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Abstract. In this paper, using perturbation and Galerkin method, the response of a resonant viscoelastic
microbeam to an electric actuation is obtained. The microbeam is under axial load and electrical load. It
is assumed that midplane is stretched, when the beam is deflected. The equation of motion is derived
using the Newton's second law. The viscoelastic model is taken to be the Kelvin-Voigt model. In the first
section, the static deflection is obtained using the Galerkin method. Exact linear symmetric mode shape of
a straight beam and its deflection function under constant transverse load are used as admissible functions.
So, an analytical expression that describes the static deflection at all points is obtained. Comparing the
result with previous research show that using deflection function as admissible function decreases the
computation errors and previous calculations volume. In the second section, the response of a microbeam
resonator system under primary and secondary resonance excitation has been obtained by analytical
multiple scale perturbation method combined with the Galerkin method. It is shown, that a small amount
of viscoelastic damping has an important effect and causes to decrease the maximum amplitude of
response, and to shift the resonance frequency. Also, it shown, that an increase of the DC voltage, ratio of
the air gap to the microbeam thickness, tensile axial load, would increase the effect of viscoelastic
damping, and an increase of the compressive axial load would decrease the effect of viscoelastic damping.

Keywords: viscoelastic damping; static deflection; mode shape; resonance excitation; perturbation
methods; Galerkin method.

1. Introduction

Low weight, small size, low consumption energy and high durability of micro electro mechanical

systems (MEMS) have increased the use of these systems. In many circumstances, these systems

are used as an actuator or sensor. So, a driving or sensing electrode lay at opposite configuration to

the microbeam and an electrical force is applied to the microbeam. Depending on the nature of

device, the electrical load is composed of DC and AC part polarization. Often, the DC part is used

to apply a constant deflection to the beam and AC part is used to excite the harmonic modes of

beam. Increasing of the applied voltage will cause the beam stick to the electrode. This failure

voltage, which is recognized as a failure mode of the system is called pull in voltage. Many
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researches have been performed to analyze behavior the MEMS system. Ijntema and Tilmans

(1992) obtained the natural frequency of vibration for the beam by considering the static deflection

of the beam. They used the Rayleigh method and did not consider the midplane stretching. Tilmans

and Legtenberg (1994) used the Rayleigh-Ritz method to obtain the natural frequency and static

deflection of microbeam. Midplane stretching has been neglected in this paper. They compared their

theoretical results with experimental results. It was shown a good agreement between theoretical

and experimental for small deflection. If the amplitude of deflection be large, then it causes the

system be hardened. Chio and Lovell (1997) obtained the static deflection by numerical shooting

method by considering this hardening (midplane stretching). Abdel-Rahman et al. (2002) obtained

the static deflection and natural frequency of deflected beam by numerical shooting method. In that

research, microbeam has been assumed under axial load and an electrical force. Also, they assumed

that midplane is stretched when the beam is deflected. This research showed that natural frequency

is altered depending on the midplane stretching. Younis et al. (2003) accomplished a research using

the reduced order method and the Galerkin method. They considered the equation in two parts, i by

expanding electrostatic term to the fifth term about undeflected position and ii by multiplying the

equation by the denominator of electrostatic force term. They solved the static deflection equation

by the Galerkin method. They used five symmetric mode shapes of linear straight beam as

admissible function. These admissible functions have been obtained by numerical shooting method.

Younis and Nayfeh (2003) investigated the response of a resonant microbeam to a primary

resonance electric actuation. They considered midplane stretching and axial load. They used

perturbation method and obtained the modulation of the amplitude and phase of the response. The

boundary value equation resulted from the solution process have been solved by numerical shooting

method. A similar investigation has been performed on a subharmonic and superharmonic electric

actuation by Abdel-Rahman and Nayfeh (2003). Zhang and Meng (2005) used a lamp mass model

and described the dynamic behavior of micro cantilever beam by Mathieu equation. The harmonic

balance method was applied to simulate the resonant amplitude frequency response under the

combined parametric and forcing excitation. Najar et al. (2005) analyzed the deflection and motion

of a shaped microbeam. Their model was included nonlinearities resulted from midplane stretching

and electrostatic excitation. They used DQM method to discrete the microbeam partial deferential

equation. Nayfeh and Younis (2005) analyzed the dynamics of electrically actuated microbeams

under subharmonic and superharmonic resonance excitations. They used the Galerkin method to

discrete equations into a finite degrees of freedom system. The linear undamped mode shape of

straight microbeam has been used as the fundamental function in the Galerkin method. Zamanian et al.

(2008, 2009, 2010) studied the static deflection, natural frequency and dynamic behavior of

microbeam under DC (DC) electric (piezoelectric), DC (AC) electric (piezoelectric) and AC-DC

(DC) electric (piezoelectric) actuation, respectively. Recently using the viscoelastic material in

MEMS Devices has been increased. Dufour et al. (2007) considered the quality factor of

viscoelastic damping in a microbeam that a viscoelastic polymer layer has been deposited on it.

This configuration may be assumed a chemical sensor where the shift of resonance frequency is

used as criteria of adsorption of molecule. Uncuer et al. (2007) studied the linear effect of structural

viscoelastic damping on the behavior of clamped-free and clamped-clamped microbeams under

shock and electrostatic actuation using the Kelvin-Voigt model. Fu and Zhang (2009) studied

nonlinear static and dynamic response of viscoelastic microcantilever beam under combination of

AC and DC electric actuation. They used standard viscoelastic model and neglected from the

midplane stretching and axial load. They discretized the motion equation using single mode in
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Galerkin method and solve them by numerical method In another research they studied the

nonlinear dynamic stability for a clamped-guided viscoalestic microbeam under both a periodic

axial force and a symmetric electrostatic force, Fu et al. (2009). Wenzel et al. (2009) studied the

sensitivity and the response duration of a viscoelastic microcantilever beam that a stressed layer has

been deposited on it. 

In this paper, the response of a resonant viscoelastic microbeam to an electric actuation is

investigated using the multiple scale perturbation methods. Also, in this paper the static deflection

of microbeam is obtained using the comparison function proposed in previous researches and a new

comparison function proposed in this paper. In contrast to previous research works.

2. Modeling and formulation

The system model is a clamped-clamped microbeam at distance d from an electrode plate. An

electrical voltage is applied between the microbeam and electrode plate which is composed of a DC

voltage, vp, and a AC voltage, , in which  is the frequency of excitation and t

is the time (Fig. 1(a)). It must be noted that the microbeam of Fig. 1(a) is not free to deflect in axial

direction, but its right end is induced to remain in a constant position which is obtained by applying

the axial load. This modeling of axial load is used by Nayfeh and Pai (2004) to model the axial

load in the microbeam without viscoelastic damping. It is assumed that the microbeam is initially

displaced by U and W with respect to the fixed coordinate system. The fixed coordinate is shown

v t( ) vaccos Ω̂t( )= Ω̂

Fig. 1 (a) Model of MEMS resonator, and (b) free body diagrams of a deflected element of microbeam
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with s and z in the longitudinal and transverse directions, respectively, where its origin lays at the

left end of microbeam on the geometric center of microbeam cross section (Fig. 1(b)). 

It is assumed that the constant displacement  is applied at the right end of microbeam. So, the

motion equations for a beam subject to the transverse load per unit length q2 and its boundary

conditions may be written as following equations (Nayfeh and Pai 2004)

(1)

Where M3 is bending moment, and F1 is the equivalent axial force in the cross section of beam as

shown in Fig. 1(b). Also, dot and prime signs show the differentiation with respect to s and t,

respectively, and, m(s) is the mass per unit length of the microbeam, so 

(2)

Where, wb and tb are the width and thickness of microbeam cross section, respectively, and, ρb is

the density of microbeam. Here, q2 is the sum of load per unit length of microbeam due to the

electrical field and air damping. So, it may be written as follow, Zamanian et al. (2009) 

(3)

Where,  is the viscous damping per unit length of microbeam, and ε0 is the dielectric constant of

the gap medium between the microbeam and electrode plate. The Kelvin-Voigt model describes the

stress/strain, , relation of viscoelastic material as

(4)

Where,  and E are the viscoelastic damping factor and the elasticity modulus of microbeam,

respectively. To describe the strain in the cross section of microbeam, the local coordinate  is

used, where its origin lays at the geometric center of deflected microbeam cross section (Fig. 1(b)).

The strain in the cross section of microbeam may be written as follow (Nayfeh and Pai 2004)  

(5)

Where, e is the stretching strain of the neutral axis of cross section, and κ is the curvature about

the local longitudinal axis .

(6)

By substituting Eq. (5) in to Eq. (4), and combining it with Eq. (6) 

ε

F1cos θ( )( )′
M3
′ sin θ( )
1 e+

-----------------------⎝ ⎠
⎛ ⎞ ′+ m s( )U··=

F1sin θ( )( )′
M3
′cos θ( )
1 e+

------------------------⎝ ⎠
⎛ ⎞ ′– q2+ m s( )W··=

U 0 t,( ) 0, U l t,( ) ε= =

W 0 t,( ) 0, W l t,( ) 0
∂W 0 t,( )

∂s
--------------------, 0,

∂W l t,( )
∂s

------------------ 0= = = =

m s( ) wbρbtb=

q2

1

2
---ε0wb

vp vaccos Ω̂t( )+( )2

d W+( )2
-------------------------------------------– ĉW
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(7)

Where, A and I are area moment of inertia and area of the microbeam cross section, respectively.

The Taylor series of midplane stretching, e, curvature, κ, and other geometric relations of

microbeam deflection, may be constructed as follow 

(8)

By substituting Eqs. (7) and (3) into Eq. (1), and then, substituting Eqs. (8)-(11) into the resulted

equation, and keeping the terms up to the third order, one obtains 

+

(9)

and

(10)

For slender beam the longitudinal inertia may be negligible (Nayfeh and Pai 2004). Also, since

the magnitude of  in the microbeam is , so, the nonlinear terms with coefficient EI

may be neglected comparing to the nonlinear terms with coefficient EA. In this case, it follows from

Eq. (9) that
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(11)

It results that , and

(12)

By integrating Eq. (16) from s = 0 to s = l, where l is the microbeam length, one obtains 

(13)

Where  is the constant of integrating. By substituting the boundary conditions from Eq. (1)

into Eq. (17)

(14)

One variable equation may be obtained by substituting U' from Eq. (16) into Eq. (14) and using

the assumptions of Eq. (15), considering that  and keeping the terms up to cubic terms 

(15)

For obtaining the equation in dimensionless form, the following variables are used.

(16)

So, the dimensionless form of Eq. (20) will be

(17)

in which

(18)

Comparing the motion equations obtained for the viscoelastic microbeam with motion equations

obtained for elastic microbeam by Abdel-Rahman et al. (2002) shows that one linear term with

coefficient C and one nonlinear term with coefficient  have been added to the elastic equation.

By assuming that differentiation of time and AC voltage will be equal to zero in Eq. (22), the
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(19)

The displacement of system is the sum of static deflection ws, and dynamic deflection , so 

(20)

By substituting Eq. (20) into Eq. (17), and expanding the electrical force about the static position

and by using Eq. (19), the terms that represent equilibrium position are eliminated, and one obtains:

By assuming that  is the linear mode shapes and ω is its natural frequency of vibration of

deflected microbeam about static position, then 

(21)

(22)

By substituting this equation into Eq. (21), the differential equation of modal system will be 

(23)

3. Static deflection of microbeam

In this part, the solution of Eq. (25) is obtained using the Galerkin method. Right selection of

comparison function is a very important step in this method. Here, the symmetric mode shapes of

straight microbeam proposed by Younis et al. (2003), and a new function proposed in this paper are

used as comparison functions. The proposed function in this paper is to be chosen deflection of

microbeam by assuming that microbeam is under constant transverse load equal to electrical force

applied to a straight microbeam. By using this assumption, and considering axial load and

neglecting midplane stretching, the differential equation of static deflection  will be

 

u x t,( )

w x t,( ) u x τ,( ) ws+=

φ x( )

 

u φ x( )eiωτ
=

 

ws 0[ ]
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(24)

This equation is a linear differential equation with constant coefficients. The solution of equation

is composed of homogenous solution and particular solution, which is dependent on the sign of

axial load. So

If (N > 0)

(25)

If (N < 0)

(26)

If (N = 0)

(27)

The coefficients  and  are unknown coefficients that are obtained by substituting the

boundary conditions of Eq. (24) into Eqs. (25), (26) and (27). Considering Eq. (23), the differential

equation that is governed to the mode shapes of straight microbeam without an electrical force may

be written as following form 

,

, (28)

Where  is jth mode shape and  is jth natural frequency of the straight microbeam

without an electrical force. This equation is a linear differential equation with constant coefficients.

So, its characteristic equation is

(29)

The roots of this equation are 

(30)

The positive sign is for r1 and r3 and the negative sign is for r2 and r4, also, i shows imaginary

part. So, the homogeneous solution of Eq. (29) will be
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(31)

The coefficients  and  are unknown coefficients of homogeneous solution of Eq. (28).

An algebraic system is obtained by applying boundary conditions of Eq. (28) into (31). The resulted

equation has nonzero solution if determinant of coefficients of algebraic system be zero. So, by

equating determinant of coefficients to zero, one can obtain the natural frequency and mode shapes

of vibration of a straight microbeam. By denoting the jth symmetric mode shape of the straight

microbeam by , one has 

, (32)

It is assumed that solution of Eq. (19) is

(33)

Where,  are the constants that must be obtained, when the Glaerkin method is applied to

Eq. (25). By multiplying  by Eq. (19), and substituting Eq. (33) into Eq. (19), and

multiplying the resulting equation by ,  and integrating the outcome from

 to , one obtains ( ) algebraic equations as following

(34)

The coefficients  will be obtained by solving this algebraic system, then, one can obtain static

deflection by using Eq. (33).

4. Natural frequencies and mode shapes

It is clear that Eq. (23) is similar to the equation governing the mode shapes of a microbeam on

an elastic foundation with spring coefficient  and the axial load of . So, the
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mode shapes of this similar system may be used as comparison functions in the Galerkin method

for obtaining the solution of Eq. (23). These comparison functions may be obtained using the

similar process that is used for obtaining the solution of Eq. (28). The only difference is that the

terms N,  and  have been replaced by ) and ,

respectively. Where,  and  are jth natural frequency and the mode shape of the similar

system. The solution of Eq. (23) is assumed as 

(35)

Where  is the unknown coefficients that must be obtained using the Galerkin method. By

substituting Eq. (35) into Eq. (23), and multiplying the result by , , and

integrating from  to  an algebraic system is obtained as

(36)

Eq. (23) has a nonzero solution, if the determinant of coefficient  in Eq. (36) be equal to zero.

So, by equating the determinant of coefficients to zero, one can obtain the natural frequency. 

5. Dynamic response

5.1 Primary resonance

The solution of Eq. (21) may be obtained using the multiple scale perturbation method. By

considering , , where ε is small non-dimensional book keeping parameter, the

solution of Eq. (21) will be as following form (Younis and Nayfeh 2003) 

(37)

In order that nonlinearity balances the effects of air damping c, viscoelastic damping C and

excitation vac, they are considered as order  and  respectively. The following equations will

be obtained by substituting Eq. (37) into Eq. (21), and equaling coefficients of the same power of ε.

order (ε) 
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order (ε2)

(39)

order (ε3)

(40)

In previous section, static deflections and vibration, i.e., natural frequencies and mode shapes

about equilibrium position obtained. Using the normalized mode shape of system , the

solution of Eq. (38) is 

(41)

Where,  is a complex function, which is obtained by imposing solvability condition at

the third order term. By substituting Eq. (41) into Eq. (39)

(42)

where 

(43)

If A is only depend on T2, then the secular term does not arise in Eq. (42). Using this assumption

the particular solution of Eq. (42) would be as follow 
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where

(45)

The solution of Eq. (45) may be obtained by using the linear symmetric mode shapes of vibration

of the microbeam about the static position as comparison functions in Galerkin method. So, it is

assumed that
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(46)

Where,  show kth linear symmetric mode shape of deflected microbeam about static position,

and  are coefficients that must be obtained using the Galerkin method. In fact by solving the

algebraic system that is obtained by substituting Eq. (46) into Eq. (45), multiplying the results by

,  and integrating the results from  to , one has

(47)

Now, by substituting u1 and u2 from Eqs. (41) and (44) into Eq. (40), introducing fundamental

natural frequency by detuning parameter σ as , and keeping only the terms that

produce secular terms, it results

(48)

NST shows all terms, that is not secular and cc denotes the complex conjugate terms, where

(49)

and

(50)
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The expression χv may be written as following form by considering Eq. (23) 

(51)

The left hand side of Eq. (48) is self adjoint, so the adjoint solution is like the solution of

homogenous Eq. (38). The non-homogenous Eq. (48) has a solution only if the right hand side of

Eq. (48) is orthogonal to every solution of the self adjoint homogenous equation i.e., . So,

by multiplying the right hand side of Eq. (48) to  and integrating the outcome from 

to , one can obtain the solvability condition as

(52)

where

(53)

Now, A is denoted in polar form with amplitude a and phase , so

(54)

By substituting Eq. (54) into Eq. (52) and separating the real and imaginary part, it results that

(55)

By using Eqs. (37), (41), (44) and substituting , the solution of Eq. (21) will be

(56)

By letting  and  being equal to zero, one can obtain the equilibrium point 

as
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(57)

This equation shows that the amplitude a0 is a maximum, when the expression inside parenthesis

vanishes. So, it results that  and . Also, by considering that

 and combing it with the obtained results, the nonlinear resonance frequency is

obtained as

(58)

5.2 Secondary resonance

Now, it is assumed that frequency of AC part is , so the  in

Eq. (29) does not produce a secular term, and it can be assumed a forced term. It is clear that if

 and the order of  be (ε2), then  produces a secular term, so system have a

subharmonic resonance. The damping of system is assumed order (ε2) in order to nonlinearity

balances the effect of them. By substituting Eq. (37) into Eq. (21)
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It shows that Eq. (59) is identical to Eq. (38), so by using Eq. (41) and substituting into (60), it

results that 

(62)

By considering Eq. (62), the solution of Eq. (60) is

(63)

Where,  are identical with previous section and  is solution of below

equation

(64)

The solution of Eq. (64) may be obtained using the Galerkin method, similar to the process which

has been performed for obtaining the solution of Eq. (45). The only difference is that the terms of

 and  have been replaced by ψ3,  and , respectively. By substituting

Eq. (63) into Eq. (61), and considering that  

(65)

Where,  and  is identical to Eq. (50) and (51) and 

(66)

The left hand side of Eqs. (65) and (48) is identical, so as before solvability condition is obtained

by multiplying the right hand side of Eq. (65) with  and integrate the result from 

to . 

(67)

Where, µ1, µ2 and S are obtained from Eq. (53).

By substituting  into Eq. (66) and separating the real and imaginary part and

by assuming that, it result that
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By substituting Eqs. (41) and (33) into (37), and substituting , the solution of Eq. (21) will

be 

(69)

By letting  and  equal to zero in Eq. (68), the equilibrium solution  will be

obtained

(70)

6. Results and discussion

The following values are used in the simulation:  and  in

addition to those values which have been mentioned in the caption and the legend of figures. The

differential equations of static deflection, mode shapes and nonlinear coefficients (

have been obtained identical to those of elastic microbeam. So, the analytical results of this paper

can be validated by comparing them with numerical results of previous research works. Table 1,

compares the first and the second natural frequencies calculated by approximate analytical method

(this paper) and numerical shooting method (Younis and Nayfeh 2003). This comparison shows an

excellent agreement. 

The comparison between nonlinear coefficients obtained in this paper with the nonlinear

coefficient obtained by Younis and Nayfeh (2003), is shown in Fig. 2 which shows an excellent

agreement. It must be noted that nonlinear coefficient  in previous work has not been plotted,

and so, this coefficient has not been compared to previous work in Fig. 2. 

In previous research works the symmetric mode shapes of straight microbeam have been used as

comparison functions in using the Galerkin method. These mode shapes have been obtained by

numerical shooting method. So, an analytical expression that gives deflection at all point was not

available. Here, it is available, since the comparison functions are obtained exactly. In this paper the

new function  has been proposed as a comparison function. A comparison between the values
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Table 1 The first and second natural frequency of system, calculated using approximate analytical method
(this paper) and numerical method (Younis and Nayfeh 2003)
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of static deflection using only the first mode shape of straight microbeam, and using only the new

proposed function in this paper as comparison function is shown in Fig. 3. It shows that the using

new proposed function as comparison function has less error than using first mode shape as

comparison function. This decrease is due to the fact that the effect of the electrical force has also

been accounted in the new comparison function. So, one can obtain almost a good approximate

analytical solution for Eq. (19) by using only the proposed function in this paper, , as

comparison function. Remainder of the static solution can be obtained by substituting the solution

ws 0[ ]

Fig. 2 Variations of nonlinear coefficients with respect to  for a microbeam with N = 8.7 and α1 = 3.7;
the square point belongs to Younis and Nayfeh (2003), the solid line belongs to this paper 

α2vp

2

Fig. 3 The variations of w
s
 with respect to the

variations of x for the system with = 45.
The dotted line belongs to using the first
mode shape of straight microbeam as
comparison, dashed line belongs to using the
proposed function in this paper as comparison
function, and the solid line is the converged
solution 

α2vp

2

Fig. 4 The remainder of w
s
 obtained using the

Galerkin method for the system with
= 45. Solid line belongs to using two

symmetric mode shapes of straight microbeam
and proposed function in this paper as
comparison functions, and dashed line belongs
to using three symmetric mode shapes of
straight microbeam as comparison function
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for ws into differential equation of static deflection. Fig. 4 shows remainder of solution by using

both  and two symmetric mode shapes as comparison function, and using only three symmetric

mode shapes as comparison function, respectively. It shows that using both  and two

symmetric mode shapes as comparison function decrease error of solution further. 

Eq. (58) denotes that nonlinear resonance frequency for a primary excitation depends on the

values Cµ2, S and µ1. It demonstrates that for S > 0, the system has a hardening behavior, i.e.,

, and for S < 0, system has a softening behavior i.e., . The variations of nonlinear

coefficient S and nonlinear resonance frequency Ω with respect to the variations of system

parameters have been studied in previous researches (Younis and Nayfeh 2003), so, here only the

effect of viscoelastic damping on the behavior of system is studied. Figs. 5, 6 and Fig. 7 show the

variation of nonzero equilibrium point a0 with variation of σ for primary and secondary resonance,

ws 0[ ]

ws 0[ ]
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Fig. 5 The variations of a0 with respect to the
variations of σ. The solid lines belong to the
stable solution and the dashed lines belong to
the unstable solution where = 20,
v
ac

= 0.02 
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2

Fig. 6 The variations of a0 with respect to the
variations of σ. The solid lines belong to
stable and dashed lines belong to the unstable
solution where = 45.08, v

ac
= 0.03α2vp

2

Fig. 7 The variations of a0 with respect to the variations of σ. The solid lines belong to stable and dashed
lines belong to the unstable solution where = 45.08, v

ac
= 0.038α2vp
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respectively. These figures show that amplitude of a0 decreased by increasing of viscoelastic factor.

Figs. 5 and 6 show that if system has hardening behavior, then, an increase of viscoelastic damping

decreases the value of nonlinear resonance frequency, and if system has softening behavior, then, an

increase of viscoelastic damping increases the value of nonlinear resonance frequency. It means that

when the nonlinear terms is considered, then the viscoelastic damping shift the resonance frequency

which is not seen in linear system studied by Uncuer et al. (2007).

Figs. 8, 9 and 10 show the variations of µ2 for different values of system parameters. Figs. 8 and

9 show that the value of µ2 increases by an increase of  and α1. Also, Fig. 10 shows that by

increasing the value of N from the negative values to a special value of N, the value of µ2 decreases

and by more increasing of N, this behavior is inversed. These variations may be verified by

α2vp
2

Fig. 8 The variations of viscoelastic coefficient µ2

with respect to the variations of  α2vp

2

Fig. 9 The variations of viscoelastic coefficient µ2

with respect to the variations of α1 where
= 45.08α2vp

2

Fig. 10 The variations of viscoelastic coefficient µ2 with respect to the variations of N for the system with
α1 = 3.7, = 45.08α2vp

2
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considering Eq. (53). Eq. (53) demonstrates that , where χv is obtained from Eq. (51).

This equation denotes that the variations of χv and so the variations of µ2 depend to the variations

of ,  and ω2. It has been shown by Abdel-Rahman et al. (2002) that

by increasing the value of  or decreasing α1 or decreasing the value of N, the value of ws

increases, and the value of ω decreases. It means that by increasing  or decreasing α1 or

decreasing N the value of  and  increases and the value of ω2 decreases. When

the value of  increases, the increasing of χv due to increasing the value of  and

 is more than the decreasing of χv due to decreasing the value of ω2 and so, by

increasing , the value of µ2 increases. When the value of α1 increases, the increasing of χv due

to increasing the value of ω2 and  is more than the decreasing of χv due to decreasing

the value of , and so, by increasing α1, the value of µ2 increases. When N increases

from negative values, the decreasing of χv due to decreasing the value of  and

 is more than the increasing of χv due to increasing the value of N and ω2, and so,

the value of µ2 decreases by increasing the value of N from a negative value to an especial value.

By more increase of N from this special value, this competing is inversed, and so, χv and µ2

increases. 

Eqs. (58) and (70) demonstrates that the effect of Cµ2 is similar to the effect of µ1. So, it may be

assumed that the vibrating system with viscoelastic damping is equivalent to an elastic system

vibrating in the fluid with viscous damping per unit length equal to Cµ2.

7. Conclusions

The nonlinear equations of motion for the viscoelastic microbeam under axial and electric loads

have been derived using the Newton' s second law. The Voigt-Kelvin viscoelastic model has been

used, and it has been assumed that the midplane of microbeam is stretched, when it is deflected. A

new function, , has been proposed as comparison function for obtaining the static deflection of

microbeam. It has been shown that a good approximate analytical solution may be obtained using

only this function as comparison function. It has been shown that in contrast to the previous

research works, using this function as a comparison function decreases the computational errors.

It is shown that small amount of viscoelastic damping has an important effect and causes the

maximum amplitude of response to be decreased, and resonance frequency be displaced. Also, it is

shown that under a primary excitation if nonlinear coefficient, S < 0, then the value of nonlinear

resonance frequency increases by an increase of the value of Cµ2, and if nonlinear coefficient, S > 0,

then the value of nonlinear resonance frequency decreases by an increase of the value of Cµ2. It has

been shown that the value of µ2 increases by increasing the DC voltage, ratio of the air gap to the

microbeam thickness. Also, it has been shown that by increasing the value of N from negative value

to a special value, µ2 increases and by more increasing of N from this special value, µ2 decreases. It

has been shown that the vibrating system with viscoelastic damping is equivalent to an elastic

system vibrating in the fluid with viscous damping per unit length equal to Cµ2. 
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