections 2, 3 and 4. In Section 2, the spreadsheet

implementation of the simulations of the seismically induced drift behaviour of single-degree-of-

freedom systems including that of single-storey buildings is illustrated (Fig. 1(a)). In Section 3, the

simulation methodology is extended to the analysis of a 3-storey building which is represented by a

macro model (Fig. 1(b)). In Section 4, an innovative method using spreadsheets for constructing the

stiffness matrix for the lateral load resistant elements of taller buildings is introduced. The method

involves minimal use of memory space and computation time, and yet allows for variations in the

sectional properties of the lateral load resisting elements up the height of the building together with

the coupling of moment frames with structural walls by diaphragm action (Fig. 1(c)). The modal

natural periods and mode shapes computed by spreadsheets for an example 10-storeys building will

Fig. 1 Example structures included in the illustrations 
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be compared with those obtained from a commercial computer package.

Since the originality of the paper is in the implementation of the computations by spreadsheets,

relationships that are based on established principles have been summarised as background notes in

particular figures, rather in the main text (whereas detailed descriptions of the relevant concepts can

be found in standard structural dynamics text books such as Chopra (2000)).

2. Time-history simulations for single-storey buildings

2.1 Time-step integration methods

The common methods for simulating the response time-histories for single-degree-of-freedom

systems are namely the Duhamel Integration Method and Time-step Integration Methods. The

Duhamel Integration Method (based on solving the convolution integral) can occupy a great deal of

memory and requires lengthy computational time for irregular and sustained excitations such as that

generated by an earthquake (a large number of Dirac-Delta functions are required to simulate the

response of every pulse in the excitation). Time-step Integration is about predicting the

displacement, velocity and acceleration of the next time step using those quantities calculated in the

previous two time-steps. Computation begins with the first time-step at which the initial conditions

are defined. Time-step Integration can be very efficient and accurate if the time-step interval is

sufficiently short, and can be readily extended to solving the response of non-linear systems, unlike

the Duhamel Integration Method which is restricted to solving the response of linear elastic systems

only. 

Time-step Integration Methods can be sub-classified into : (i) Central Difference Method (which is

simple to operate in the spreadsheet but is less accurate), (ii) Constant Average Acceleration Method

(which is unconditionally stable and hence most suited to be used for the solution of matrices

representing systems possessing large numbers of degrees of freedom), (iii) Linear Average

Acceleration Method (which is amongst the most accurate of all the methods but not as stable as the

Constant Average Acceleration Method), and (iv) Wilson θ Method (which was modified from the

Linear Average Acceleration Method; with a value of q = 1.42 recommended for optimal accuracy).

The remainder of this section illustrates the spreadsheet implementation of the Central Difference

Method for solving the displacement time-history of single-degree-of-freedom systems in response

to ground excitations.

2.2 Central difference method

Relationships associated with the Central Difference Methods are summarised in Fig. 2(a) for

background information. The overall strategy of the operation is to find displacement at time step

j + 1 given the displacement at the two previous time steps: j and j − 1. An example implementation

of the spreadsheet method is illustrated in Fig. 2(b). For detailed descriptions of the method and the

listed relationships, consult standard structural dynamic textbooks such as Chopra (2000).

It is noted that with Central Difference Method, the solution can become unstable if ∆t ≥ T/π. For

example, numerical instability resulting in gross errors can occur if the time-step ∆t ≥ 0.03 sec in

the analysis of a SDOF system with T = 0.1 sec. Furthermore, ∆t should be made as small as

possible, and preferably ∆t ≤ T /10 for accurate results.
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2.3 Illustration by example

The “Newhall-1” accelerogram recorded during the 1994 Northridge Earthquake was chosen to

generate the response time-history of a linear elastic (1-second period) single-degree-of-freedom

system with 5% damping using the developed spreadsheet. Figs. 3(a) and 3(b) present the time-

histories of the (input) acceleration of the ground,  and the (output) response displacement of

the lumped mass system, U(t) respectively. 

U
··
g t( )

Fig. 2(a) Background to the Central Difference Method

Fig. 2(b) Implementation of Central Difference Method in a spreadsheet



Modelling of seismically induced storey-drift in buildings 465

3. Modal analyses and time-history simulations for 3-storey buildings

3.1 Mode shape iteration method

The eigenvalue of a two or three degree-of-freedom (2DOF or 3DOF) system can be obtained by

solving the roots of a polynomial expression based on equating the determinant of the matrix:

 to zero. This elementary approach of obtaining eigensolutions would not be

feasible for systems with a large number of DOF’s. The mode shape iteration method (which is also

known as the Power Method) is considered more viable for dealing with systems with much larger

DOF’s. The basic principles used in developing the mode shape iteration method and the associated

relationships are summarised in Figs. 4(a), (b) as background information.

Det K[ ] λ M[ ]–

Fig. 3 Input and Output time-histories of analysis by Central Difference Method

Fig. 4  Background to the Mode Shape Iteration Method
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3.2 Illustration by example 

The method is illustrated by the analytical case study of an example building with storey mass

and storey stiffness as defined in Fig. 1(b). A unit horizontal force is applied at each and every

storey level to derive the flexibility matrix of the frame as shown in Fig. 5. The Flexibility Matrix

can be constructed with the displacement values obtained from the unit load analyses and inverted

to obtain the stiffness matrix. The Mass Matrix and the D matrix are identified accordingly as

illustrated in Eqs. (1a)-(1d).

Fig. 4 Background to the Mode Shape Iteration Method (continued)

Fig. 5 Unit load analyses for determination of [F] matrix
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Flexibility matrix [F] = units in m/MN × 10−3 (1a)

Stiffness matrix [K] = units in MN/m (1b)

Mass matrix [M] = units in kilo-tonnes (1c)

(1d)

31  11  4.4

11  11  4.4

4.4  4.4  4.4

50  50  – 0

50  – 200  150–

0  150  – 377

120 0 0

0 200 0

0 0 400

10
3–

×

D[ ] F[ ] M[ ]
31  11  4.4

11  11  4.4

4.4  4.4  4.4

120 0 0

0 200 0

0 0 400

10
6–

×
3.73  2.21  1.76

1.33  2.21  1.76

0.53  0.88  1.76

10
3–

×= = =

Fig. 6 Spreadsheet operations for the calculation of the 1st mode of natural vibration

Fig. 7 Eigensolution for the 1st mode of natural vibration



468 Nelson Lam, John Wilson and Elisa Lumantarna

The mode shape iteration method can then be applied to calculate the first eigenvalue (λ) and

eigenvector (φ) using the [D] matrix as summarised in Fig. 6 whilst the eigenvalue solution

obtained for the first mode of vibration is shown in Fig. 7.

The computation procedure illustrated in the above only provides solutions for the 1st

(fundamental) mode of natural vibration. The calculation technique for obtaining the 2nd and higher

modes of natural vibration involves applying a “shift” (µ) to the eigenvalue; i.e., λ = λ' + µ. The

original expression: [K]{φ} = λ[M]{φ} becomes [K]{φ} = (λ' + µ)[M] which is then translated into:

[[K] − µ[M]] {φ} = λ' [M]. The value of λ' is then found by iteration in the manner as described in

Fig. 4(a), but the relationship to be used is : {φ} = λ'[D]'{φ} where [D]' is derived from the

transformed stiffness matrix: [[K] − µ[M]]. In a trial and error procedure, the value of µ is

incremented until the mode shape vector switch abruptly from that of the 1st natural vibration mode

to the 2nd natural vibration mode. The value of µ is then incremented further until the mode shape

vector switches again from that of the 2nd natural vibration mode to the 3rd natural vibration mode,

and so on. Detailed description of this technique can be found in Chopra (2000). In the example

calculation shown below, a shift of µ = 700 is applied to obtain the eigensolution for the 2nd mode

of vibration.

(2a)

;

(2b)

The mode shape iteration method is then applied once again for the calculation of the eigenvalue

(λ') and the eigenvector (φ) for the 2nd mode of natural vibration using the [D]' matrix which is

based on a shift value of µ = 700. Details of the calculations are illustrated in Figs. 8 and 9.

k[ ]′ k[ ] µ M[ ]– k[ ] 700 M[ ]–
50 700 0.12( )– 50– 0

50– 200 700 0.2( )– 150–

0 150– 377 700 0.4( )–

= = =

k[ ]′
34– 50– 0

50– 60 150–

0 150– 97

= F[ ]′
51– 15 23

15 10– 16–

23 16– 14–

10
3–

×=

D[ ]′ F[ ]′ M[ ]
51– 15 23

15 10– 16–

23 16– 14–

120 0 0

0 200 0

0 0 400

10
6–

×
6.17– 2.99 9.2

1.79 2.03– 6.3–

2.77 3.14– 5.6–

10
3–

×= = =

Fig. 8 Shaded box showing spreadsheet operations for the calculation of the 2nd mode of natural vibration
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A further shift of µ = 1500 is then applied for calculation of the eigenvalue (λ) and the

eigenvector (φ) for the 3rd mode of natural vibration as shown in Fig. 10. The eigensolutions

obtained for all three vibration modes are summarised in Fig. 11.

Fig. 9 Eigensolution for the 2nd mode of natural vibration

Fig. 10 Eigensolution for the 3rd mode of natural vibration

Fig. 11 Summary of all eigensolutions
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3.3 Simulation of the time-histories of the modal responses

The expressions listed in Fig. 12 are for estimating the displacement time-history of the building

floor attributed to the jth mode of vibration using modal analysis theory where U(t) is the

displacement response time-history of a SDOF system (which has natural period equal to the modal

period of vibration of the MDOF system), φ1, j is the 1st entry (corresponding to node no. 1, the

roof) to the mode shape vector {φ}j for mode j, and Lj /Mj is the participation factor for mode j.

Given the modal storey displacements, the amount of modal inter-storey drift can be calculated by

taking the difference in the displacement demand calculated for the adjacent stories. In the case

Fig. 12 Estimation of the modal displacement time-histories of the building floors

Fig. 13 Response time-histories of respective SDOF systems
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Fig. 14 Storey displacement simulations
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Fig. 15 Inter-storey drift simulations
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study example to be illustrated in the remainder of this section, the analyses were based on the

Newhall-1 accelerogram which was recorded from the 1994 Northridge earthquake (identical to the

accelerogram used for simulations in Section 2). 

The response time-histories simulated for SDOF systems with natural periods consistent with the

modal periods of vibration have been calculated and are shown in Fig. 13. 

The displacement at each individual storey levels attributed to the 1st and 2nd mode of vibrations

have been simulated (Figs. 14(a)-14(c)). The amount of inter-storey drift have been calculated by

taking the difference in storey displacements at each time step (Figs. 15(a)-15(c)). The maximum

inter-storey shear forces have also been calculated as the product of the maximum inter-storey drifts

and the storey stiffness (Table 1). It is noted that the presented inter-storey drifts and shear forces

have already taken into account the combination of the first two modes of vibration at every time-

step. This approach to modal combination is more accurate than the well known modal combination

rules (such as the square-root-of-the-sum-of-the-squares method). It is noted that the sum of the

interstorey shear forces (shown in Table 1) are not necessarily in equilibrium as they occur at

different instances during the response of the building to the earthquake.

4. Modal analyses of taller buildings

4.1 Construction of flexibility, stiffness and dynamic Matrices

In this section, the spreadsheet implementation of the construction of the flexibility matrices [F]

and stiffness matrices [K] of tall buildings that are laterally supported by structural walls, moment

frames or a dual system combining the contributions from the two types of elements are described.

Fig. 16 is a schematic diagram of such a dual system which can be analysed by spreadsheet using

the innovative technique described below.

The approach adopted herein is to build the flexibility matrix for the structural walls and moment

frames in separate operations. The respective stiffness matrices are then obtained by matrix

inversion which can be operated conveniently using spreadsheets for matrices representing tens of

degrees-of-freedom (which will suffice for a 2D macro modelling of a building). Separate flexibility

matrices may be required to represent both the flexural and shear deflections of the lateral resisting

element. An example of this is the case of a squat structural wall in which shear deflections of the

wall can be as significant as the flexural deflections. Another example is a moment frame

experiencing significant “push-pull” actions which can result in the overall curving of the frame in

the direction of loading. The “flexural” deflection of the frame associated directly with the overall

in-plane curvature can be as significant as the “storey-shear” of the frame which is associated

directly with the deflection of the individual columns which bend in reversed curvature in between

Table 1 Inter-storey shear forces of case study building

Storey levels Interstorey shear forces 

Columns between 2nd and 3rd storey 2950 kN

Columns between 1st and 2nd storey 3650 kN

Columns between ground floor and 1st storey 6850 kN
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the floors (Accurate estimates of the “push-pull” actions are particularly important with tall moment

frames supported by out-riggers.). The flexibility matrices representing different modes of

deflections of walls, or frames (with or without out-riggers), can be summed to obtain the resultant

flexibiltiy matrix in which all deflection components have been incorporated. The stiffness matrix of

a lateral resisting element is then obtained by the matrix inversion of the resultant flexibility matrix.

The global stiffness matrix for the building is then obtained as the sum of the stiffness matrices of

the individual lateral load resisting elements. This approach of assembling stiffness matrices enables

dual systems of wall and frames to be obtained simply as the sum of the stiffness matrices of the

wall and frame in isolation. The method of constructing the flexibility and stiffness matrices for a

tall building is summarised in Fig. 17. The implicit assumption with this method of calculation is

that the two types of systems are connected by diaphragm actions of the floor and there are no

moment coupling between the systems. The dynamic matrix [D] can be obtained as the product of

[F] and the diagonal Mass Matrix [M] in which only the translational inertia of the building floors

have been taken into account.

The flexibility matrix [F] for representing the bending of a structural wall can be constructed by

calculating the deflections at various levels up the height of the wall when subject to a horizontal

force of unit magnitude (and applied one at a time at each reference level). Fig. 18(a) illustrates the

use of the virtual force method in calculating the deflection of the wall at two-thirds the total height

when subject to a unit force applied at the top of the wall. It is illustrated further in Fig. 18(b) that

this calculation can be implemented in spreadsheets by the multiplication of a row vector with a

column vector. By applying different values of EI to the “upper”, “middle” and “lower” segments of

the column vector (as shown in Fig. 18(b)) variations in the sectional properties of the wall up the

height of the building can be incorporated into the calculations. Importantly, the idea of multiplying

a row vector with a column vector (for calculating the deflection at a reference point on the wall)

has been extended into the idea of multiplying two matrices (for calculating entries to the flexibility

matrix of the wall) as shown in Fig. 18(c). 

The flexibility matrix for estimating shear deflections of a squat wall, or the equivalent shear

stiffness of a moment-frame, can be constructed in a similar manner. In the calculation for shear

deflections, the bending moment diagrams as illustrated in Figs. 18(a)-18(c) need to be replaced

with shear force diagrams; and “M/EI” replaced with “V/GA” where V is the shear force, G is the

Fig. 16 Dual system of wall-frame       Fig. 17 Formulation of stiffness matrix



Modelling of seismically induced storey-drift in buildings 475

Fig. 18 Flexibility matrix assemblage for bending of structural wall
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shear modulus and A is the shear area (or equivalent shear area). Whilst vectors and matrices used

in the above illustrations were of the (modest) dimension of 3 degrees of freedom, spreadsheets for

vectors, and matrices, of dimension equal to 10 have been developed by the authors for analysis of

taller buildings. It is noted that in practice, every two or three stories in the building can be lumped

together into a DOF. Thus, a macro model of 10 DOF (which is characterised by vectors and

matrices of dimension equal to 10) can be used to model the dynamic drift behaviour of a building

which has 20 or 30 stories. 

The spreadsheet developed by the authors was used to operate on the macro model of a 10-storey,

30 m tall, building which is supported by a dual system of wall-frame as shown below in Fig.

19(a). The structural wall which has a maximum flexural rigidity (EI) of 100,000 MN/m2 is

assumed to deflect purely in bending (i.e., shear deformation is ignored). The value of EI is

curtailed by 50% in the upper half of the building. The equivalent shear rigidity of the moment

frame (GA) is 1000 MN in the lower half of the building and is reduced by 50% in the upper half

of the building. Push-pull actions of the columns in the moment-frame have also been ignored and

hence the deflection is purely due to the flexing of the columns in between the floors. The seismic

mass on each floor is taken as 150 tonnes. It is shown by modal analysis (as illustrated in Section

3) that the natural periods of the building in the first 3 significant modes of vibration are 0.72 s,

0.19 s and 0.08 s respectively (as shown in Fig. 19(b) in which the mode shapes are also shown).

Results of the modal analysis can be used for simulating time-histories for the storey deflections and

inter-storey drift demands, in the same manner as that illustrated in Section 3.

A dynamic modal analysis of a finite element model of the same building was performed using

the commercial package SPACEGASS to verify the accuracy of the developed spreadsheets. Results

are presented in Fig. 20 for comparison with that presented in Fig. 19.

Fig. 19 Macro model of 10-storey building and modal analysis results
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5. Conclusions

This paper illustrates the use of spreadsheets and macro models of single-storey and multi-storey

buildings for performing dynamic modal analyses and simulations of the time-histories of the

building responses. Modal analysis was accomplished using Mode Shape Iteration Method and

Time-history Simulations were accomplished using Central Difference Method. Both methods are

very suited to implementation in the spreadsheet environment as demonstrated by worked examples.

The simulations enabled maximum inter-storey drift values and the corresponding storey shear

forces to be identified. An innovative procedure for constructing the flexibility matrix, stiffness

matrix and dynamic matrix of tall buildings has been introduced. The spreadsheet program

developed has the capability of analysing buildings that are supported by dual systems of structural

walls combined with moment-frames. Variations in the sectional properties of the lateral resisting

elements up the height of the building can also be incorporated into the calculations. The operation

of the spreadsheet has been demonstrated by the dynamic modal analysis of a 10-storey building

which is supported by a dual system of a wall-frame. The accuracy of the calculations by

spreadsheets has been verified by comparison with results obtained from the finite element analysis

of the same building using a commercial package. 
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