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Abstract. In this paper, the mass optimization of four bar linkages is carried out using genetic
algorithms (GA) with single and dual constraints. The single constraint of bending stress and the dual
constraints of bending and buckling stresses are imposed. From the movement response of the bar linkage
mechanism, the analysis of the mechanism is developed using the combination of kinematics, kinetics,
and finite element analysis (FEA). A penalty-based transformation technique is used to convert the
constrained problem into an unconstrained one. Lastly, a detailed comparison on the effect of single
constraint and of dual constraints is presented. 

Keywords: mass optimization; bar linkage; finite element analysis; genetic algorithms; buckling
constraints.

1. Introduction 

The four bar linkage is the basis of all mechanism and is made up of links and joints. In most
mechanism tasks, the process requires the transfer of a single input to a single output (Erdman and
Sandor 1984). Thus, it has a wide range of applications in industries such as in mechanical systems
and devices. This four bar linkage mechanism consists of two rotating links as input and output
links, a coupler, and a virtual link or ground. Kinematics analysis is carried out to determine the
position, velocity, and acceleration for each bar linkage. Several techniques for the kinematics
analysis can be used for the four bar linkage mechanism, such as those presented by Hartenberg and
Denavit (1964) and Shingley and Uicker (1980). The loop closure method, based on the described
vector of close loop obtained from the linkage orientation, is commonly used because it is powerful
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and robust. In addition, path description and path optimization can be directly obtained using this
method. As such, the kinetic analysis is carried out to address the problem of determining the forces
developed in the bar linkage mechanism in moving condition. Kinetic analysis can be carried out
using any of the available methods such as energy method and graphical force analysis or
superposition (Norton 1999, Waldron and Kinzel 2004, Yan and Yan 2009, Zhou 2009) and linear
simultaneous equation solution (Chong et al. 2005, Venanzi et al. 2005, Khatait et al. 2006). These
methods are based on equilibrium equations using the basic principles of the summation of forces
and moments that are equal to zero.

The need to include stress analysis in the mechanism of bar linkage has long been proposed, but
limited work has been carried out in this field. The developed stress in the bar linkage is induced by
the existing dynamics forces in the rotational condition. In most cases, the stress of the part under
the dynamics load limits the design, while in some cases, the stress is excessive. Thus, in designing
for the minimum mass of the bar linkage mechanism, the dynamic forces analysis is important for
stress analysis while maximizing the strength and stiffness needed to withstand dynamics forces. In
this paper, the finite element analysis (FEA) is used to determine the stress developed in the bar
linkage, as this method is widely used for cases involving structural analysis such as beam analysis
(Chen and Yang 2000, Avilés et al. 2009) and frame structure (Cameron et al. 2000, Robinson
1996). 

Many techniques, including genetic algorithms (GA), have been developed and used for the
optimization of member in structures such as trusses, bridges, automotive structural optimization,
and so on. In this paper, a similar technique of structural optimization using GA is applied in the
mass optimization of the bar linkage mechanism. Although in bar linkage mechanism GA is widely
applied to the problem of path generation (Laribi et al. 2004, Cabrera et al. 2002, Smaili and Rick
1996, Nariman-zadeh et al. 2009, Shen et al. 2009), so far, the authors have not found any work on
mass optimization using GA coupled with the FEA. Thus, the present study focuses on mass
optimization of bar linkage using GA with FEA to determine the optimal mass constrained by both
bending and buckling stress. 

This paper is divided into three main sections. The first section gives a literature review of
mechanism analysis. The second section describes kinematic analysis and the technique used in
FEA to solve the developed stresses in the bar linkages and how this technique can be extended to
find the optimum mass through the application of GA. The final section presents the result of the
mass optimization of the four bar linkage with both single constraint and dual constraints. 

2. Application of optimization procedure to the four bar linkage mechanism

2.1 Analysis of bar linkage mechanism

The analysis of bar linkage mechanism involves kinematics and kinetic analyses (Erdman and
Sandor 1984), which analyze a combination of position, velocity, and acceleration to determine the
motion properties useful in finding the forces in each bar linkage. The FEA is coupled with such
analyses to determine the stresses in each bar linkage. Fig. 1 shows a typical four bar linkage
mechanism. The masses of the bearings and the effects of friction are negligible, but the effect of
the gravity of the bar is counted. The positions of links 3 and 4, which are represented by angles θ3

and θ4, need to be determined, as angle θ2 is an independent variable. The pivot at the crank or
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link1 is taken as the origin with respect to the global XY system. A well-known loop closure
method is used for this position analysis. Using the directions of the vectors as shown, the vector
loop equation is given by

  R2 + R3 – R4 – R1 = 0 (1)

Using the complex notation, each position vector is substituted with a polar form to obtain the
following

 (2)

The unknown angle can be solved simultaneously by substituting the Euler identity, as given by

 Lncosθn + jLnsinθn (3)

into Eq. (2) and by separating the resulting Cartesian form vector equation from its real and
imaginary parts, setting each part to zero. 

By taking the gradient of position vector Eq. (2) once and twice, the angular velocity and
acceleration of each link can be obtained. The angular velocity equation is given by

(4)

while the angular acceleration is given by

(5)

where ω2 and α2 are the input or known angular velocity and acceleration, and ω3 and ω4, and α3

and α4 are the unknown angular velocity and acceleration, respectively. By identifying the input
angular velocity and acceleration, the unknown angular velocity and acceleration can be determined
by using the same strategy carried out for the position analysis.

After determining the position, velocity, acceleration, and inertia properties, such as mass and
mass moment of inertia, for each bar, the force analysis of the bar linkage can be carried out. This
force analysis is obtained from the summation of all forces and torques in the system. The general
notation for an equilibrium equation from the free body diagram of each link is given by

L2e
jθ2 L3e

jθ3 L4e
jθ4– L1e

jθ1–+ 0=

jL2ω2e
jθ2 jL3ω3e

jθ3+ jL4ω4e
jθ4=

jL2α2e
jθ2 j2L2ω2

2e
jθ2 j2L3ω3

2e
jθ3 jL3α3e

jθ3+ + + j2L4ω4
2e

jθ4 jL4α4e
jθ4+=

Fig. 1 The four bar linkage mechanism
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(6)

(7)

where 
l = 2, 3,…, n; n = pin connection
k = l − 1; i = previous link 
m = l + 1, l ≠ n; m = next link
if l = n, m = 1 

From Eq. (6), the sum of the forces can be separated into the X and Y component equation. These
two equations, along with Eq. (7), can be solved simultaneously. The weight of the link can be
treated as an external force acting on the center of gravity of the link at a constant angle. The set of
simultaneous equations can be solved by a matrix method using any programming language. 

The FEA is carried out to find the stresses in each bar linkage using the stiffness and force
matrix. Each link is modeled by one planar beam finite element with three degrees of freedom at
each node and is represented by horizontal displacement U, vertical displacement V, and end
rotation φ, as shown in Fig. 2. The local displacements obtained from the FEA are used to find the
axial and bending stresses. The element stiffness matrices are formulated in the local coordinate
system. In the 2D beam-element FEA formulation, the local displacements can be related to global
displacements by the beam equation 

{d} = [T] {D}  (8)

where {d} is the local displacement vector with {d}T = {U1 V1 φ1 U2 V2 φ2}
and [T] is the transformation matrix. 

The global displacement matrix can be derived from the global stiffness matrix as given by

{F} = [K]{D} (9)

where [K] is the total global element stiffness matrix, and {F} is the total force vector of the whole
structure. 

In general, the global stiffness matrix [K] for a beam element includes the axial force, shear force,
and bending moment effects, as shown in Eq. (10). The element forces {F} can be obtained using
the set of simultaneous equations from Eqs. (6) and (7).

Fkl Flm ΣFext l+ + mlaGl=

Rkl Fkl×( ) Rlm Flm×( ) Rext l ΣFext l×( )+ + IGlαGl=

Fli Fkl; Fml– Fli–= =

Fig. 2 A beam finite element model and nodal
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(10)

where
A = cross sectional area of link
C = cosθ
S = sinθ
I = moment of inertia

The local displacements are used to find the axial and bending stresses. The axial stress in each
bar is given by Eq. (11)

 (11)

while the bending moment in each node can be defined by Eq. (12)

(12)

where at node 1, x = 0 and at node 2, x = L.
This is particularly important to ensure that the bending stress does not exceed the allowable

bending stress. Finally, the bending stress in each nodal is given by 

(13)

where Izz = section modulus of the beam.
In this paper, buckling is taken as another mode of failure, which can be developed with the

bending stress. In the calculation of buckling, the design variables, including cross sectional areas,
are applied in the moment of inertia because the critical load buckling, Pcr, is computed by the
following formula

(14)

where k = effective length factor. In this case, the bar linkage is assumed as the pin end with k = 1
(Hibbeler 2002).
L = length of the link
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The critical stress, σcr, for buckling is then found by

 (15)

2.2 Implementation of genetic algorithms (GA)

Nowadays, GA takes the dominant position in optimization problem. GA is a probabilistic method
that applies a search from a population and proposes a set of equally good resolutions to the
designer. It uses directed random search to find the optimal solution in the complex area. This
randomness offers GA robustness and the capability to improve solutions as well. In GA, the
random generation of an initial population is the first step in the optimization process. The initial
population is generated randomly between preset lower and upper limits, which comprise binary
digits. GA starts by randomly generating an initial population, which is represented by a binary
string (chromosomes) designed without any constraint. It works on the initial population for an
optimization problem, as measured against the objective function or fitness function. In this paper,
binary numbers are formulated to become real numbers and are taken as variables representing the
cross sectional of area linkages. The length, �, of the binary number code representing the solution
for a number in the range between a and b is given by 

(16)

where d is the number of decimal places required.
For example, if the solution can be found between 0 and 31, then a = 31 and b = 0. With 2

decimal places, d = 2, and the length of chromosome, �, is 12. Therefore, a binary string of length
12 can represent the value of real numbers from 0.00 to 40.95. Table 3 shows several examples of
randomly generated cross sectional areas of the four bar linkages denoted by A1, A2, A3, B1, B2, and
B3.

After the population is created, the string evaluation called fitness is carried out. The fitness value
is the performance of the members in the population, in this case, the mass of the bar linkage. A
fitness function is derived from the objective function and is used in successive genetic operations.

σcr

Pcr

A
-------=

2� 1– a b–( ) 10d⋅≤

Table 1 Length of each bar linkage

Bar reference Length (m)

L1 0.9144
L2 0.3048
L3 0.9144
L4 0.7620

Table 2 Material properties of the four bar linkage mechanism

Material properties of the four bar linkage mechanism Magnitude
Modulus of Elasticity, Aluminum (Alloy 6061-T6), E 68.95 GPa
Density of Aluminum (Alloy 6061-T6), ρ 2.757 × 103 kg/m3

Range of cross sectional area for each solid circular bar, Xs 1 cm2-20 cm2
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Next, based on individual fitness, a pair of string selected for reproduction, undergoes an exchange
of genetic information such as crossovers and mutations, where chromosomes are paired and
randomly altered. The selection process is a mimic of the natural phenomenon of survival of the
fittest by allocating the fitter individual a higher chance of being chosen for genetic operators. In
other words, it is a process of selecting highly fit individuals for the crossover and mutation
processes. In GA, a commonly employed “roulette wheel” is used to implement the selection of the
string. After the strings have been selected, the population for the next generation is created. The
resulting offsprings become part of the next generation, and the process is repeated until a desired
convergence limit or number of generation is achieved. This population depends on the selection
operator as well as on the crossover and mutation probability. 

The crossover is the most important operator in the genetic process. It is applied to produce a new
generation by combining ranking and selection. The crossover process is used when two strings are
paired up to exchange genetic information. In other words, it is considered the exchange of
segments between two parent strings to produce an offspring string accordingly, as shown in Fig. 3.
The parent strings are represented by cross sectional areas, as shown in Table 3. The Crossover
works with the genetic material provided by the two parents and produces children that possess a
genetic resemblance with that of the parent. Applied with high probability, pc, the crossover will
only be invoked if the randomly generated number is within pc. If not, then the child strings simply
adopt the parent genetic code without modification. 

Table 3 Generated cross sectional area for linkages

Area references Binary (Cross sectional areas) divide 100

A1 000100000000 5.12
A2 001100000000 15.36
A3 001100000001 15.37
B1 000000000001 0.01
B2 000100010000 5.28
B3 001010000100 12.99

Fig. 3 Representation of the implementation of the crossover
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Mutation is the stochastic operator used to protect against the loss of genetic diversity. It is
performed after the crossover process. During mutation, a single bit is simply flipped from 1 to 0 or
from 0 to 1, as shown in Fig. 4. This is applied at a low probability, pm. Mutation will take place if
a randomly generated number is below such value of probability. The low occurrence of mutation
would ensure that wholesome genetic information resulting from the crossover is not largely lost by
excessive mutation. In other words, a small rate has the effect of preventing the optimization,
narrowing to a small focus without being disruptive to the local search carried out by the crossover.

The algorithm repeats the abovementioned process by generating a new population and by
evaluating its fitness and constraint violation. The entire process of evaluation and reproduction
continues until either the population converges to an optimal solution for the problem or reaches a
certain predetermined number of solutions. In this paper, the individual with the smallest fitness
value without violating the constraints in current population represents the optimum mass of the bar
linkage.

2.3 Cross sectional area optimization using genetic algorithm (GA) of bar linkage 

In this paper, the optimum cross sectional areas of each bar linkage is found for a given stress
limit. GA is used in this sizing optimization because it is considered one of the most effective and
robust optimization technique (Osyczka and Kundu 1995). As GA is suited for unconstrained
optimization problems, a penalty-based transformation method (Rajeev and Krishnamoorthy 1990)
is applied in this paper for constrained optimization. The mathematical programming formulation of
these problems can be written as follows (Rajeev and Krishnamoorthy 1992)

Minimize f (x) subject to gi(x) ≤ 1, i = 1, 2, ..., m

where m is the number of constraints.
As the objective function is to minimize the mass, f (x) for the problems can be written as

 (17)f x( ) ρAjLj

j 1=

j

∑=

Fig. 4 Representation of the implementation of the mutation
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where Aj = the cross-sectional area of jth member 
Lj = the length of jth member
ρ = the density of material 

and gi(x) can be written as

for j = 1, 2, 3, ...   (18)

where  = bending stress or buckling stress in member j
σa = allowable bending or buckling stress

The formulation based on the violations of normalized constrained is used in the transformation
method (Rajeev and Krishnamoorty 1990). The constraints are expressed in normalized form as
shown below

  (19)

A violation coefficient C is computed in the following manner:
If gi(x) > 1, then Ci = gi(x); or if gi(x) ≤ 1, then Ci = 0 

  (20)

where m = the number of constraints.
The modified objective function φ(x) is written incorporating the constraint violations as

 (21)

where the parameter K has to be judiciously selected depending on the violated individual in the
next generation of GA. A value of 10 is chosen for all the problems as suggested by Rajeev and
Krishnamoorthy (1990). 

3. Numerical example

The four bar linkage mechanism is considered for the illustration of the current study. The
objective is to minimize the mass of the four bar linkages mechanism using the single stress
constraint and dual stress constraints. The results of the optimization of the four bar linkage
mechanism with single constraint (bending stress constraint) and optimization of the four bar
linkage mechanism with dual constraints (bending and buckling stress constraints) will be presented
as follows.

3.1 Optimization of four bar linkage mechanism with bending constraint only

Based on Fig. 1, the driving link L2 is rotated with a constant angular velocity of ω = 10π rad/s.
The links are considered to be elastic. Their properties are presented in Tables 1 and 2 (Toporov and
Markine 1998).

As common to the optimization using GA, the initial population of 80 chromosomes representing
the cross sectional areas of link L2, L3 and L4 is randomly generated. The modified objective

σbj
σa≤

σbj

σbj

σa

------ 1– 0≤

C Cj

j 1=

m

∑=

φ x( ) f x( ) 1 KC+( )=
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function, as discussed in Section 2.3, is embedded in the GA as the fitness function. The
optimization procedure here seeks the minimum bar linkage cross sectional area with the allowable
bending stress, σal, of 55.5 MPa as constraint in a predetermined number of generations.
Meanwhile, the synthesis analysis is carried out first with α2 = 0, as no acceleration is imposed, and
angle θ2 can be determined by 

(22)

From this equation, the angle rotates from 1o to 360o with angular velocity, ω2, of 10π rad/s.
Physically, the rotation increases if ω2 is increased. The mass changes at every angle due to the
change in angle representing the position of the node of the reference to a fixed axis (node 1 as
shown in Fig. 1) and the generated cross sectional area in each bar of linkages. The change in angle
will result in different values of global stiffness matrix, as the bending stress depends on the
developed force due to the rotation or movement of the bar linkage mechanism. 

The optimum mass at every angle at 1o to 360o obtained from the current optimization technique
is shown in Fig. 5. From this figure, it is clear that the change in angle gives different values of the
optimal mass. The optimal mass varies from 0.548 kg to 1.14 kg, depending on the angle of
rotation. The optimal mass of the four bar linkage mechanism is found at 4o of rotation with an
optimal mass value of 1.14 kg. Although the mass of 0.548 kg at angle 25o is seen as the lowest
optimal mass, as it is the lightest, it will violate the constraint at angles other than 25o. Hence, it can
be concluded that the optimal design for the four bar linkage mechanism with a mass of 1.14 kg is
obtained at an angle of 4o along with the cross sectional area in each link, which is acceptable at
every angle of rotation.

Fig. 6 shows the graph of the modified objective function against the number of generation at an
angle of 4o of rotation. From this figure, typical to the optimization with GA, it can be observed that
the optimum mass is reduced from 1.93 kg to 1.14 kg as the number of generation increases until the
mass becomes constant at generation 40. Therefore, the lightest mass for the four bar linkage is 1.14
kg, with a cross sectional area at links 2, 3, and 4 at 4.99, 2.04, and 1.00 cm2, respectively. 

To validate 1.14 kg as indeed the optimum mass value, a graph of the mass against the number of
possible solution is generated, as shown in Fig. 7(a). The value of the mass is generated at every
possible value of the cross sectional areas of the bar linkage. The search space for this problem is
from 1 cm2 to 10 cm2 with an increment of 0.01 cm2. For example, one set of possible solution,
which can be the cross sectional areas for all bar linkages, is taken as 1 cm2 from which the mass

θ2 ω2t where 0 t≤ 0.2s<=

Fig. 5 Optimum mass at each angle of the four bar linkage mechanism (1o-360o)
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0.546 kg is obtained. The second possible solution can then be taken with A1, A2, and A3 equal to 1,
1.01, and 1 cm2, respectively, in which the mass is 0.549 kg. This process of determination of the
possible solution is continuously carried out until all the areas, A, are filled with 10 cm2 each. From
this exercise, it can be concluded that there are very large numbers of possible solutions to this
problem, as shown in Fig. 7(a). In this graph, a straight line of 1.5 kg serves as the demarcation line
for the feasible solutions, where the possible solutions between A and B violate the constraints.
Fig. 7(b) is the enlargement of the lowest portion of Fig. 7(a). This figure shows that from the many
feasible solutions available, only one value for the minimum mass 1.14 kg, which is the current
method of optimization, can locate this point. Thus, it is proven that the optimal mass of 1.14 kg
obtained by GA is indeed the optimal solution.

Fig. 6 Minimum mass of the four bar linkage mechanism at an angle of 4o rotation for the number of
generations

Fig. 7 (a) Number of possible solutions for the mass of the four bar linkage mechanism with a single
constraint, (b) Zooming in the lowest section of Fig. 7(a)
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3.2 Four bar linkage mechanism with bending and buckling stress constraints

In this design optimization, the material is assumed to have a buckling stress limit of 240 MPa,
and other parameters, such as length and other properties, are the same as those in Section 3.1. The
optimal mass variation of the four bar linkage mechanism is shown in Fig. 8. The optimal mass
varies from 0.55 kg to 1.29 kg, depending on the angle from 4o to 360o. As observed, the optimum
mass of 1.29 kg is recorded at an angle of 4o. This optimum value can be confirmed from the
number of possible solutions from Fig. 9. Further, although there are many possible solutions, only
few comply with both the bending and buckling constraints. The straight line of 1.33 kg
representing the demarcation of the possible solutions violates the constraints. In the dual
constraints, two portions of A to B and C to D of the number of possible solutions violate the

Fig. 9 Number of possible solutions for the mass of the four bar linkage mechanism with dual constraints

Fig. 8 Optimum mass at each angle of the four bar linkage mechanism (1o-360o) 
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Table 4 Computational details of the four bar linkage mechanism at selected generation at an angle of 4o rotation

Gen A2 A3 A4 δ1 δ2 δ3 δ4 δB1 δB2 δB3 C1 C2 C3 C4 CB1 CB2 CB3 MOF Mass

cm2 cm2 cm2 Pa Pa Pa Pa Pa Pa Pa kg kg

1 4.00 3.00 2.00 -953235 -6.3E+07 4.3E+07 1482118 2.3E+08 1.9E+07 1.9E+07 -0.983 0.1264 -0.23 -0.97 -0.028 -0.919 -0.92 5.12 1.51

2 4.00 3.00 2.00 -953235 -6.3E+07 4.3E+07 1482118 2.3E+08 1.9E+07 1.9E+07 -0.983 0.1264 -0.23 -0.97 -0.028 -0.919 -0.92 5.12 1.51

3 4.28 6.00 1.00 -1457680 -5.9E+07 1.9E+07 4379061 2.5E+08 3.9E+07 9326404 -0.974 0.0603 -0.65 -0.92 0.039 -0.838 -0.96 4.91 2.08

4 4.25 1.97 1.35 -595623 -6.2E+07 5.1E+07 1451089 2.5E+08 1.3E+07 1.3E+07 -0.989 0.1239 -0.09 -0.97 0.0316 -0.947 -0.95 4.22 1.14

5 4.25 1.97 1.35 -595623 -6.2E+07 5.1E+07 1451089 2.5E+08 1.3E+07 1.3E+07 -0.989 0.1239 -0.09 -0.97 0.0316 -0.947 -0.95 4.22 1.14

6 4.25 1.97 1.35 -595623 -6.2E+07 5.1E+07 1451089 2.5E+08 1.3E+07 1.3E+07 -0.989 0.1239 -0.09 -0.97 0.0316 -0.947 -0.95 4.22 1.14

7 4.00 3.00 1.00 -842682 -5.6E+07 3.1E+07 2413271 2.3E+08 1.9E+07 9326404 -0.985 0.0139 -0.44 -0.96 -0.028 -0.919 -0.96 1.49 1.30

8 4.00 3.00 1.00 -842682 -5.6E+07 3.1E+07 2413271 2.3E+08 1.9E+07 9326404 -0.985 0.0139 -0.44 -0.96 -0.028 -0.919 -0.96 1.49 1.30

9 4.00 3.00 1.00 -842682 -5.6E+07 3.1E+07 2413271 2.3E+08 1.9E+07 9326404 -0.985 0.0139 -0.44 -0.96 -0.028 -0.919 -0.96 1.49 1.30

10 4.00 3.00 1.00 -842682 -5.6E+07 3.1E+07 2413271 2.3E+08 1.9E+07 9326404 -0.985 0.0139 -0.44 -0.96 -0.028 -0.919 -0.96 1.49 1.30

15 4.15 3.00 1.00 -812358 -5.5E+07 3.1E+07 2412356 2.4E+08 1.9E+07 9326404 -0.985 -0.007 -0.44 -0.96 0.0079 -0.919 -0.96 1.40 1.32

20 4.11 2.99 1.00 -816814 -5.5E+07 3.1E+07 2403267 2.4E+08 1.9E+07 9326404 -0.985 -0.001 -0.44 -0.96 -0.002 -0.919 -0.96 1.31 1.31

25 4.11 2.98 1.00 -815047 -5.5E+07 3.1E+07 2398446 2.4E+08 1.9E+07 9326404 -0.985 -0.001 -0.44 -0.96 -0.002 -0.921 -0.96 1.31 1.31

30 4.11 2.97 1.00 -813191 -5.5E+07 3.1E+07 2393382 2.4E+08 1.9E+07 9326404 -0.985 -0.001 -0.43 -0.96 -0.002 -0.921 -0.96 1.30 1.30

35 4.11 2.94 1.00 -805573 -5.5E+07 3.2E+07 2372617 2.4E+08 1.9E+07 9326404 -0.985 -2E-04 -0.43 -0.96 -0.002 -0.921 -0.96 1.30 1.30

40 4.11 2.93 1.00 -804801 -5.5E+07 3.2E+07 2370514 2.4E+08 1.9E+07 9326404 -0.985 -1E-04 -0.43 -0.96 -0.002 -0.921 -0.96 1.30 1.30

45 4.11 2.93 1.00 -803803 -5.5E+07 3.2E+07 2367794 2.4E+08 1.9E+07 9326404 -0.986 -3E-05 -0.43 -0.96 -0.002 -0.921 -0.96 1.29 1.29

50 4.11 2.93 1.00 -803803 -5.5E+07 3.2E+07 2367794 2.4E+08 1.9E+07 9326404 -0.986 -3E-05 -0.43 -0.96 -0.002 -0.921 -0.96 1.29 1.29

55 4.11 2.93 1.00 -803803 -5.5E+07 3.2E+07 2367794 2.4E+08 1.9E+07 9326404 -0.986 -3E-05 -0.43 -0.96 -0.002 -0.921 -0.96 1.29 1.29

60 4.11 2.92 1.00 -801455 -5.6E+07 3.2E+07 2361401 2.4E+08 1.9E+07 9326404 -0.986 0.0002 -0.43 -0.96 -0.002 -0.921 -0.96 1.29 1.29

65 4.11 2.93 1.00 -803803 -5.5E+07 3.2E+07 2367794 2.4E+08 1.9E+07 9326404 -0.986 -3E-05 -0.43 -0.96 -0.002 -0.921 -0.96 1.29 1.29

70 4.11 2.93 1.00 -803803 -5.5E+07 3.2E+07 2367794 2.4E+08 1.9E+07 9326404 -0.986 -3E-05 -0.43 -0.96 -0.002 -0.921 -0.96 1.29 1.29

80 4.11 2.93 1.00 -803803 -5.5E+07 3.2E+07 2367794 2.4E+08 1.9E+07 9326404 -0.986 -3E-05 -0.43 -0.96 -0.002 -0.921 -0.96 1.29 1.29
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constraints. The first portion A to B is violated because of the bending stress constraint, while the
second portion C to D is due to the buckling constraint. 

Table 4 shows the computational details of the four bar linkage mechanism with bending and
buckling stresses at the selected generation at an angle of 4o of rotation. The cross sectional areas
are listed in columns (2), (3), and (4). The bending stresses are listed in columns (5) to (8) as the
nodal stresses, whereas columns (9) to (11) display the buckling stresses as the stresses in the links.
The coefficient of violations is listed in columns (12) to (15) for both bending and buckling
violations. As stated earlier, these columns show whether the mass of the bar is acceptable or
violates the constraints imposed. The optimal mass in each generation is shown in the last column.
It can be seen that node 2 is violated from the 1st until the 10th generation due to the bending stress.
The violation is taken as the solution to show the evolution of the current optimization from having
bad fitness (infeasible solutions) at the beginning to having feasible solutions at the latter stage.
During the process of searching for the optimum solution, the quality of individuals in the new
generation greatly improves compared with the previous one, and the amount of violation is
considerably reduced and continues to improve until the convergence is met. 

Fig. 10 is the graph of the iteration history of the optimal mass at 4o angle of rotation. The
convergence is quite fast in the first 10 generations where the mass drops from 5.12 kg to 1.49 kg.
As the generation proceeds, the mass is continuously reduced up until the optimal solution of 30
generation. The optimal mass of 1.29 kg is obtained, and the cross sectional area of the links for
A2, A3, and A4 are 4.11, 2.93, and 1.00 cm2, respectively.

The result from the optimization technique can be discussed with regard to the effect of the
constraints. Different values of the optimal mass are obtained for single and dual constraints. In the
optimization of the four bar linkage mechanism, the optimal mass of 1.14 kg is obtained for the
single constraint and that for the dual constraints is 1.29 kg. The optimal mass for dual constraints
is heavier than that obtained from the single constraint, as the dual constraints find it more
complicated to comply due to the incorporated bending and buckling stress constraints. In addition,
it should be noted that the dual constraints are more critical than the single constraint when applied

Fig. 10 Minimum mass of the four bar linkage mechanism at an angle of 4o rotation for the number of
generations
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to the four bar linkage mechanism. From these comparisons, it can be inferred that the optimal mass
decreases when the number of constraints increases. 

 
4. Conclusions

This paper aims to find the minimum mass of the bar linkage mechanism in movement with the
imposed dual constraints. The utilization of kinematics, kinetics, and FEA is successfully carried out
in the analysis of the bar linkage mechanism. Further, GA is successfully used to optimize the cross
sectional area of the four bar linkage mechanism by coupling the mechanism synthesis with FEA.
GA with a single constraint successfully optimizes the four bar with an optimal mass of 1.14 kg. As
the optimization technique developed in this paper is a robust technique in which any constraint can
be incorporated, a single constraint is extended to include the dual constraints, with both bending
and buckling constraints imposed. With 55.5 MPa and 240 MPa values for the bending and
buckling stress constraints, respectively, the optimal mass of 1.29 kg is obtained. Moreover, it is
worthy to note that the search for the optimal mass of the bar linkage mechanism only takes few
minutes to be completed.
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