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Abstract. Near-fault ground motion with directivity or fling effects is significantly influenced by the
rupture mechanism and substantially different from ordinary records. This class of ground motion has
large amplitude and long period, exhibits unusual response spectra shapes, possesses high PGV/PGA and
PGD/PGA ratios and is best characterized in the velocity and the displacement time-histories. Such
ground motion is also characterized by its energy being contained in a single or very few pulses, thus
capable of causing severe damage to the structures. This paper investigates the characteristics of near-fault
pulse-like ground motions and their implications on the structural responses using new proposed measures,
such as, the effective frequency range, the energy rate (in time and frequency domains) and the damage
indices. The paper develops also simple mathematical expressions for modeling this class of ground
motion and the associated structural responses, thus eliminating numerical integration of the equations of
motion. An optimization technique is also developed by using energy concepts and damage indices for
modeling this class of ground motion for inelastic structures at sites having limited earthquake data.

Keywords: near-fault; pulse-like ground motion; frequency content; energy rate; inelastic response;
ductility; damage index; critical excitation.

1. Introduction

Resonant or pulse-like (also known as cycloidal pulses or impulse-like) ground motion has been

observed in near-fault (also known as near-field or near-source) records with directivity focusing or

fling effects. This class of ground motion is significantly influenced by the rupture mechanism,

substantially different from ordinary records, and can be characterized by the following tendencies,

see, e.g., (Housner and Hudson 1958, Housner and Trifunac 1967, Anderson and Bertero 1987, Hall

et al. 1995, Heaton et al. 1995, Makris 1997, Zhang and Makris 2001, Bray and Rodrigues-Marek

2004, among others): (1) large amplitudes and long period, (2) high PGV/PGA and PGD/PGA ratios,

(3) unusual response spectra shapes, and (4) the energy being contained in a single or a few pulses.

Pulse-like ground motions occurring close to urban and metropolitan regions can place severe
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Table 1 Information on near-fault ground motion (PEER 2005) 

Event, station and record
Site 

condition* MW

Source-
site 

Dist. 
(km)

PGA 
(g)

PGV 
(m/s)

PGD 
(m)

r1 (s) r2 (s
2)

Duration
(s)

Intensity 
(m/s1.5)

** ***

1940 El Centro, ELC#9, H180
1940 El Centro, ELC#9, H270
1966 Parkfield, Chol.#2, C02065
1971 San Fernando, LA HW, PCD164
1978 Tabas, Tabas, TAB-LN
1978 Tabas, Tabas, TAB-TR
1979 Imperial Valley, H-AEP045
1979 Imperial Valley, H-E06230
1981 Westmorland, WSM-090
1989 Loma Prieta, LGP000
1992 Erzincan, ERZ-NS
1992 Landers, LCN-275
1992 Landers, JOS-090
1992 Cape Mendocino, CPM000
1994 Northridge, Rinaldi, RRS228
1994 Northridge, Sylmar, SCS052
1995 Kobe, Takatori-000
1995 Kobe, Takatori-090
1995 Kobe, KJM-000
1995 Kobe, KJM-090
1999 Kocaeli, YPT060
1999 Chichi, TCU068-N
1999 Chichi, TCU068-W
1999 Chichi, ALS-E
1999 Chichi, TCU078W
1999 Chichi, TCU089N
1999 Duze, DZC180

medium
medium
medium
medium
medium
medium
medium
medium
medium

rock
medium

rock
stiff
rock

medium
medium

soft
soft
stiff
stiff

medium
medium
medium

stiff
medium

stiff
medium

7.0
7.0
6.1
6.6
7.4
7.4
6.5
6.5
5.8
6.9
6.9
7.3
7.3
7.1
6.7
6.7
6.9
6.9
6.9
6.9
7.4
7.6
7.6
7.6
7.6
7.6
7.1

12.99
12.99
31.04
11.86
55.24
55.24
2.47

27.47
7.02

18.46
8.97

44.02
13.67
10.36
10.91
13.11
13.12
13.12
18.27
18.27
19.30
47.86
47.86
37.83
4.96
7.04
1.61

0.31
0.22
0.48
0.21
0.84
0.85
0.33
0.44
0.37
0.56
0.52
0.72
0.28
1.50

0.84
0.61
0.61
0.62
0.82
0.60
0.27
0.46
0.57
0.18
0.44
0.25
0.35

0.30
0.30
0.75
0.19
0.98
1.22
0.43
1.10
0.49
0.95
0.84
0.98
0.43
1.27
1.66
1.17
1.27
1.21
0.81
0.74
0.66
2.63

1.77
0.39
0.39
0.31
0.60

0.13
0.24
0.23
0.12
0.37
0.95
0.10
0.66
0.11
0.41
0.27
0.70
0.15
0.41
0.29
0.54
0.36
0.33
0.18
0.20
0.57
4.30

3.24
0.10
0.31
0.32
0.42

0.10
0.14
0.16
0.10
0.12
0.15
0.13
0.26
0.14
0.17
0.17
0.14
0.16
0.09
0.20
0.20
0.21
0.20
0.10
0.13
0.25
0.58

0.32
0.22
0.09
0.13
0.18

0.04
0.11
0.05
0.06
0.05
0.11
0.03
0.15
0.03
0.08
0.05
0.10
0.06
0.03
0.04
0.09
0.06
0.06
0.02
0.03
0.22
0.95

0.58
0.06
0.07
0.13
0.12

40.00
40.00
43.69
28.00
32.84
32.84
11.15
39.04
40.00
24.97
21.31
48.13
44.00
30.00
14.95
40.00
40.96
40.96
48.00
48.00
35.00
90.00
90.00
59.00
90.00
79.00
25.89

10.64
7.46

11.13
4.06
8.49
8.48
7.15
3.31

10.96
49.12
9.42

43.46
14.67
27.19
46.03
36.42
54.31
7.13
7.24
5.83
1.36

20.06
20.62
6.00

36.15
9.64

16.83

0.26
0.13
0.17
0.16
0.13
0.11
0.35
0.08
0.14
0.17
0.19
0.06
0.17
0.16
0.31
0.21
0.17
0.20
0.21
0.21
0.06
0.02
0.02
0.12
0.07
0.07
0.09

0.66
0.70
0.68
0.70
0.61
0.62
0.68
0.76
0.74
0.77
0.89
0.61
0.69
0.63
0.78
0.78
0.75
0.72
0.69
0.69
0.85
0.83
0.87
0.77
0.73
0.73
0.84

*Soft soil: vs < 180 m/s, medium soil: 180 ≤ vs < 360 m/s, stiff soil: 360 ≤ vs < 750 m/s, rock soil: vs ≥ 750 m/s
 r1 = PGV/PGA, r2 = PGD/PGA. **a = 0.01, b = 0.01. ***(Ω0, Ωu) = 2π × (0,50) rad/s

ω ef ω s
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demands on buildings and other facilities in the near-fault region. The 1923 Kanto earthquake is a

striking example of a great earthquake occurring close to a heavily populated city killing more than

140,000 persons (59,000 in Tokyo) and causing property damage of more than $2.0 billion (Hough

and Bilham 2006). The 1957 Port Hueneme earthquake of magnitude 4.7 was the first earthquake

that consisted of a single pulse (Housner and Hudson 1958). Since the energy was concentrated in

one pulse, the damage caused by this earthquake was unusual for a moderate earthquake. Similarly,

the 1966 Parkfield earthquake measured 61 m from the source consisted of three pulses (Anderson

and Bertero 1987). Near-fault effects have been known for many years and became a focus of

research after the 1994 Northridge and the 1995 Kobe earthquakes.

Fig. 1 Near-fault ground motion (a) 1940 El Centro #9, H180, (b) 1966 Parkfield earthquake (Cholame # 2,
C02065)
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Table 1 lists 27 near-fault records from 15 earthquakes (PEER 2005). Fig. 1 shows the

acceleration, velocity and displacement of three pulse-like records and one ordinary record (1940 El

Centro) from Table 1. The resonance and large velocity and displacement amplitudes of pulse-like

motions are evident from Fig. 1. The 1999 Chichi record exhibits unusual high peak ground

velocity and displacement (see Fig. 1(d) and Table 1).

The widespread damage caused to code designed structures during the 1994 Northridge and the

1995 Kobe earthquakes has motivated engineers and researchers for better understanding of near-

fault ground motions of impulsive characteristics. Meanwhile, the increasing availability of strong

Fig. 1 (continued) Near-fault ground motion (c) The 1995 Kobe earthquake (Takatori, TAK000), (d) The 1999
Chichi earthquake (TCU068-N)
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ground motion data (e.g., from Japan, California, Taiwan, Turkey, India and Iran) and the ease in

accessing this data facilitate studying this class of ground motions and their effects on man-made

structures. With this in mind, the objectives of this paper are: (1) to demonstrate the distinctive

features of near-fault pulse-like ground motions and their differences from ordinary records, (2) to

investigate the structural performance to this class of ground motion using energy concepts and

damage indices, and (3) to provide simple mathematical models for pulse-like ground motion using

optimization techniques, energy concepts and damage indices for sites having limited earthquake

data. The next section summarizes various measures for characterizing near-fault ground motions.

2. Characterization of near-fault pulse-like ground motion

The characterization of earthquake ground motions and their potential to damage structures can be

quantified in terms of measures of the recorded free-field ground motion or in terms of measures

that are based on the structure performance during ground shaking as follows:

(1) Free-field measures: These are parameters based on the ground motion records, such as,

magnitude, energy, PGA, PGV, PGD, frequency content, duration, epicentral distance, etc.

These parameters are independent of the structural properties, and, thus have limited capability

in quantifying the earthquake capability to damage the structures.

(2) Elastic response spectra: Examples include the response spectra, the spectrum intensity, and

the drift spectra. These parameters do not account for inelastic structural behavior including

effects from amplitude and number of cycles of inelastic stress reversals.

(3) Inelastic response spectra: These are generally based on the maximum inelastic response of

single-degree-of-freedom (SDOF) structures and include displacement, ductility, interstory drift

and design spectra. These parameters do not include effects from the ground motion duration

and cumulative energy dissipated by the structure.

(4) Energy spectra: This includes the cumulative energy dissipated by damping and yielding.

These parameters include fundamental features of inelastic response and cumulative effects of

repeated cycles of inelastic deformation and duration of ground motion. The use of these

measures requires normalization with respect to the structure’s energy dissipation capacity.

(5) Damage spectra: These measures represent the variation of a damage index versus the

structural natural period. Damage indices contain contribution from maximum deformation

excursion and cumulative energy dissipated by the structure, and, thus, are robust measures for

the earthquake potential to damage the structures.

In this study we utilize the above measures and develop new measures for the frequency content

of the ground acceleration to characterize pulse-like strong ground motion for the set of records

listed in Table 1. The two horizontal components of the 1940 Imperial Valley earthquake (ordinary

records) of MW  = 6.9 are also included in the set of records for comparison.

2.1 Measures based on the recorded free-field ground motion

The distinct pattern of near-fault ground motion can be observed in the time-histories of the

ground velocity and displacement, and, also in the large ratios of PGV/PGA and PGD/PGA (see

Fig. 1 and Table 1). For instance, pulse-like records exhibit large velocity and displacement

amplitudes compared to ordinary records. An example is the TCU068 NS component of the 1999
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Chichi earthquake. The ratios of PGV/PGA and PGD/PGA are substantially large for these records

compared to ordinary records.

Fig. 2 shows the Fourier amplitude spectra for the earthquake accelerations of Fig. 1. Each

acceleration record is scaled to unit Arias intensity (Arias 1970). In other words, the square root of

the area under the square of the ground acceleration is set to unity. Note that this scaling affects the

amplitude of the ground acceleration and does not alter the frequency content. It can be seen that

the near-fault records (e.g., 1995 Kobe and 1999 Chichi earthquakes) possess narrow frequency

contents compared with the 1940 El Centro records. It is also remarkable that the peak Fourier

amplitude of the Kobe and Chichi records are higher than those from ordinary records. We propose

a new measure for quantifying the frequency content of the ground acceleration below.

The Arias intensity of the ground acceleration is given as (Arias 1970) 

(1)

Eq. (1) provides a measure of the acceleration energy computed in time domain. Let  =

 denotes the Fourier transform of the ground acceleration. Recalling Parseval’s theorem

expressed by

Et x··g τ( )[ ]2 τd
∞–

∞

∫

1/2

=

X
··
g ω( )

x··g t( )e iωt–

td
∞–

∞

∫

Fig. 2 Fourier amplitude of some of the ground accelerations in Fig. 1 
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(2)

a similar measure can be obtained in frequency domain 

(3)

Herein,  is the complex conjugate function of . The new measure for the frequency

content of the ground motion proposed in this paper is taken as . Herein, ωa and ωb

represent the frequencies at which a and (1 − b) times the Fourier energy  are attained,

respectively. Thus, the frequency bandwidth is taken to be given as  (see Fig. 3).

Typical values of a and b can be taken as a = b = 0.05 or any reasonable values (e.g., 0.01 or 0).

When a = b = 0.05,  can be viewed as a measure of the frequencies contributing to the strong

phase of the ground motion (Trifunac and Brady 1975). Furthermore,  can be normalized to

provide a measure bounded between zero and one

(4)

The frequency content ( ) is generally in the range of 2π × (0,5~50) rad/s depending on the

site soil condition and the fault-rupture properties. When  is close to zero, the ground motion

resembles the resonance or pulse-like trend. An example of this scenario is a harmonic signal of a

single or a few frequencies (e.g., , where A, ωg are the acceleration amplitude and

dominant frequency, respectively). When  is significantly larger than zero, the ground

acceleration will be rich in frequencies. The frequency bandwidth of the ground motion can also be

quantified based on the random vibration theory as follows

; (5)

where, ω1 is the central frequency of the ground acceleration and ωs is the radius of gyration; a

x··g t( )[ ]2 td
∞–

∞

∫
1

2π
------ X

··
g ω( )

2

ωd
∞–

∞

∫=
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2
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1/2

X
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Fig. 3 Measures of frequency bandwidth of recorded ground accelerations
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measure of the dispersion of the center of mass of the Fourier spectrum function from the central

frequency. This measure is based on the work of Vanmarcke (Vanmarcke 1972, 1976) that he used

for quantifying the frequency bandwidth of stationary random processes in terms of the moments of

the power spectral density (PSD) function. In this paper, we employ the Fourier spectrum of the

ground acceleration instead of the PSD function. ωs can also be normalized with respect to ω2 to

provide a measure  that is bounded between zero and one.

The numerical values of  and  for the 27 earthquake records of Table 1 are listed in the

same table. The parameters a and b are taken as a = b = 0.01. The values of  are seen to

correlate well with the frequency bandwidth of the ground accelerations. Note that  is inversely

proportional to the frequency bandwidth. These results reveal that  is an accurate descriptor for

the frequency content of the ground acceleration.

As is well known, the energy of the ground acceleration represents an important parameter for

characterizing earthquake ground motions (Housner 1970, Arias 1970, Trifunac and Brady 1975,

Housner and Jennings 1977). The expressions of the acceleration energy in time and frequency

domains are given by Eqs. (1) and (3), respectively. The time and frequency variations of the

energy of the ground motion can be useful indicators of the earthquake potential to damage

structures. For instance, near-fault ground motion can cause severe damage to structures due to the

large input energy to the structure. This feature can be captured by examining the time variation of

the acceleration energy and the relation between the structure fundamental frequency and the

dominant frequency of the ground motion (Housner 1970, Takewaki 2004). The computation of the

energy of the ground motion in the frequency domain is essential for this purpose since it reflects

the acceleration energy at various frequencies. Therefore, we use two energy measures for

characterizing the earthquake characteristics. The first measure is the energy rate in time domain

which represents the instantaneous incremental energy of the ground motion in time domain per unit

time. The second measure is the incremental energy of the ground motion in frequency domain per

unit frequency. These measures are given as 

; (6a,b)

where

(7a,b)

Trifunac and Brady (1975) developed an energy measure for the ground acceleration by

normalizing the energy with respect to the total duration of the ground motion. Note that 

provides a robust measure of the acceleration energy at discrete time instants.

The plots of the two measures of Eq. (6) for the records in Fig. 1 are shown in Figs. 4(b) and

5(b). Figs. 4(a) and 5(a) depict the plots of the energies given by Eq. (7). Note that all records are

normalized to unit Arias intensity. The effectiveness of the energy measures  and  in

characterizing pulse-like records is evident from the plots shown in Figs. 4 and 5. For instance, the

Chichi record has most of its energy concentrated at about 38 s. In frequency domain, the energies

of the Kobe and Chichi records are contained in narrow frequency range. It is also seen that the

peak amplitude of the Chichi and Kobe records are substantially higher than other records. It is

believed that the measures ,  and  provide important information on the nature of
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Fig. 4 Energy and energy rate in time domain
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Fig. 5 Energy and energy rate in frequency domain
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the ground motion. However, the use of these measures alone for quantifying possible damage of

the structure without the inclusion of the structure parameters is inadequate. The next section tackles

this limitation by considering measures based on the structural responses.

2.2 Measures based on the structural response

Figs. 6(a) and 6(b) depict the elastic and inelastic response spectra for the records shown in Fig. 1.

These plots represent the maximum elastic and inelastic pseudo velocity of the SDOF system versus

the natural period, respectively. A viscous damping model with damping ratio of 0.05 is adopted for

elastic and inelastic spectra. For the inelastic case, the material nonlinearity is modeled using an

elastic-plastic force-deformation law. The yield displacement and strength are taken as 

and N. All records are normalized to 0.30 g peak ground acceleration. The significant

differences of maximum responses of pulse-like records from ordinary records are remarkable. The

Kobe and Chichi records produce significantly higher response spectra compared to ordinary

records.

The energy spectrum of the ground acceleration represents the plot of the maximum energy versus

xy 0.10 m=

fy 10
4

=

Fig. 6 Pseudo velocity spectra (a) Elastic spectra, (b) Inelastic spectra, (c) Energy spectra, (d) Damage spectra
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the natural period. To do this, we consider the equation of motion of an elastic-plastic SDOF system

driven by a single component of ground acceleration 

(8)

where m and c are the mass and damping coefficient of the structure and  is the hysteretic

restoring force. Integrating Eq. (8), we get (Zahra and Hall 1984, Akiyama 1985, Uang and Bertero

1990, Chai and Fajfar 2000, Takewaki 2004, Abbas 2006, Moustafa 2009)  

(9)

where  are the relative kinetic energy, the energy absorbed by damping, the strain

energy and the earthquake input energy to the structure, respectively.  and 

is composed of cumulative unrecoverable hysteretic energy  and elastic recoverable energy

, where k is the initial stiffness.

We construct the dissipated energy spectra ( ) for the acceleration records of Fig. 1. These

results are presented in Fig. 6(c). The distinct differences for the energy spectra of pulse-like records

are evident. The pulse-like records are seen to produce higher energy ordinates than ordinary

records.

Structural damage under strong ground motion occurs not only due to the maximum deformation

or ductility but also due to the hysteretic cumulative energy dissipated by the structure. The

literature on structural damage measures of buildings under strong ground motion is vast (Powel

and Allahabadi 1988, Cosenza et al. 1993, Ghobara et al. 1999). Damage indices are based on

either a single or combination of structural response parameters. Measures that are based on a single

response parameter, such as, the ultimate ductility or the maximum energy dissipated during the

ground shaking do not incorporate information on how the earthquake input energy is imparted on

the structure nor how this energy is dissipated. The definition of the structural damage in terms of a

single response parameter is thus inadequate. Damage indices can be established by comparing the

response parameters demanded by the earthquake with the structural capacities. The damage index

developed by Park and co-workers is the most commonly used damage index due to its simplicity

and extensive experimental calibration with field observations in earthquakes, and is given as (Park

et al. 1985) 

(10)

Here,  are the maximum absolute displacement and maximum dissipated hysteretic energy

under the earthquake.  is the ultimate yield ductility capacity under monotonic loading and λ is a

positive constant that weights the effect of cyclic loading on structural damage. The state of the

structural damage is defined as:

(a) Repairable damage, when ,

(b) Damaged beyond repair, when , and

(c) Total or complete collapse, when .

These criteria are based on calibration of  against experimental results and field observations

in earthquakes (Park et al. 1985). Eq. (10) reveals that both maximum ductility and hysteretic

energy dissipation contribute to the structural damage during ground motion. Herein, damage is

expressed as a linear combination of the damage caused by excessive deformation and that

contributed by repeated cyclic loading effect. Note that the quantities  depend on the

x··g t( )

mx·· t( ) cx· t( ) fs t( )+ + mx··g t( )–=

fs t( )
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loading history while the quantities  are determined from experimental tests. The numerical

results on  are provided in Fig. 6(d). Herein, µu is taken as 6 and . From the

numerical results, it is evident that pulse-like records produce more damage than ordinary records

for structures having natural period greater than 0.70 s.

This section demonstrated the characterization of near-field ground motions using measures that

are based on the recorded free-field ground motion and those that are based on the structural

responses and damage indices. It has been shown that near-fault pulse-like earthquakes possess

distinctive features compared with ordinary records, and, also produce large structural responses and

damage indices. The next section provides simple analytical expressions for modeling near-fault

pulse-like earthquakes.

3. Modeling near-fault pulse-like ground motion

As noted in the introduction section, real recorded ground motions exhibit the resonance nature

when the energy of the earthquake ground motion is concentrated in a narrow frequency range.

The method of critical excitation may provide a useful tool for modeling pulse-like or resonant

ground motion for a given structure (Takewaki 2002, 2006, 2007, Abbas and Manohar 2002, 2007,

Abbas 2006). The damage caused by critical ground motions can be significantly larger than those

from ordinary ground motion since such ground motion is tailor-made to produce the maximum

response. In this section, we construct simple analytical representation of this class of ground

motion using optimization techniques and provide simple procedures for solving the optimization

problem. These simple analytical expressions can be easily used by the structural engineer to

assess the structural safety without numerical integration of the equation of motion to obtain the

structural response.

3.1 Representation of pulse-like ground motion using trigonometric functions

A simple functional representation of pulse-like ground motion can be expressed as

(11)

where A is a constant representing the acceleration amplitude and ωp is the pulse frequency of the

ground motion.

This representation has been used earlier for modeling near-fault pulse-like ground motions

(Makris 1997). Makris uses the velocity record to derive the pulse frequency ωp and the

acceleration amplitude as . An improved analytical model was developed by He and

Agrawal (2008) in which the velocity pulse is represented as a sinusoidal function modulated by an

exponential decaying envelope function, given as

(12)

Herein, ωp is the pulse frequency, C is an amplitude scaling factor, υ is a phase angle, a is a

constant that controls the modulation function, n is a non-negative integer parameter controlling the

λ xu fy, ,
DIPA λ 0.15=

x··g t( ) Asin ωpt( )=

x·g t( ) A 1 cos ωpt( )–[ ]/ωp=

xg t( ) A t sin ωpt( )/ωp–[ ]/ωp; 0 t< Tp≤ 2π/ωp= =

A ωpx
·
p
max

( )/2=

x·g t( ) Ct
n
e

at–

sin ωpt υ+( ); t t0≥=



768 Abbas Moustafa and Izuru Takewaki

skewness of the pulse envelope in time and t0 is the starting time point of the pulse. These authors

derived the analytical expressions for the acceleration and displacement and also for the

displacement response of SDOF systems. This model is used for performance-based seismic passive

energy dissipation of structures (Tan et al. 2005).

In this section, we model resonant or pulse-like ground motion for linear structures. Thus, the

parameters ωp and A of the ground motion are computed by optimization techniques so that the

structural response is maximized. Considering the ground motion to be given by Eq. (11), assuming

linear elastic behavior and considering zero initial conditions, the displacement response of the

SDOF structure can be shown to be given as

(13)

where, r is the ratio of the pulse frequency ωp and the structure natural frequency ωn, θ is a phase

angle and η is the damping ratio. Hence, the displacement response is given in a closed-form and

thus numerical integration of the equation of motion is eliminated. Additionally, the errors

associated with the numerical integration are also eliminated.

It can be shown that the resonance of the displacement, velocity and acceleration responses occur

at , ωn, , respectively. For viscous damping model of η = 0.03, these

values are 0.9991ωn, ωn, 1.0009ωn, respectively. Similarly, the resonant frequencies for η = 0.05 are

0.9975ωn, ωn, 1.0025ωn. Thus, for practical applications the resonance frequency can be taken equal

to ωn.

The representation of the ground motion developed here can be utilized for preliminary analysis

and design of structures. The optimization problem is solved in two steps. First, the dominant

frequency of the ground motion is taken to coincide with the structure natural frequency.

Subsequently, the acceleration amplitude is determined so that the structure response is maximized

subject to predefined constraints. These procedures are demonstrated below.

3.1.1 Energy constraint

Arias intensity is recognized as the most commonly used measure of earthquake energy (Arias

1970). Mathematically, this constraint is given as (see Eq. (1))

(14)

Making use of Eq. (11), the parameter A can be shown to be given as

(15)

Thus, the problem reduces to computing the value of the parameter A from the above equation

while the pulse frequency is taken to coincide with the structure fundamental frequency.

3.1.2 PGV constraint

In earlier works, the parameters of the pulse model are estimated so that the model possesses the
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pulse frequency and peak velocity amplitude observed in previous records. Implicit constraints on

the peak values of acceleration and displacement and the ground motion energy are automatically

implemented due to the closed-form representation adopted (Moustafa 2010). Here,  is

explicitly constrained to its peak value N, leading to

(16)

Thus, the problem reduces to finding the value of the parameter A from Eq. (16). The velocity

constraint is known to be more effective than the acceleration constraint (Housner 1970).

The model considered here is referred to as Model I in the numerical analysis. The representation

of pulse-like ground motion presented above does not account for the nonstationarity of the ground

motion. The next section tackles this limitation.

3.2 Representation of pulse-like ground motion using trigonometric functions modulated

by envelope function

The nonstationarity of the ground motion can be accounted for by modulating the sine signal of

Eq. (11) with an envelope function as follows

 (17)

where the parameters α and β control the nonstationarity of the ground acceleration. These

parameters can be calculated so that they match the nonstationarity trend of past recorded ground

accelerations (Takewaki 2002, 2006, 2007, Abbas and Manohar 2002, 2007, Abbas 2006). The

displacement response of the SDOF structure can be shown to be given as 

(18)

where

(19)

The parameters  can be obtained from the above expressions by replacing α with β. The

advantages of this representation are (1) elimination of the numerical integration in calculating the

structural response and also the error involved in the numerical integration, (2) the exclusion of

using nonlinear optimization technique. The model considered here is referred to as Model II in the

numerical analysis.

The numerical results for Models I and II are shown in Table 3. Herein, the energy and PGV

constraints are taken as 3.26 m/s1.5 and 0.30 m/s, respectively. These values are specified to reflect

the intensity and PGV of the 1940 El Centro NS record. The elastic and elastic-plastic responses of

the same structure to El Centro 1940 NS component are also included in Table 3. The parameters of

the elastic-plastic structure are taken as given in Section 2.2. It is observed that the energy

constraint (case 1) provides realistic response quantities compared with those produced with the
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PGV constraint (case 2). It is also remarkable that the elastic linear model is not sufficient

especially when dealing with extreme loads of pulse-like trend. The next section accounts for

inelastic structural behavior in modeling pulse-like ground motions.

4. Damage-based critical earthquake ground motion for inelastic structures

4.1 Problem statement

As seen in the introduction and the previous sections, ground motions of near-fault regions

affected by directivity focusing or fling effects possess a pulse-like trend. Thus, it is possible that

the dominant frequency of the ground motion coincides with the structure fundamental natural

frequency. In such case, the ground motion is termed critical excitation and produces the largest

response in the structure. See, for example (Takewaki 2002, 2006, 2007, Abbas and Manohar 2002,

2007, Abbas 2006) for a review of previous works on this topic. The use of the critical excitation

method is generally associated with safety assessment of important structures to be constructed in

seismically active regions having limited earthquake data. The method provides an answer to the

question on the worst case scenario that can happen to the structure which represents one of the

main concerns for structural engineers. The method relies on the high uncertainty associated with

earthquake occurrence. Given the importance of including nonlinear structural behavior, this section

models pulse-like ground motions for inelastic structures.

Unlike earlier work in which the critical earthquake is taken as the excitation that produces the

maximum response, we develop earthquake loads that cause the maximum damage in the structure

using energy concepts and damage indices. The ground acceleration is represented as

(20)

Here, A0 is a scaling constant and the parameters α and β impart the transient trend to . Ri

and φi are 2Nf unknown amplitudes and phase angles, respectively, and ,  are the

frequencies presented in the ground acceleration that are selected to span satisfactorily the frequency

content of . In constructing critical seismic inputs, the envelope function is taken to be known.

The information on energy E, peak ground acceleration (PGA) M1, peak ground velocity (PGV) M2,

and peak ground displacement (PGD) M3 are also assumed to be available. This enables defining

the following constraints (Abbas and Manohar 2002, Abbas 2006) 

(21)
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Here  is the Fourier transform of . From Eq. (20), the constraints of Eq. (21) can be

expressed in terms of the unknown variables Ri, φi,  as follows

(22)

where . The bounds  and  aim to replicate the Fourier spectra of past records

on the critical ground acceleration (Shinozuka 1970, Takewaki 2001) and are given as 

(23)

The function ,  denotes the Fourier transform of the ith normalized

accelerogram  computed using the Fast Fourier Transform.

Therefore, the problem of deriving critical earthquake loads can be posed as determining the

variables  such that DIPA (Eq. (10)) is maximized subject to the

constraints of Eq. (22).

It may be emphasized that, the ground energy rate is more effective than the energy constraint in

influencing the structural responses. A few authors have confirmed the effectiveness of the energy

rate of the ground motion in producing larger structural responses (Trifunac 2005, 2008). Note,

however, that the energy of the ground motion indicates the earthquake magnitude and can be easily

estimated from the time histories of the ground motion. The energy rate of the ground motion, on

the other hand, is a time-dependent function. Constraining the energy rate of the ground motion

requires imposing this constraint at discrete points of time which will increase the computations.

This constraint can be implemented in the same way the Fourier amplitude spectra constraints have

been imposed (see Eqs. (21) and (22)). An alternative is to derive the critical ground velocity by

maximizing the energy rate of the ground motion. Takewaki (2006) has considered the input energy

rate to the structure in modeling the critical earthquake loads.
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4.2 Solution procedures

This nonlinear constrained optimization problem is solved using the sequential quadratic

programming (SQP) method (Arora 2004). The following convergence criteria are adopted

(24)

Herein fj is the objective function at the jth iteration, yi, j is the ith optimization variable at the jth

iteration and  are small quantities to be specified. The structural inelastic deformation is

estimated by solving the incremental form of the equation of motion (Abbas 2006). In distributing

the frequencies of Eq. (20), it was found advantageous to place more frequencies within the half

bandwidth of the natural frequency of the elastic structure and to select one of these frequencies to

coincide exactly with this frequency. This was seen to enable the energy of the ground motion to

get distributed around the structure fundamental frequency and to facilitate rapid convergence of the

optimization solution. In the numerical analyses, several initial guess were examined and it was

found that the optimization converges to the same optimal solution.

It may be emphasized that the quantities  and  do not reach their respective

maxima at the same time. Thus, the optimization is solved at discrete time instants and the optimal

solution  is the one that produces the maximum DIPA across all

time points. The critical earthquake loads are characterized by the accelerations and associated

damage indices, inelastic deformations and energy dissipated by the structure. This model is referred

to as Model III in the numerical analysis.

4.3 Numerical example

Consider an elastic-plastic SDOF building frame with mass = 9 × 103 kg, initial stiffness k =

1.49 × 105 N/m and viscous damping model of 0.03 damping ratio. The initial natural frequency is

about 4.10 rad/s and the yield force fy = 104 N and the yield displacement uy = 0.07 m. The structure

is assumed to start from rest.

The constraint quantities are taken as E = 4.17 m/s1.5, M1 = 4.63 m/s2 (0.47 g), M2 = 0.60 m/s and

M3 = 0.15 m. The envelope parameters are taken as A0 = 2.17, α = 0.13, and β = 0.50. The upper

and lower constraints on the Fourier spectra are computed from the set of past records in Table 1

measured at medium soil. The convergence limits  are taken as 10-6. The frequency content of

 is taken as 2π × (0~25) rad/s.

The nonlinear constrained optimization problem is tackled using the SQP method through the

Matlab optimization toolbox (Caleman et al. 1999). To select the number of frequency terms Nf, a

parametric study was carried out and Nf = 51 was found to give satisfactory results.

fj fj 1–– ε1; yi j, yi j 1–,– ε2≤≤

ε1 ε2,

µ t( ) umax/uy= EH t( )

y* R1
* R2

* … RNf

* φ1
* φ2

* … φNf

*, , , , , , ,{ }
T

=

ε1 ε2,
x··g t( )

Table 2 Nomenclature of constraint scenarios for Models I, II and III

Case Models I and II Model III

1
2
3
4

Energy
PGV

-
-

Energy and PGA
Energy, PGA, PGV and PGD

Energy, PGA and UBFS
Energy, PGA, UBFS and LBFS

UBFS: upper bound of Fourier spectrum, LBFS: lower bound of Fourier spectrum
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Fig. 7 Critical earthquake accelerations and associated critical responses for case 1

Fig. 8 Critical earthquake accelerations and associated critical responses for case 4
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The constraint scenarios considered in deriving critical earthquake inputs are listed in Table 2. The

numerical results obtained are presented in Figs. 7-9 and Tables 3 and 4. Fig. 7 shows results for

constraint scenario 1 and similar results for case 4 are shown in Fig. 8. Each figure shows the time

history of the critical ground acceleration, the inelastic deformation, the hysteretic force and the

energy dissipated by the structure. Based on extensive analyses of the numerical results, the

following observations are made:

1. The frequency content and Fourier amplitude of the critical earthquake are strongly dependent

on the constraints imposed (see Table 3). If available information on earthquake data is limited

to the total energy and PGA, the critical input is resonant or of pulse-like nature and the

structure deformation is conservative (see Fig. 7 and Table 3). Furthermore, most of the power

Fig. 9 Fourier amplitude of critical acceleration (a) case 1, (b) case 4

Table 3 Response parameters of SDOF (ωn = 4.10 rad/s) to alternative acceleration inputs

Response quantity

Earthquake input load

El Centro 
NS record

Critical input 
(Model I)

Critical input
(Model II)

Critical input 
(Model III)

Case 1 Case 2 Case 1 Case 2 Case 1 Case 4

Max. displ.* (m)
Max. displ.** (m)
Ductility
DIPA

0.7518
0.0918
1.37
0.26

1.1601
0.0839
1.25
0.72

4.8370
0.1653
2.46
3.84

2.04
0.1145
1.71
0.66

3.85
0.1655
2.47
1.31

-
0.16
3.18
0.97

-
0.13
2.10
0.39

*Linear elastic analysis, **Elastic-plastic analysis

Table 4 Sensitivity analysis of the critical damage index to the constraints parameters

Parameter E M1 M2 M3 M4(ω) M5(ω) α β

�1

�2

0.51
4.52

0.18
1.60

0.14
1.71

0.23*

2.04*

0.16*

1.42*

0.13
1.15

0.04
0.36

0.06
0.53

*These values represent �1, �2 at the frequency at which M4(ω), M5(ω) reach their maximum values
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of the Fourier amplitude is concentrated at a frequency close to the natural frequency of the

elastic structure while the amplitudes at other frequencies are low and uniformly distributed (see

Fig. 9(a)). The results for case 1 match well with earlier works reported by Abbas (2006) and

Takewaki (2001). These results, however, are substantially different from those for the elastic

structure where all energy of the acceleration is centered around ω0 (Abbas and Manohar 2002).

Additional constraints on the Fourier amplitude spectra (see Table 3) force the Fourier

amplitude of the critical acceleration to get distributed across other frequencies (see Fig. 9(b)).

The critical acceleration possesses a dominant frequency that is close to the average frequency

of past records. The realism of the critical earthquake input is also evident from the maximum

damage index it produces. For instance, the damage index for case 4 is 0.39 (repairable

damage) which is substantially smaller than 0.97 (damaged beyond repair) for case 1.

2. To investigate the influence of the damping ratio on the computed critical earthquake load,

limited studies were carried out. The damping ratio is changed (namely, 0.01, 0.03 and 0.05)

while all other parameters are kept unchanged. The critical earthquake is computed by solving a

new optimization problem for each case. The value of the damping ratio is not seen to

significantly influence the frequency content of the earthquake acceleration. It was observed,

however, that the ductility ratio and the maximum inelastic deformation for the structure

decrease for higher damping ratios. Thus, the ductility ratio decreases to 1.98 for the damping

ratio of 0.05 while the ductility ratio increases to 2.95 for damping ratio = 0.01. It is also

observed that the inelastic structure with higher damping ratio dissipates more energy through

damping compared to that with lower damping ratio. The damage index also reduces when the

damping ratio increases.

3. The sensitivity of the critical damage index with respect to variations in values of the

constraints E, M1, M2, M3,  and the envelope parameters α, β are studied using

numerical methods. To examine the sensitivity of DIPA with respect to a specific parameter, the

value of this parameter is changed by 1% while all other parameters are held unchanged, and

the optimization problem is solved again. This leads to the calculation of the percentage change

in the optimal damage index �1, and also the ratio of change in the optimal DIPA to the change

in the parameter value �2. Table 4 summarizes the results of these calculations for case 4. For

the bounds , the change of 1% is taken to be uniform across all frequencies.

Table 4 reveals that the changes in energy E and PGD  alter the optimum solution

considerably compared with similar changes in other parameters. The optimum solution is less

sensitive to changes in the envelope parameters.

It may be emphasized that models I and II represent near-fault pulse-like ground motions with an

equivalent main pulse. Model III, however, accounts for the multi-pulses in the ground velocity. As

is well known, this class of ground motion may contain several pulses. Moreover, the ground

motion has been treated as being deterministic in nature. The modeling of this class of ground

motion using the probabilistic approach facilitates handing uncertainties in the ground motion,

variability in the structure’s parameters and assessing the structure’s reliability. These aspects have

been recently investigated by the present authors (Moustafa and Takewaki 2010). Furthermore, the

reduction of the structural responses under strong ground motion using passive dampers has also

been studied (Takewaki 2009, Fujita et al. 2010).

M4 ω( ) M5 ω( ),

M4 ω( ) M5 ω( ),
M4 ω( )
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5. Conclusions

This paper investigated the distinctive features of near-fault pulse-like ground motions. These

ground motions are characterized using measures based on analyses of the earthquake records. In

this paper, a new measure for characterizing the effective frequency content of the ground

acceleration has also been developed. An additional measure for the frequency content of the

ground motion based on the work of Vanmarcke (1972, 1976) has also been examined. It has been

shown that both measures successfully identify resonant or pulse-like ground motions. The energy

rate of the ground acceleration in time and frequency domains were also employed for the same

purpose. Pulse-like ground motions have also been characterized in terms of measures of the

structural performance during the ground shaking (e.g., response, energy and damage spectra). The

paper provides also simple analytical models for this class of ground motion which can be used by

the structural engineer to assess the safety of linear structures without the need for numerical

integration of the equations of motion.

Given the central importance of considering nonlinear behavior of structures in earthquake

engineering, the mathematical modeling of near-fault pulse-like ground motions has also been

investigated for inelastic structures using the critical excitation method combined with optimization

techniques and damage indices. It has been shown that the method can successfully model pulse-

like or resonant ground motions at sites having limited earthquake data.
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