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Abstract. In this paper a boundary element method is developed for the general flexural-torsional
buckling analysis of Timoshenko beams of arbitrarily shaped cross section. The beam is subjected to a
compressive centrally applied concentrated axial load together with arbitrarily axial, transverse and
torsional distributed loading, while its edges are restrained by the most general linear boundary conditions.
The resulting boundary value problem, described by three coupled ordinary differential equations, is
solved employing a boundary integral equation approach. All basic equations are formulated with respect
to the principal shear axes coordinate system, which does not coincide with the principal bending one in a
nonsymmetric cross section. To account for shear deformations, the concept of shear deformation
coefficients is used. Six coupled boundary value problems are formulated with respect to the transverse
displacements, to the angle of twist, to the primary warping function and to two stress functions and
solved using the Analog Equation Method, a BEM based method. Several beams are analysed to illustrate
the method and demonstrate its efficiency and wherever possible its accuracy. The range of applicability
of the thin-walled theory and the significant influence of the boundary conditions and the shear
deformation effect on the buckling load are investigated through examples with great practical interest.

Keywords: flexural-torsional buckling; nonuniform torsion; elastic stability; warping; flexural; bar;
beam; twist; boundary element method; shear deformation.

 

1. Introduction

Elastic stability of beams is one of the most important criteria in the design of structures subjected

to compressive loads. This beam buckling analysis becomes much more complicated in the case the

cross section’s centroid does not coincide with its shear center (asymmetric beams), leading to the

formulation of the flexural-torsional buckling problem. Moreover, unless the beam is very “thin” the

error incurred from the ignorance of the effect of shear deformation is substantial, and an accurate

analysis requires its inclusion in it.

The first published work on elastic stability of structures appeared in 1759 by Euler (1759) who

studied the flexural buckling of axially loaded, simply supported columns. His treatise has been the

initial theoretical basis for the development of flexural-torsional buckling, a more general case of

elastic stability which can appear in axially or transversely loaded beams. It is worth noting that

torsional (Barsoum  and Gallagher 1970, Szymczak 1980) and flexural buckling due to compressive
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axial loading can be treated as limited cases of flexural-torsional buckling. Since then, important

development has been achieved, regarding elastic stability of structures, as presented in various books

written by Timoshenko and Gere (1961), Bazant and Cedolin (1991), Trahair (1993) and Simitses

and Hodges (2006). Furthermore, research efforts focusing on flexural-torsional buckling have been

presented especially for thin-walled structures employing the assumptions of the thin-walled theory

developed by Vlasov (1961), such as the work published by Kounadis (1998), Ioannidis and

Kounadis (1999) and Mohri et al. (2001) on the evaluation of the critical flexural torsional buckling

load of simply supported beams and the prediction of their postbuckling behavior. Vlasov effects

consist in taking into account the nonuniform torsion arising from restrained warping while an

important role is played by the so-called middle surface of the beam. More specifically, the warping

function (needed for the evaluation of the torsion and warping constants), employing Vlasov theory is

assumed to vary along only the middle surface of the cross section (Vlasov 1961) and arises from the

assumption that the shearing strain in the middle surface is absent. 

More recently, flexural buckling of multi step bars with varying geometric cross section properties

taking into account shear deformation (Li 2003) or ignoring it and assuming varying material

properties (Gadalla and Abdalla 2006) or of structures partially embedded in soil such as columns,

piles (Catal and Catal 2006, Rajasekaran 2008) has also been studied. To the authors’ knowledge

publications on the solution to the general flexural-torsional buckling analysis of Timoshenko beams

of arbitrarily shaped cross section do not exist.

In this investigation, an integral equation technique is developed for the solution of the

aforementioned problem. The beam is subjected to a compressive centrally applied concentrated axial

load together with arbitrarily axial, transverse and torsional distributed loading, while its edges are

restrained by the most general linear boundary conditions. The resulting boundary value problem,

described by three coupled ordinary differential equations, is solved employing the concept of the

analog equation (Katsikadelis 2002). According to this method, the three coupled fourth order

hyperbolic partial differential equations are replaced by three uncoupled ones subjected to fictitious

load distributions under the same boundary conditions. All basic equations are formulated with

respect to the principal shear axes coordinate system, which does not coincide with the principal

bending one in a nonsymmetric cross section. To account for shear deformations, the concept of

shear deformation coefficients is used. Six boundary value problems are formulated with respect to

the transverse displacements, to the angle of twist, to the primary warping function and to two stress

functions and solved using the Analog Equation Method (Katsikadelis 2002), a BEM based method.

Vlasov’s theory assumptions are not adopted in the proposed analysis, independently of the thin- or

thick- walled character of the cross section. The proposed method for both thin- or thick- walled

beams takes into account the nonuniform torsion arising from restrained warping, by employing the

analysis presented by Sapountzakis and Mokos (2004), where the primary warping function is

derived from a 2-D elasticity formulation. It is worth here noting that the invalidity of the Vlasov’s

assumptions is demonstrated by Sapountzakis and Mokos (2004) presenting that the warping function

cannot be regarded as constant along the thickness of the cross section. An alternative method for the

evaluation of the warping function has been developed by Yu et al. (2005), according to which the 3-

D warping field has been recovered through a first-order warping analysis based on the generalized

strain measures of the classical beam theory. In both of these two latter research efforts (Sapountzakis

and Mokos 2004, Yu et al. 2005), the exact mode of cross-sectional deformation (which dominates

the exponentially decaying behavior near the boundaries, especially in closed section beams) has not

been accurately taken into account. Nevertheless, for the flexural-torsional buckling problem, this
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issue does not mainly affect the buckling loads, as it is proved from the accuracy of the results

(compared with 3D solutions) of the present paper’s examples.

The essential features and novel aspects of the present formulation compared with previous ones

are summarized as follows.

i. The proposed method can be applied to beams having an arbitrary simply or multiply

connected constant cross section and not to a necessarily thin-walled one.

ii. All basic equations are formulated with respect to the principal shear axes coordinate system,

which does not necessarily coincide with the principal bending one.

iii. For the first time in the literature, shear deformation effect is taken into account on the

flexural-torsional buckling analysis of a beam of a non-symmetric constant cross section.

iv. Torsional warping arising from nonuniform torsion is taken into account.

v. The beam is supported by the most general linear boundary conditions including elastic

support or restraint.

vi. The shear deformation coefficients are evaluated using an energy approach, instead of

Timoshenko’s (1921) and Cowper’s (1966) definitions, for which several authors (Schramm et

al. 1994, 1997) have pointed out that one obtains unsatisfactory results or definitions given by

other researchers (Stephen 1980, Hutchinson 2001), for which these factors take negative values.

vii. The effect of the material’s Poisson ratio ν is taken into account.

viii. The proposed method employs a pure BEM approach (requiring only boundary discretization)

resulting in line or parabolic elements instead of area elements of the FEM solutions (requiring

the whole cross section to be discretized into triangular or quadrilateral area elements), while a

small number of line elements are required to achieve high accuracy.

Several beams are analysed to illustrate the method and demonstrate its efficiency and wherever

possible its accuracy. The range of applicability of the thin-walled theory and the significant

influence of the boundary conditions and the shear deformation effect on the buckling load are

investigated through examples with great practical interest.

 

2. Statement of the problem

Let us consider a prismatic beam of length l (Fig. 1), of constant arbitrary cross-section of area A.

The homogeneous isotropic and linearly elastic material of the beam cross-section, with modulus of

elasticity E, shear modulus G and Poisson’s ratio ν occupies the two dimensional multiply connected

region Ω of the y, z plane and is bounded by the  boundary curves, which are

piecewise smooth, i.e., they may have a finite number of corners. In Fig. 1(a) CYZ is the principal

shear system of axes through the cross section’s centroid C, while yC, zC are its coordinates with

respect to Syz system of axes through the cross section’s shear center S, with axes parallel to those of

CYZ. The beam is subjected to a compressive load −P, to the combined action of the arbitrarily

distributed axial loading , transverse loading ,  acting in the Y and

Z directions, respectively and to the arbitrarily distributed twisting moment  (Fig. 1(b)).

Under the aforementioned loading the displacement field of the beam is given as

 

 (1a)

Γj j 1 2 … K, , ,=( )

pX pX X( )= pY pY X( )= pZ pZ X( )=

mx mx x( )=

u x y z, ,( ) u x( ) θY x( )Z θZ x( )Y–
dθx x( )

xd
---------------φS

P
y z,( ) φS

S
x y z, ,( )+ + +=
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 (1b)

 
(1c)

 
 and therefore the displacement components of the cross section’s centroid can be written as

 

 (2a)

 (2b)

 
 (2c)

 
where   are the beam transverse displacements of the shear center S with respect to y, z

axes, respectively,  denotes the average longitudinal displacement of the cross section (Attard

1986),  are the angles of rotation of the cross-section due to bending,  denotes the rate

of change of the angle of twist  regarded as the torsional curvature and  are the primary

and secondary warping functions with respect to the shear center S of the cross section of the beam

(Sapountzakis and Mokos 2003).

v x y z, ,( ) v x( ) zθx–=

w x y z, ,( ) w x( ) yθx+=

uC u x( )
dθx

xd
--------φS

P
+=

vC v x( ) zCθx–=

wC w x( ) yCθx+=

v x( ) w x( ),
u x( )

θY θZ, θx/ xdd

θx φS
P φS

S,

Fig. 1 (a) Prismatic element of an arbitrarily shaped constant cross section occupying region Ω (b) subjected
in bending and torsional loading 
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Moreover, according to the linear stability theory of beams (small deflections), the angles of

rotation of the deflection line with respect to the centroid (β) in the x-z and x-y planes of the beam

subjected to the aforementioned loading and taking into account shear deformation effect satisfy the

following relations 

 
 (3a,b)

 (3c,d)

 

while employing the stress-strain relations of the three-dimensional elasticity, the arising shear stress

resultants  are given as

 

 (4a)

 

(4b)

 

where  are the additional angles of rotation of the cross-section due to shear deformation

(Fig. 2(a)) and  are the cross-section’s shear rigidities of the Timoshenko’s beam theory,

where

 

 (5a,b)

are the shear areas with respect to Z, Y axes, respectively with  the shear correction factors,

 the shear deformation coefficients and A the cross section area.

Referring to Fig. 2, the stress resultants  acting in the  directions, respectively, are

related to the axial N and the shear  forces as

 
 (6a)

 (6b)

 (6c)

which by virtue of the small deflection theory and Eqs. (2), (3) become

 

(7a)

 
 

(7b)

 
(7c)

 

The second and third terms in the right hand side of Eq. (7a), express the influence of the shear

forces  on the horizontal stress resultant Rx. However, these terms can be neglected since

 are much smaller than N and thus Eq. (7a) can be written as

 
 (8)
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Employing Eq. (1a) to the strain - displacement equations of the three-dimensional elasticity and

ignoring axial deformations and the effect of secondary warping function, the normal strain

component  can be written asεx

Fig. 2 Displacements (a) and equilibrium of an element in the xz (b) and xy (c) planes
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 (9)

 

and the arising bending moments  are given as

 

 (10a)

 (10b)

 

where  are the moments and the product of inertia of the cross-section with respect to its

centroid C. Substituting Eqs. (4a,b) in Eqs. (10a,b) the bending moments  can be written as

 

 (11a)

 

(11b)

 

The governing equations of the problem at hand will be derived by considering the equilibrium of

the deformed element. Thus, referring to Fig. 2 we obtain

 

 (12a,b,c)

 

    (12d,e)

 

 Substituting Eqs. (8), (7b), (7c) into Eqs. (12a), (12b),( 12c) we obtain

 

 (13a)

 

(13b)

 (13c)

 

Substituting Eqs. (13b,c) into Eqs. (11a,b) we obtain the expressions of the bending moments

 as 
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(14b)

subsequently the expressions of the shear forces  employing Eqs. (12d,e) as 

 

 

(15a)

 (15b)

 

 
and eliminating these forces from Eqs. (13b,c) we obtain the first two coupled partial differential

equations of the problem of the beam under consideration subjected to the combined action of axial,

bending and torsional loading as

 

 

 

(16a)

 

Qy Qz,
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(16b)
 

Finally, the angles of rotation of the cross-section due to bending θY, θZ are given from Eqs.

(4a,b) as

 

 (17a)

 

(17b)

 

Equilibrium of torsional moments along x axis of the beam element (Sapountzakis and Mokos

2003), after taking into account the additional shear stresses due to the presence of the axial force N

(Timoshenko and Gere 1961), which employing Eq. (2) are written as

 

 (18a)

 

(18b)

 

and the corresponding arising additional twisting moment
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leads to the third (coupled with the previous two) partial differential equation of the problem of the

beam under consideration as

  (20)

where IS is the polar moment of inertia with respect to the shear center S, ECS and GIt are the cross

section’s warping and torsional rigidities, respectively, with CS, It being its warping and torsion

constants, respectively, given as (Sapountzakis and Mokos 2003)

 (21)

 (22)

 

It is worth here noting that the primary warping function  can be established by solving

independently the Neumann problem (Sapountzakis and Mokos 2003)

 

 in Ω (23a)

 on (23b)

 

where  is the Laplace operator;  is the distance of a point on the

boundary Γj from the shear center S;  denotes the directional derivative normal to the

boundary Γj and  denotes differentiation with respect to its arc length s.

As it is already mentioned, Eqs. (16a), (16b), (20) constitute the governing equations of the beam

subjected to the combined action of axial, bending and torsional loading taking into account shear

deformation effect. 

The differential equations of equilibrium for the flexural-torsional buckling problem of an axially

compressed beam result from the aforementioned differential equations after setting  and

, , , mx = 0 as
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(24c)

 

ECS

d
4
θx

x
4

d
---------- GIt

d
2
θx

x
2

d
----------– N yC

d
2
w

x
2

d
--------- zC

d
2
v

x
2

d
-------–

IS

A
----

d
2
θx

dx
2

----------+
⎝ ⎠
⎜ ⎟
⎛ ⎞

– mx pZyC pYzC– pX yC
dw

xd
------- zC

dv

xd
-----–⎝ ⎠

⎛ ⎞– pX

IS

A
----

dθx

dx
--------–+=

CS ϕS

P( )
2

Ωd
Ω

 

∫=

It y
2

z
2

y
∂ϕS

P

∂z
--------- z

∂ϕS

P

∂y
---------–+ +⎝ ⎠

⎛ ⎞ Ωd
Ω

 

∫=

ϕS

P
y z,( )

∇2
ϕS

P
0=

∂ϕS

P

∂n
--------- 1

2
---
∂ rS

2( )
∂s

------------= Γj j 1 2 … K, , ,=( )

∇2 ∂2
/∂y

2 ∂2
/∂z

2
+= rS y

2
z

2
+=

∂/∂n

∂/∂s

N P–=

pX pX x, pX xx, 0= = = pY pY xx, 0= = pZ pZ xx, 0= =

 

 

 



Shear deformation effect in flexural-torsional buckling analysis 151

In the case of a nonsymmetric cross section beam, the obtained buckling mode from the solution

of the previous system of equations corresponds to a flexural-torsional coupled one. In the presence

of an axis of symmetry (e.g., z axis), the principal bending system of axes coincides with the

principal shear one. In this case, ,  and Eq. (24b) becomes uncoupled to the other

two differential Eq. (24a,c). Thus, the buckling modes will be either flexural or flexural - torsional.

Finally, in the special case of a doubly symmetric cross section beam, the buckling modes will be

either flexural or torsional.

The aforementioned equations are also subjected to the pertinent boundary conditions of the

problem, which are given as

 (25a,b)

 (26a,b)

 (27a,b)

 

at the beam ends , where  and  are the reactions and bending moments with

respect to y and z axes, respectively, obtained from Eqs. (7b,c), (14a,b), (15a,b) as

 

 

 (28)

 
(29)

(30)

 (31)

 
the angles of rotation due to bending  are evaluated from Eq. (17) as
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 (32b)

while in Eq. (27) Mt and Mw at the beam ends are the torsional and warping moments, respectively,

given as

 

 (33a)

 

(33b)

 

Finally,  ( ) are functions specified at the beam ends .

Eqs. (25)-(27) describe the most general linear boundary conditions associated with the problem at

hand and can include elastic support or restraint. It is apparent that all types of the conventional

boundary conditions (clamped, simply supported, free or guided edge) can be derived from these

equations by specifying appropriately these functions (e.g., for a clamped edge it is ,

, ).

The solution of the boundary value problem given from Eqs. (16), (20) subjected to the boundary

conditions (25)-(27) which represents the flexural-torsional buckling of beams, presumes the

evaluation of the shear deformation coefficients , corresponding to the principal shear axes

coordinate system. These coefficients are established equating the approximate formula of the shear

strain energy per unit length (Schramm et al. 1997)
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with the exact one given from
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and are obtained as (Sapountzakis and Mokos 2005)
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 (38a)

 
(38b)

 

and  are stress functions, which are evaluated from the solution of the following

Neumann type boundary value problems (Sapountzakis and Mokos 2005)

 in  (39a)

 

          on  (39b)

 
in   (40a)

    on (40b)

 

where n is the outward normal vector to the boundary Γ. In the case of negligible shear

deformations . It is also worth here noting that the boundary conditions (23b), (39b),

(40b) have been derived from the physical consideration that the traction vector in the direction of

the normal vector n vanishes on the free surface of the beam.

 

3. Integral representations - numerical solution

3.1 For the transverse v, w displacements and the angle of twist θx

According to the precedent analysis, the flexural-torsional buckling problem of axially loaded beams

reduces in establishing the critical value of axial load for which the displacement components

 and  of a beam, under no other external loading, having continuous derivatives up

to the fourth order with respect to x, satisfying the coupled governing Eqs. (16), (20) inside the beam

and the boundary conditions (25)-(27) at the beam ends  are not equal to zero.

Eqs. (16), (20) are solved using the Analog Equation Method (Katsikadelis 2002) as it is

developed for hyperbolic differential equations (Sapountzakis and Katsikadelis 2000). This method

is applied for the problem at hand as follows. Let  and  be the sought solution of

the aforementioned boundary value problem. Setting as , , 

and differentiating these functions four times with respect to x yields

 

 (41)

 

Eq. (41) indicate that the solution of Eqs. (16), (20) can be established by solving Eq. (41) under

the same boundary conditions (25)-(27), provided that the fictitious load distributions 

 are first established. These distributions can be determined using BEM as follows.

The solution of Eq. (41) is given in integral form as

 

 (42)

e ν IY
Y

2
Z

2
–

2
--------------- IYZYZ–⎝ ⎠

⎛ ⎞
iY ν IYYZ IYZ

Y
2

Z
2

–

2
---------------+⎝ ⎠

⎛ ⎞
iZ+=

d ν IZYZ IYZ
Y

2
Z

2
–

2
---------------–⎝ ⎠

⎛ ⎞
iY ν IZ

Y
2

Z
2

–

2
--------------- IYZYZ+⎝ ⎠

⎛ ⎞– iZ+=

Θ Y Z,( ) Φ Y Z,( ),

∇2
Θ 2 IYZZ IYY–( )= Ω

∂Θ
∂n
------- n e⋅= Γ Γj

j 1=

K 1+

∪=

∇2Φ 2 IYZY IZZ–( )= Ω

∂Φ
∂n
------- n d⋅= Γ Γj

j 1=

K 1+

∪=

aZ aY 0= =

v x( ) w x( ), θx x( )

x 0 l,=

v x( ) w x( ), θx x( )
u1 x( ) v x( )= u2 x( ) w x( )= u3 x( ) θx x( )=

d
4
ui

dx
4

--------- qi x( )= i 1 2 3, ,=( )

qi x( )
i 1 2 3, ,=( )

ui x( ) qiu
* ξd

0

l

∫ u*
d

3
ui

x
3

d
---------

du*

xd
--------

d
2
ui

x
2

d
---------–

d
2
u*

x
2

d
----------

dui

xd
-------

d
3
u*

x
3

d
----------ui–+

0

l

–=



154  E.J. Sapountzakis and J.A. Dourakopoulos

 where  is the fundamental solution given as

 

 (43)

 

with ,  points of the beam, which is a particular singular solution of the equation
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 Employing Eq. (43) the integral representation (42) can be written as

 

 (45)

 

where the kernels ,  are given as

 

 (46a)

 

(46b)

 
(46c)

 
 (46d)

 

Notice that in Eq. (45) for the line integral it is ,  points inside the beam, whereas

for the rest terms it is , x inside the beam, ζ at the beam ends 0, l. Differentiating Eq. (45)

with respect to x, results in the integral representations of the derivatives of ui as

 

 (47a)

 (47b)

 

(47c)

 (47d)

 

The integral representations (45) and (47a), when applied for the beam ends (0, l), together with

the boundary conditions (25)-(27) are employed to express the unknown boundary quantities

 and  ( ) in terms of qi. This is accomplished numerically as

follows.

The interval (0, l) is divided into L equal elements (Fig. 3), on which  is assumed to vary

according to certain law (constant, linear, parabolic etc). The constant element assumption is

u*

u* 1

12
------l

3
2 r

l
--

3

3 r

l
--

2

–+⎝ ⎠
⎛ ⎞=

r x ξ–= x ξ,

d
4
u*

x
4

d
---------- δ x ξ–( )=

ui x( ) qiΛ4 r( ) ξd
0

l

∫ Λ4 r( )
d

3
ui

dx
3

--------- Λ3 r( )
d

2
ui

dx
2

--------- Λ2 r( )
dui

dx
------- Λ1 r( )ui+ + +–=

0

l

Λj r( ) j 1 2 3 4, , ,=( )

Λ1 r( ) 1

2
---sgn

r

l
--–=

Λ2 r( ) 1

2
---l 1 r

l
--–⎝ ⎠

⎛ ⎞–=

Λ3 r( ) 1

4
---l

2 r

l
--

r

l
-- 2–⎝ ⎠

⎛ ⎞sgn
r

l
--–=

Λ4 r( ) 1

12
------l

3
2 r

l
--

3

3 r

l
--

2

–+⎝ ⎠
⎛ ⎞=

r x ξ–= x ξ,
r x ζ–=

dui x( )
xd

-------------- qiΛ3 r( ) ξd
0

l

∫ Λ3 r( )
d

3
ui

dx
3

--------- Λ2 r( )
d

2
ui

dx
2

--------- Λ1 r( )
dui

dx
-------+ +

0

l

–=

d
2
ui x( )

x
2

d
----------------- qiΛ2 r( ) ξd

0

l

∫ Λ2 r( )
d

3
ui

dx
3

--------- Λ1 r( )
d

2
ui

dx
2

---------+

0

l

–=

d
3
ui x( )

x
3

d
----------------- qiΛ1 r( ) ξd

0

l

∫ Λ1 r( )
d

3
ui

dx
3

---------

0

l

–=

d
4
ui x( )

dx
4

----------------- qi x( )=

ui ζ( ) ui x, ζ( ) ui xx, ζ( ), , ui xxx, ζ( ) ζ 0 l,=

qi x( )



Shear deformation effect in flexural-torsional buckling analysis 155

employed here as the numerical implementation becomes very simple and the obtained results are

very good. Employing the aforementioned procedure for the coupled boundary conditions (25), (26)

the following set of linear equations is obtained 

 

 

(48)

 

while for the boundary conditions (27) we have 

 

 (49)
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Fig. 3 Discretization of the beam interval and distribution of the nodal points
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(50d)

 

are vectors including the two unknown boundary values of the respective boundary quantities and

  is the vector including the L unknown nodal values of the

fictitious load.

Discretization of Eqs. (45), (47) and application to the L collocation points yields
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û
i xxx,

d
3
ui 0( )

x
3

d
-----------------  

d
3
ui l( )

x
3

d
----------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

T

=

qi q1

i
 q2

i
 … qL

i{ }T= i 1 2 3, ,=( )

ui C4qi H1û
i

H2ui x, H3û
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(53)

 

where the  matrices  are given as
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and the  column matrix f is given as
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(57b)
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In the above set of equations the matrices  are  diagonal matrices

including the values of the corresponding quantities, respectively, at the L nodal points. Moreover,

 are diagonal matrices and  and mx are vectors containing the values

of the external loading and their derivatives at these points.

Solving the linear system of Eq. (53) for the fictitious load distributions  the

displacements and their derivatives in the interior of the beam are computed using Eq. (52).

 

Buckling equation

In this case it is  (homogeneous boundary conditions) and

, . Thus, Eq. (53) becomes 
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The condition that Eq. (58) has a non-trivial solution yields the buckling equation
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in Ω (61)

   on  (62)

 

The evaluation of the primary warping function  and the fictitious function  is

accomplished using BEM as this is presented in Sapountzakis (2001) and in Sapountzakis and

Mokos (2003), respectively. 

 

3.3 For the stress functions Θ(Y, Z) and Φ(Y, Z)

The evaluation of the stress functions Θ (Y, Z) and Φ (Y, Z) is accomplished using BEM as this is

presented in Sapountzakis and Mokos (2005). 
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 (63a)

 

(63b)

 (63c)

 (63d)

 

while the shear deformation coefficients aY and aZ are obtained from the relations

 

 (64a)

(64b)

 

where 

 (65a)

 (65b)

 (65c)

(65d)

∇2
B ϕS

P
=

∂B

∂n
------ 0= Γ Γj

j 1=

K 1+

∪=

ϕS

P
B y z,( )

IY YZ
2
nY( ) sd

Γ

 

∫=

IZ ZY
2
nZ( ) sd

Γ

 

∫=

IYZ
1

2
--- ZY

2
nY( ) sd

Γ

 

∫=

A
1

2
--- YnY ZnZ+( ) sd

Γ

 

∫=

aY
A

∆2
----- 4v 2+( ) IYIΘY IYZIΘZ–( ) 1

4
---v

2
IY

2
IYZ

2
+( )Ied IΘe–+⎝ ⎠

⎛ ⎞=

aZ
A

∆2
----- 4v 2+( ) IZIΦZ IYZIΦY–( ) 1

4
---v

2
IZ

2
IYZ

2
+( )Ied IΦd–+⎝ ⎠

⎛ ⎞=

IΘe Θ n e⋅( ) sd
Γ

 

∫=

IΦd Φ n d⋅( ) sd
Γ

 

∫=

IΦZ
1

6
--- IYZZ

3
Y

2
2IZZ

4
Y–( )nY 3ΦnZ Z n d⋅( )–( )Z2

+[ ] sd
Γ

 

∫=

IΘY
1

6
--- IYZY

3
Z

2
2IYY

4
Z–( )nZ 3ΘnY Y n e⋅( )–( )Y2

+[ ] sd
Γ

 

∫=



Shear deformation effect in flexural-torsional buckling analysis 161

 (65e)

 (65f)

 (65g)

 

 

4. Numerical examples

On the basis of the analytical and numerical procedures presented in the previous sections, a

computer program has been written and representative examples have been studied to demonstrate

the efficiency, wherever possible the accuracy and the range of applications of the developed

method. In all the examples treated, each cross section has been analysed employing 300 constant

boundary elements along the boundary of the cross section, which are enough to ensure

convergence at the calculation of the sectional constants, while the beam interval is divided into

L = 50 constant equal elements.
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Fig. 4 Cross section of the thin-walled beam of example 1
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in the second column of the aforementioned table. Moreover, in the case of a simply supported

beam an analytical solution can be obtained (Timoshenko and Gere 1961) by setting 

  

(66a,b,c)

 

in Eqs. (16), (20) leading to the formulation of the following homogeneous system of equations

with respect to A1, A2 and A3
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Table 1 Geometric, inertia constants and shear deformation coefficients of the cross section of example 1
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aforementioned beams are presented as compared with those obtained from the analytical solution,

in which the shear deformation effect is excluded and included in turn. The accuracy of the

obtained results using the proposed method is remarkable. Moreover, in Fig. 5 the corresponding

buckling modes are also presented, demonstrating that the main component is the displacement

along y axis (v) in mode 1, the displacement along z axis (w) in mode 2 and the angle of twist (θx)

in mode 3. In Table 3 the computed buckling load (the smallest root of the buckling equation) of

Table 2 Buckling loads (kN) of the simply supported beams of example 1

Without Shear Deformation With Shear Deformation

analytical computed analytical computed

l = 3.0 m

Py 12800 12802 12308 12309

Pz 30373 30378 26591 26589

Pθ 138808 138810 137865 137865

l = 4.0 m

Py 7209 7209 7049 7050

Pz 17451 17453 16124 16124

Pθ 133138 133138 132880 132880

Fig. 5 Displacement components (displ. y ___, displ. z _ _ _ rot. x .......) of the modes corresponding to
buckling loads Py Pz, Pθ of the simply supported beam of length l = 3.0 m of example 1



164  E.J. Sapountzakis and J.A. Dourakopoulos

Table 3 Buckling loads (kN) of the beams of example 1 for various boundary conditions

Fixed-Hinged Fixed-Fixed

Without Shear 
Deformation

With Shear Deformation
Without Shear 
Deformation

With Shear Deformation

Present study Present study FEM* Present study Present study FEM*

Length l = 3.0 m

26115 23948 24474 50694 43820 45613

Length l = 4.0 m

14729 14015 14185 28713 26351 27096

*MSC/NASTRAN (1999)

Fig. 6 3-D views of the buckling mode shapes of the FEM solution (MSC/NASTRAN 1999) of the beams of
example 1 (numbers in parentheses correspond to the FEM solution)
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the beams with fixed-hinged and fixed-fixed boundary conditions taking into account or ignoring

shear deformation effect are presented as compared with those obtained from a FEM solution

(MSC/NASTRAN 1999) employing 9600 and 12800 solid brick elements for the beam length

l = 3.0 m and l = 4.0 m, respectively (the buckling mode shapes of the latter are presented in Fig. 6).

From the obtained results the influence of the shear deformation effect and the accuracy of the

proposed method are remarkable. Finally, in Table 4 the variation of the aforementioned buckling

loads with the number of beam elements is presented demonstrating the convergence of the

proposed method using a relatively small number of beam elements. It is worth here noting the

major merit of the aforementioned accuracy of the proposed method compared with the 3-D FEM

solution using solid elements, arising from the disadvantages of the latter due to the difficulties of

• support modelling

• discretization of a complex structure despite the existing element generators

• discretization of a structure including thin walled members (shear-locking, membrane-locking

(Knothe and Wessels 1992))

• increased number of degrees of freedom leading to severe or unrealistic computational time

especially for structures consisting of many elements

• reduced oversight of the 3-D FEM solution compared with that of the beam-like srtuctures

employing stress resultants

while the use of shell elements cannot give accurate results since the warping of the walls of a cross

section cannot be taken into account (midline model).

 

Example 2

The elastic stability of the beam (E = 3.0 × 107 kN/m2, G = 1.25 × 107 kN/m2, ) of

Fig. 7, with length l = 3.0 m has been studied. Three different types of cross-section starting from a

thin-walled one and ending with a thick-walled one are considered, that is (i) 

( , , , , It = 2.127 ×
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10−7 m6, , zC = 7.72 × 10−2 m, aY = 1.93, aZ = 2.23) and (iii) 

( , , , It = 1.484 × 10−3 m4, Cs = 2.675 ×

10−6 m6, , zC = 2.22 × 10−2 m, aY = 1.36, aZ = 1.48). In Tables 5 through 7 the

computed values of the buckling load P for the cases of hinged-hinged, fixed-hinged and fixed-

b1 h1 0.4 m= =

b2 h2 0.02 m= =

IYY 2.476 10
4–

m
4×= IZZ 1.069 10

4–
m

4×= A 1.56 10
2–

m
2×= IS 4.992 10

4–
m

4×=

b2 h2 0.08 m= =

IYY 8.044 10
4–

m
4×= IZZ 4.403 10

4–
m

4×= IS 1.588 10
3–

m
4×=

A 5.76 10
2–

m
2×= b2 h2 0.20 m= =

IYY 1.467 10
3–

m
4×= IZZ 1.200 10

3–
m

4×= IS 2.726 10
3–

m
4×=

A 1.2 10
1–

m
2×=

Table 4 Buckling loads (kN) of the beam of example 1 with length l = 4.0 m for various beam elements and
boundary conditions

Elements

Hinged-Hinged Fixed-Hinged Fixed-Fixed

Without Shear 
Deform.

With Shear 
Deform.

Without Shear 
Deform.

With Shear 
Deform.

Without Shear 
Deform.

With Shear 
Deform.

10 7238 7077 14846 14120 29152 26719

20 7216 7056 14755 14038 28811 26433

30 7212 7052 14738 14023 28747 26379

40 7210 7051 14732 14017 28724 26359

50 7209 7050 14729 14015 28713 26351

60 7209 7050 14729 14013 28707 26346
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Table 5 Buckling load P(kN)  for the hinged-hinged beam of Example 2

without shear deformation with shear deformation

TWT Present study Present study FEM*

b2 = h2 = 0.02 m 771 783 780 815

b2 = h2 = 0.08 m 13365 13558 13089 13288

b2 = h2 = 0.20 m 39183 39442 38082 38301

*MSC/NASTRAN (1999)

Table 6 Buckling load P(kN) for the fixed-hinged beam of Example 2

without shear deformation with shear deformation

TWT Present study Present study FEM*

b2 = h2 = 0.02 m 821 834 831 841

b2 = h2 = 0.08 m 24625 25306 23646 24550

b2 = h2 = 0.20 m 79505 80601 74580 76766

*MSC/NASTRAN (1999)

Table 7 Buckling load P(kN)  for the fixed-fixed beam of Example 2

without shear deformation with shear deformation

TWT Present study Present study FEM*

b2 = h2 = 0.02 m 869 882 879 849

b2 = h2 = 0.08 m 38515 39929 36892 38117

b2 = h2 = 0.20 m 152949 157223 137653 147284

*MSC/NASTRAN (1999)

Fig. 7 Cross section of the beam of Example 2
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fixed boundary conditions are presented taking into account or ignoring shear deformation effect as

compared with those obtained from the thin-walled theory (TWT) (Vlasov 1961, Timoshenko and

Goodier 1984), from which the following values of the previous constants for the three different

types of cross-section are obtained (i) It = 2.107 × 10−6 m4, Cs = 1.674 × 10−8 m6, zC = 9.74 × 10−2 m,

IS = 5.026 × 10−4 m4 (ii) It = 1.297 × 10−4 m4, Cs = 8.911 × 10−7 m6, zC = 8.89 × 10−2 m, IS = 1.700 ×

10−3 m4 and (iii) It = 1.867 × 10−3 m4, Cs = 9.556 × 10−6 m6, zC = 6.67 × 10−2 m, IS = 3.200 × 10−3 m4.

As expected, the utilization of the thin- walled theory proves to be prohibitive in thick walled

sections, while the resulting inaccuracy even in thin walled sections is remarkable. To demonstrate

the accuracy of the proposed method, the obtained results are also compared with those obtained

from a FEM solution (MSC/NASTRAN 1999) employing 46800, 21600 and 5600 solid brick

Fig. 8 3-D views of the buckling mode shapes of the FEM solution (MSC/NASTRAN 1999) of the beams of
example 2 (numbers in parentheses correspond to the FEM solution)
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elements for the three cases, respectively. The corresponding buckling mode shapes of the latter

method are presented in Fig. 8. Moreover, the significant influence of both the boundary conditions

and the shear deformation effect (especially in thick-walled cross sections) on the buckling load is

verified.

 

Example 3

The elastic stability of the steel L-beam (E = 2.1 × 108 kN/m2, A = 2.5 × 10−3 m2, ν = 0.3,

Cs = 1.199 × 10−10 m6, It = 8.275 × 10−8 m4, IS = 14.44 × 10−6 m4) of unequal legs and uniform

Fig. 9 L-shaped cross section of unequal legs of the beam of Example 3

Table 8 Geometric, inertia constants and shear deformation coefficients of the cross section of Fig. 9
(t = 1 cm) 

Coordinate system Coordinate system CYZ

-

CỸZ̃

IỸỸ 6.207 10
6–

m
4

×= IYY 6.352 10
6–

m
4

×=
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m
4

×= IZZ 2.206 10
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m
4
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4
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4
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αỹ 3.067= αy 3.068=

α z̃ 1.900= αz 1.899=

αỹ z̃ 0.039= αyz 0.0=

ỹC 2.00 10
2–

m×= yC 2.14 10
2–

m×=

z̃C 4.43 10
2–

m×= zC 4.36 10
2–

m×=

θ
S

0.033 rad=
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Table 10 Geometric, inertia constants and shear deformation coefficients of the L-shaped cross
 section with uniform thickness t = 4 cm

Coordinate system Coordinate system CYZ

-

CỸZ̃

IỸỸ 1.882 10
5–

m
4

×= IYY 1.659 10
5–

m
4

×=

IZ̃Z̃ 6.790 10
6–

m
4

×= IZZ 9.018 10
6–

m
4

×=

IỸZ̃ 5.530– 10
6–

m
4

×= IYZ 7.240– 10
6–

m
4

×=

αỹ 2.082= αy 2.096=

α z̃ 1.618= αz 1.604=

αỹ z̃ 0.083–= αyz 0.0=

ỹC 1.53 10
2–

m×= yC 1.00 10
2–

m×=

z̃C 2.95 10
2–

m×= zC 3.17 10
2–

m×=

θ
S

0.173– rad=

Table 9 Buckling load P (kN) of the beam of Fig. 9 (t = 1 cm)

l

Hinged-Hinged Fixed-Hinged Fixed-Fixed

without 
shear 

deformation

with 
shear 

deformation

without 
shear 

deformation

with 
shear 

deformation

without 
shear 

deformation

with 
shear

deformation

Present 
Study

Present 
Study

FEM*
Present
 Study

Present 
Study

FEM*
Present 
Study

Present 
Study

FEM*

1.00 1062 1053 1179 1178 1167 1262 1291 1281 1288

1.20 980 970 1056 1123 1112 1183 1225 1216 1220

1.40 884 875 932 1070 1060 1117 1178 1168 1171

1.60 779 771 806 1015 1004 1051 1138 1128 1131

1.80 675 669 688 953 943 981 1100 1091 1093

2.00 580 575 587 885 875 905 1062 1053 1055

*MSC/NASTRAN (1999)

Table 11 Buckling load  P (kN) of the L-shaped cross section beam with uniform thickness t = 4 cm

l

Hinged-Hinged Fixed-Hinged Fixed-Fixed

without 
shear 

deformation

with 
shear 

deformation

without 
shear

 deformation

with 
shear 

deformation

without 
shear

 deformation

with 
shear

deformation

Present 
Study

Present 
Study

FEM*
Present 
Study

Present 
Study

FEM*
Present 
Study

Present 
Study

FEM*

1.00 9472 9229 9232 19052 17997 18360 35816 32600 34162

*MSC/NASTRAN (1999)
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thickness t = 1 cm, as shown in Fig. 9, has been studied. Following the same procedure as in

example 1, in Table 8 the geometric, the inertia constants and the shear deformation coefficients of

the examined cross section are given with respect to the original  and the final CYZ coordinate

systems. Three types of boundary conditions, namely hinged-hinged, fixed-hinged and fixed-fixed

are considered. In Table 9, the variation with the beam length of the buckling load P taking into

account or ignoring shear deformation effect for the aforementioned cases of boundary conditions is

shown. The influence of the support conditions on the buckling load is pronounced, while as

expected due to the thin-walled character of the cross section the influence of the shear deformation

CỸZ̃

Fig. 10 3-D views of the buckling mode shapes of the FEM solution (MSC/NASTRAN 1999) of the beams
of example 3 (numbers in parentheses correspond to the FEM solution)  
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effect could be ignored. Finally, in Table 11 the necessity of encountering this effect with the

increase of the thickness of the cross section is demonstrated by presenting the buckling load P

taking into account or ignoring shear deformation effect of the steel beam with length l = 1.0 m and

L-shaped cross section with uniform thickness t = 4 cm ( , Cs = 4.170 × 10−9 m6,

It = 4.340 × 10−6 m4, IS = 3.536 × 10−5 m4) whose constants and coefficients with respect to the

original  and the final CYZ coordinate systems are given in Table 10, for the aforementioned

three types of boundary conditions. The influence of the shear deformation effect on the buckling

load in this case should not be ignored. The obtained results of all the aforementioned cases are

compared with those obtained from a FEM solution (MSC/NASTRAN 1999), employing 20000 and

8800 solid brick elements for the two cases of the cross section, respectively, while the

corresponding buckling mode shapes are presented in Fig. 10.

 

 

5. Conclusions

In this paper a boundary element method is developed for the general flexural-torsional buckling

analysis of Timoshenko beams of arbitrarily shaped cross section subjected to a compressive

centrally applied concentrated axial load, while its edges are restrained by the most general linear

boundary conditions. The main conclusions that can be drawn from this investigation are

a. The numerical technique presented in this investigation is well suited for computer aided

analysis for homogeneous beams of arbitrary cross section, subjected to any linear boundary

conditions.

b. Accurate results are obtained using a relatively small number of beam elements.

c. The displacements components of the buckling modes can be computed at any cross-section of

the beam using the respective integral representations as mathematical formulae.

d. The significant influence of the boundary conditions on the buckling load is remarkable.

e. In the proposed method all basic equations are formulated with respect to the principal shear

coordinate system. 

f. As expected, the utilization of the thin-walled theory proves to be prohibitive in thick-walled

sections.

g. The discrepancy of the obtained results arising from the ignorance of shear deformation

especially in thick-walled cross sections is remarkable and necessitates its inclusion in these cases.

h. The developed procedure retains the advantages of a BEM solution over a pure domain

discretization method since it requires only boundary discretization.

 

Acknowledgements

This work is part of the 03ED102 research project, implemented within the framework of the

“Reinforcement Programme of Human Research Manpower” (PENED) and co-financed by National

and Community Funds (20% from the Greek Ministry of Development-General Secretariat of

Research and Technology and 80% from E.U.-European Social Fund).

A 8.8 10
3–

m
2×=

CỸZ̃
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